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Abstract: Metabolic syndrome (MetS) is an important public health issue that affects millions of
people around the world and is growing to pandemic-like proportions. This syndrome is defined
by the World Health Organization (WHO) as a pathologic condition characterized by abdominal
obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is
multifactorial, involving many environmental factors, including toxicant exposures. Several studies
have associated MetS with heavy metals exposure, which is the focus of this review. Environmental
and/or occupational exposure to heavy metals are a major risk, contributing to the development of
chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute
to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein
metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss
the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways
that are associated with MetS. Furthermore, we describe how new approaches involving proteomic
and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of
the involvement of heavy metals and metalloids in MetS.
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1. Introduction

Metabolic syndrome (MetS) constitutes a major public health issue due to its increasing
worldwide prevalence. Global statistics show that a quarter of the adult population has
developed MetS [1]. As stated by the National Heart, Lung, and Blood Institute (NHLBI),
the development of MetS requires the presence of three of the following clinical conditions:
abdominal obesity, high blood pressure, high triglyceride levels, low HDL cholesterol,
and impaired fasting blood glucose [2]. The presence of these symptoms raises the risk of
developing stroke, cardiovascular disease, and type 2 diabetes. According to the National
Health and Nutrition Examination Survey (NHANES) data, during 2017–2018, the preva-
lence of MetS was 38.3% in the U.S. adult population [3]. The incidence of MetS parallels
the incidence of obesity, the most prevalent outcome of metabolic syndrome. Thus, in
2017–2018, U.S. obesity prevalence was 42.4% [4].

Obesity is a complex multifactorial disease/syndrome characterized by an excess of
adiposity concomitant with metabolic alterations. Fundamentally, an imbalance between
energy intake and expenditure leads to increased fat mass and obesity. Many factors
contribute to weight gain, including genetics, stress, consumption of high-caloric meals,
sedentary lifestyles, altered sleep routines, and certain medications [5–10]. Recent work has
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focused on identifying other factors that affect the risk of obesity. New data suggest that
environmental exposure factors, such as heavy metals, are also a risk factor for MetS and
obesity [11–13]. Moreover, some risk factors can be associated with metals and metalloids,
even in low-level exposure (i.e., below the governmental limits and guidelines). For
example, low levels of arsenic exposure are still associated with obesity in postmenopausal
women, most likely due the fact that they have decreased estrogen levels, which increases
the circulating concentrations of arsenic (As) [14].

The progress of urbanization and industrialization has dramatically increased metal
pollution, including heavy metals and metalloids such as As [15,16]. Heavy metals are
naturally existing metallic elements with high atomic weights and high density compared
to water. They are used in several industrial processes, such as mining, medical, techno-
logical, and agricultural sectors. Once they are released into the environment, they cannot
be destroyed or biodegraded. Thus, heavy metals are persistent environmental contami-
nants. Contaminated water and food consumption, industrial operations, occupational,
cigarette smoke, fossil fuel, waste, and cosmetic preparations are sources of heavy metal
exposure [17]. Upon exposure, heavy metals bioaccumulate, increasing the risk of chronic
health issues [17–19].

Several animal and human studies have shown that exposure to heavy metals is
associated with MetS and obesity. A cross-sectional epidemiologic study in the Korean pop-
ulation found a positive association between visceral adiposity and blood mercury [20,21].
Similarly, NHANES data from 2003–2014 found an association between obesity and cumu-
lative exposure to heavy metals among U.S. adults [22]. In vivo studies have shown that
alterations in adipogenesis, adipocytokines secretion, and the hypothalamic dopaminergic
system might act as potential mechanisms that mediate the association between heavy met-
als and obesity [23–25]. These and other studies have highlighted the association between
heavy metals and MetS. In this review, we summarize the mechanisms of five of the most
harmful heavy metals that may play a role in inducing obesity and MetS. In addition, we
uncover different proteomic and transcriptome approaches used to study the association
between heavy metals and metabolic syndrome.

1.1. Cadmium (Cd)

Recent epidemiological studies demonstrated that Cd exposure may be associated with
a risk for MetS, although the relationship of metal body burden with MetS components
varies between the studies. Specifically, in a study of 150 individuals, high urinary Cd levels
were characterized by increased odds of MetS, being also associated with lower HDL-C
levels [26]. The results of a recent cross-sectional study of 140 individuals demonstrated that
high serum Cd levels were associated with a 3-fold higher risk of dyslipidemia (OR: 3.05
[95% CI: 1.19–7.86], p = 0.02), but not obesity or diabetes [27]. Correspondingly, the results
of a meta-analysis of 11 studies confirmed the association between Cd exposure and low
HDL-cholesterol and increased triglyceride levels, but not other components of MetS, whereas
the association with the risk of MetS was significant only in Asian populations [28]. Another
NHANES-based study demonstrated that despite a significant association with MetS and
low HDL-C levels, urinary Cd concentration was inversely related to the risk of abdominal
obesity [29]. Cd exposure was shown to modulate the association between circulating LPS
and MetS. Specifically, high levels of LPS were directly associated with MetS only in men with
higher than median blood Cd levels, but not lower Cd exposure, in a study of 200 assumed
healthy individuals [30]. Analysis of NHANES 2011–2018 data demonstrated that elevated
blood Cd level was associated with lower risk of MetS [31]. Therefore, Cd appears to be
differentially associated with particular components of metabolic syndrome. Strong evidence
for a role of Cd in hypertension exists, although the association varies significantly for
different Cd exposure biomarkers used and specific cohorts of the studied subjects [32]. For
example, urinary Cd level was found to be associated with increased risk of hypertension,
whereas blood Cd was associated with elevated systolic and diastolic blood pressure only in
Non-Hispanic black Mexican-American women using NHANES data [33]. An examination
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of subjects from the ESTEBAN survey (2014–2015) demonstrated a significant association
between urinary Cd and hypertension only in subjects with obesity and chronic kidney
function [34]. The results of NHANES (1999–2010) demonstrated that blood Cd levels
were positively associated with both SBP and DBP, whereas urinary Cd concentration
was characterized by a direct and inverse relationship with DBP and SBP, respectively. In
addition, positive association between urinary Cd and SBP was revealed in subjects with
moderate or severe kidney dysfunction [35]. The results of a prospective cohort study of
just over 3000 American Indians demonstrated that higher baseline urinary Cd level was
associated with higher increase in both systolic (+0.62 (0.37–0.87) mm Hg) and diastolic
(+0.18 (0.05–0.31) mm Hg) blood pressure, as well as increased risk of hypertension [36].

The association between Cd exposure and hypertension risk was also demonstrated in
meta-analysis studies. Specifically, the results of a recently published meta-analysis demon-
strated a positive relationship between both blood and hair Cd levels and hypertension
risk [37]. An earlier meta-analysis also revealed a significant positive relationship between
occupational Cd exposure and hypertension risk [38]. Taken together, epidemiological
findings are strongly indicative of the role of Cd exposure as a risk factor for hypertension.

The molecular mechanisms of the hypertensive effects of Cd have been extensively
studied, demonstrating the critical role of impaired NO signaling [32] (Figure 1). Recent
studies further addressed the role of Cd in altered NO metabolism, demonstrating that
along with promotion of atherogenic phenotype in ApoE−/− mice, Cd exposure sig-
nificantly affected vascular reactivity, decreasing acetylcholine-induced vasodilatation in
aortic rings at least partially due to the inhibition of NO bioavailability [39]. The latter
may be mediated by Cd-induced up-regulation of NADPH-oxidase-mediated superoxide
production and subsequent peroxynitrite formation. In addition, the hypertensive effect
of Cd exposure was associated with up-regulation of angiotensin II type 1 (AT1) receptor
expression [40]. Altered vascular response to acetylcholine was shown to be associated
with Cd-induced increase in asymmetric dimethylarginine bioavailability [41].

NO production by endothelial cells exposed to non-toxic Cd levels may be associated
with impaired TCA cycle, mitochondrial dysfunction, and inflammatory response [42], as
well as inhibition of endothelial NOS protein expression [43] and phosphorylation [43].
In addition to reduced production of vasodilator NO, Cd increased COX-2-mediated
production of vasoconstrictor thromboxane A2 and prostaglandin H2 [44]. In addition to
the balance between vasorelaxation and vasoconstriction factors, Cd was also shown to
interfere with the central mechanisms of vascular tone regulation [45]

Endothelial dysfunction also significantly contributes to the hypertensive effects of
Cd [46]. Cd promoted TG decomposition along with inhibition of fatty acid oxidation,
resulting in an overaccumulation of toxic FFAs that induced endothelial dysfunction
through modulation of ROS production and mitochondrial dysfunction [47]. Along with
the prooxidant effect of the metal [48], increased p38-MAPK and ERK signaling was shown
to underlie Cd-induced endothelial dysfunction and apoptosis [49].

Although it has been proposed that Cd is a risk factor for obesity [50], epidemiological
data addressing this association are rather contradictory, demonstrating both positive and
negative relationships [51]. The latter has been confirmed by recent observations demon-
strating an inverse association between blood Cd and obesity in adults, from NHANES
(1999–2014) [33]. Despite a direct relationship between increased blood Cd levels and the
prevalence of prediabetes, its association with the prevalence of overweight and obesity
was found to be inverse in adults from a cross-sectional SPECT-China study [52]. It is
notable that high adipose tissue Cd content was associated with elevated circulating insulin
levels and insulin resistance, as well as DM2 risk in a study of 132 current smokers with
serum samples [53], although BMI and, specifically, obesity negatively correlated with
adipose tissue Cd level from the same study [54].
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Figure 1. Molecular mechanisms involved in atherogenic effects of Cd exposure. Cd-induced ROS 
overproduction promotes LDL oxidation and oxLDL internalization by macrophages, resulting in 
foam cell formation. LDL oxidation is also aggravated by Cd-induced PON1 inhibition. Up-regu-
lated expression of adhesion molecules including ICAM1 and VCAM1 following Cd exposure in-
creases monocyte adhesion and infiltration with their subsequent transformation to foam cells. Pro-
inflammatory effect of Cd also contributes to atherogenesis through promotion of TMAO-induced 
NF-κB and subsequent NLRP3 inflammasome activation, as well as JAK2/STAT3-dependent M1 
macrophage (Mφ) polarization. Finally, Cd-induced alterations of gut microbiota composition along 
with increased gut wall permeability results in an increase in circulating LPS levels, also promoting 
proinflammatory signaling. Different colors (pink, grey, blue, yellow) are indicative of distinct path-
ways for better visualization. Red and blue arrows show the increase and decrease effects. 
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cent obesity. Specifically, maternal blood Cd levels were found to be significantly associ-
ated with increased risk of juvenile obesity in children from a Newborn Epigenetics Study 
(NEST) [55]. In contrast, an inverse association between maternal urinary Cd levels and 
adolescent adiposity in the offspring was observed, especially in females [56]. In addition, 
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obesity in 6–19 years old children [57]. 

Figure 1. Molecular mechanisms involved in atherogenic effects of Cd exposure. Cd-induced ROS
overproduction promotes LDL oxidation and oxLDL internalization by macrophages, resulting
in foam cell formation. LDL oxidation is also aggravated by Cd-induced PON1 inhibition. Up-
regulated expression of adhesion molecules including ICAM1 and VCAM1 following Cd exposure
increases monocyte adhesion and infiltration with their subsequent transformation to foam cells.
Proinflammatory effect of Cd also contributes to atherogenesis through promotion of TMAO-induced
NF-κB and subsequent NLRP3 inflammasome activation, as well as JAK2/STAT3-dependent M1
macrophage (Mϕ) polarization. Finally, Cd-induced alterations of gut microbiota composition along
with increased gut wall permeability results in an increase in circulating LPS levels, also promoting
proinflammatory signaling. Different colors (pink, grey, blue, yellow) are indicative of distinct
pathways for better visualization. Red and blue arrows show the increase and decrease effects.

Recent studies also addressed the impact of Cd exposure on childhood and adolescent
obesity. Specifically, maternal blood Cd levels were found to be significantly associated
with increased risk of juvenile obesity in children from a Newborn Epigenetics Study
(NEST) [55]. In contrast, an inverse association between maternal urinary Cd levels and
adolescent adiposity in the offspring was observed, especially in females [56]. In addition,
urinary Cd levels were inversely associated (OR 0.46; 95% CI 0.33–0.64; p < 0.001) with
obesity in 6–19 years old children [57].

Taken together, the existing epidemiological data do not support the role of Cd ex-
posure as a risk factor of obesity. However, accumulation of Cd in adipose tissue as well
as reduced odds of overweight and obesity upon Cd exposure demonstrate that adipose
tissue appears to be a target for Cd toxicity, affecting its functioning [58]. Transcriptomic
analysis demonstrated that Cd exposure results in significant alterations of genes involved
in multiple pathways, including adipogenesis, lipid metabolism, insulin response, trace
element homeostasis, and inflammation [59].

The toxic effects of Cd on adipose tissue were shown to include alterations in adipo-
genesis, lipid metabolism, adipokine dysregulation, and inflammation [58]. Cd exposure
was shown to accumulate in WAT and reduce adipocyte adiponectin and leptin mRNA
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and protein expression, being indicative of the role of adipose tissue as a target for Cd
toxicity [60]. These findings corroborate earlier observations that Cd exposure inhibited adi-
pogenesis by down-regulation of CCAAT/enhancer-binding protein alpha (C/EBPα) and
peroxisome proliferator-activator receptor gamma (PPARγ) protein expression in a dose-
dependent manner, also resulting in reduced adipocyte size and inhibition of adipocyte-
specific adiponectin and resistin mRNA expression [61,62]. The reduction in body adiposity
following Cd exposure was also associated with down-regulation of hypothalamic LepR
expression, along with other alterations in the hypothalamic–pituitary–gonadal (HPG)
axis [63].

Several studies have demonstrated the propensity of Cd to promote adipose tissue
hypertrophy and dysfunction. Specifically, exposure to Cd at clinically relevant levels sig-
nificantly increased adipose tissue mass and induced insulin resistance in lean mice [64]. In
bone marrow-derived mesenchymal stromal cells, Cd exposure induced a shift from osteo-
genesis to adipogenesis through the up-regulation of PPARγ expression [65,66]. Increased
adiposity following early-life Cd exposure in male mice was posited to be mediated by
alterations in gut microbiota characterized by reduced biodiversity and increased relative
abundance of Bacteroidetes and a reduction in Firmicutes abundance at the phylum level.
At the genus level, Cd exposure induced a reduction in carbohydrate-utilizing Bifidobac-
terium and Prevotella in parallel with increased relative abundance of Cd-accumulating
Sphingomonas [67].

The role of Cd as a causal factor in diabetes has been addressed [68]. Our own previous
meta-analysis demonstrated that Cd exposure is associated with higher odds for preva-
lence of prediabetes (1.60 (95% CI 1.25 to 2.06)) and (1.04 (95% CI 0.99 to 1.10)), as well as
increased risk of diabetes (1.38 (95% CI 1.12 to 1.71)) [51]. The most recent epidemiological
studies further highlighted the association between Cd exposure biomarkers and the risk
of DM2. Specifically, a longitudinal prospective Wuhan-Zhuhai cohort study demonstrated
that during three-year follow-up, urinary Cd levels were associated with hyperglycemia
and DM2 risk [69]. The association between urinary Cd and DM2 was greater in subjects
with high-circulating CRP levels, being indicative of the role of inflammation in the rela-
tionship between Cd exposure and DM risk [70]. The association between Cd exposure
and prediabetes was evident in overweight and obese males, but not females [71].

Results of a dose–response meta-analysis demonstrated that urinary Cd levels were
positively associated with DM and every 1 µg/g creatinine increase in urinary Cd is
associated with a 16% higher risk of DM, being in agreement with earlier findings [72,73].
Filippini et al. (2022) also demonstrated a linear association between Cd exposure and DM
risk that increases gradually at blood Cd levels exceeding 1 µg/L, whereas prediabetes risk
increased only up to 2 µg Cd/g of creatinine in urine, subsequently reaching a plateau at
higher concentrations in a meta-study of 42 eligible studies [74]. At the same time, a recent
prisma-compliant systematic review and meta-analysis demonstrated that neither blood
nor urinary Cd levels were associated with DM2 risk [75].

The observed insulin resistance and diabetes in Cd-exposed subjects was shown to
be secondary to Cd’s ability to alter both the insulin signaling cascade and induce β-cell
dysfunction and impaired insulin secretion [51,76]. Recent findings significantly expanded
the understanding of molecular mechanisms underlying diabetogenic effect of Cd exposure.

Pancreatic islet was characterized as having the highest accumulation of Cd (vs whole
pancreas or renal cortex) [77]. Hong et al. (2022) demonstrated that Cd suppressed
insulin production and pancreatic β-cell viability through induction of mitochondrial
dysfunction associated with mitoROS overproduction and subsequent overproduction of
proinflammatory IL-1β, IL-6, and TNF-α [78]. The latter may be mediated by Cd-induced
activation of NF-kB signaling in the pancreas [79]. Correspondingly, Cd-induced beta cell
damage was also mediated by ferroptosis, characterized by increased iron accumulation,
GSH depletion, and inhibition of Gpx4 activity in parallel with proinflammatory signaling
via the Ager/Pkc/p65 pathway [80]. Inhibition of STAT6 signaling, as well as a shift to
Th1-mediated immune response, along with endoplasmic reticulum stress may be also
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responsible for pancreatic beta cell apoptosis [81,82]. Apoptosis in beta cells was also
induced by Cd via Ca2+-dependent JNK activation and subsequent C/EBP homologous
protein (CHOP) signaling [83].

Accumulation of Cd in pancreatic Langherhans islets was also associated with tran-
scriptomic alterations characterized by increased expression of Synj2, Gjb1, Rbpjl, Try5,
and 5430419D17Rik genes following in vivo exposure, and up-regulated expression of
Mt1, Sphk1, Nrcam, L3mbtl2, Rnf216, and Itpr1 gene expression upon ex vivo exposure,
with altered expression of Rbpjl, Mt1, and Itpr1 being potentially associated with altered
glucose metabolism [84]. Metabolomic analysis demonstrated that Cd exposure disrupts
mitochondrial TCA and fatty acid oxidation in pancreatic β-cells.

Cd-induced insulin resistance was shown in rodent models to be mediated by in-
creased phosphorylation of insulin receptor at threonine 1375 and IRS at serine 308, up-
regulation of ERK1/2 and S6K expression, and inhibition of Akt phosphorylation at serine
473, altogether resulting in impaired insulin signaling [85,86]. Prenatal Cd exposure was
also shown in rodent models (mouse and rat) to result in offspring insulin resistance, hyper-
glycemia, and impaired glucose tolerance in adulthood due to up-regulated gluconeogenic
p-CREB, PGC-1α, and G6PC protein expression [87,88].

Our previous meta-analysis demonstrated that Cd exposure was associated with
higher circulating TC levels (OR = 1.48, 95% CI: 1.10–2.01) and LDL-C levels (OR = 1.31,
95% CI 0.99–1.73), while being inversely related to lower HDL-C concentrations (OR = 1.96,
95% CI: 1.09–3.55) [89]. However, several recent studies failed to reveal any significant as-
sociation between Cd exposure biomarkers and atherosclerosis risk or dyslipidemia. Being
in agreement with indications of the relationship between Cd exposure and atherogenic
lipid profile, Cd overload is considered as a risk factor of atherosclerosis [90–92]. The
results of a dose–response analysis demonstrated that Cd overexposure was associated
with a more than twofold increase in the risk of subclinical lower extremity atherosclerosis,
that increased monotonically at blood Cd levels >0.69 µg/L [93]. Correspondingly, high
blood Cd levels (0.39 to 8.5 µg/L with a median of 0.63 µg/L) are associated with the
prevalence of coronary artery atherosclerosis, as evidenced by coronary artery calcium
score in a population with low to moderate cadmium exposure [94].

In addition to increased lipid biosynthesis and its oxidation due to Cd-induced ROS
overproduction [89], Cd has been shown to induce internalization of LDLs and oxLDLs
into macrophages, thus promoting foam cell formation [95]. Cd exposure increased 35S-
sulfate incorporation and LDL binding affinity of carotid artery proteoglycans, resulting
in subendothelial retention of atherogenic lipoproteins [96]. The atherogenic effects of Cd
exposure may also involve inhibition of paraoxonase 1 activity [97]. Figure 2 illustrates the
proposed mechanisms involved in the atherogenic effects of Cd.

Cd has also been shown to induce atherogenesis through stimulation of M1 macrophage
polarization via JAK2/STAT3 signaling and a subsequent production of proinflammatory
cytokines, including TNF-α and IL-6 [98]. In ApoE−/− mice Cd exposure promoted
atherosclerosis through the alteration of gut microbiota and increased production of
trimethylamine-N-Oxide that significantly contributes to macrophage M1 polarization
characterized by up-regulated NLRP3 and NF-KB p65 expression and a subsequent inflam-
mation and increased plaque formation [99].

Along with induction of proapoptotic signaling, Cd exposure also up-regulated mRNA
expression of adhesion molecules ICAM-1 and VCAM-1, as well as VE-cadherin [100,101].
Cd-induced up-regulation of von Willebrand factor mRNA and protein expression though
stimulation of ETS-related gene (ERG) transcription factor signaling, but not NF-κB and
GATA3 signaling, may also contribute to atherogenesis. Cd exposure-induced decrease in
the abundance of Prevotella and Lachnoclostridium and Cd exposure-induced increase in the
abundance of Escherichia coli_Shigella were associated with increased circulating LPS levels
and dyslipidemia, as well as systemic, hepatic, and renal inflammation [102,103].
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Figure 2. Molecular mechanisms involved in atherogenic effects of Cd exposure. Cd-induced ROS
overproduction promotes LDL oxidation and oxLDL internalization by macrophages, resulting
in foam cell formation. LDL oxidation is also aggravated by Cd-induced PON1 inhibition. Up-
regulated expression of adhesion molecules including ICAM1 and VCAM1 following Cd exposure
increases monocyte adhesion and infiltration, with their subsequent transformation to foam cells.
Proinflammatory effect of Cd also contributes to atherogenesis through promotion of TMAO-induced
NF-κB and subsequent NLRP3 inflammasome activation, as well as JAK2/STAT3-dependent M1
macrophage (Mϕ) polarization. Finally, Cd-induced alterations of gut microbiota composition along
with increased gut wall permeability results in an increase in circulating LPS levels, also promoting
proinflammatory signaling. Different colors (pink, grey, blue, yellow) are indicative of distinct
pathways for better visualization. Red and blue arrows show the increase and decrease effects.

Taken together, the existing studies demonstrated a significant association between
the epidemiology of MetS and its components, including dyslipidemia and atherosclerosis,
elevated blood pressure, and hypertension, as well as hyperglycemia and DM2, whereas
the association between Cd exposure and obesity is still questionable. Recent laboratory
findings further expanded the potential molecular mechanisms underlying the role of Cd
in metabolic syndrome by unraveling the role of autophagy, pyroptosis, ferroptosis, and
NLRP3 inflammasome in cell dysfunction, as well as the systemic epigenetic effects of
Cd and modulation of gut microbiota in β-cell and endothelial dysfunction, as well as
insulin resistance.

1.2. Arsenic (As)

Arsenic (As) overexposure has previously been proposed as the potential factor ag-
gravating development of MetS and associated metabolic disorders [104]. Although first
indications of the association between As exposure and MetS were obtained in Taiwan
more than a decade ago, recent findings provided additional insight into this interplay.
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Specifically, in an As-exposed population of Bangladesh, patients with MetS were charac-
terized by significantly higher hair, nail, and drinking water As levels, with the latter being
significantly associated with the risk of MetS components (except hypertriglyceridemia),
especially in women [105–107]. Notably, in an endemic arsenism area of Iran, the in-
crease in %DMA and secondary methylation index (DMA/MMA), but not iAs or primary
methylation index (MMA/iAs), was associated with increased MetS risk in a study of
132 individuals [108]. Doubling of urinary As levels was associated with a significant
increase in MetS (HR = 1.14 (1.01, 1.29)) in a prospective cohort of 947 midlife women in the
United States characterized by low-to-moderate As exposure [109]. Although urinary total
As levels were associated only with increased risk of fasting hyperglycemia but not MetS,
both lower level of MMA and higher concentration of DMA were related to increased risk
of MetS [110].

Polymorphisms of critical genes involved in the pathogenesis of metabolic syndrome
have been shown to significantly modulate sensitivity to As-induced metabolic syndrome.
Specifically, dominant genetic model ADIPOQ/rs266729 and recessive genetic model
FABP2/rs1799883 significantly reduced and increased the risk of hypertension in As-
exposed subjects, respectively, whereas KEAP1 rs11545829 SNP mutation homozygote AA
genotype reduced the association between DM2 and urinary As levels in an associate study
of 699 individuals [110,111].

The existing data provide strong evidence that As exposure interferes with mech-
anisms involved in the pathogenesis of obesity, yet they remain inconclusive [112,113].
The most recent data suggest that particular As species may be differentially associated
with obesity. In Bangladeshi adults MMA and DMA were differentially related to BMI,
characterized by negative and positive association, respectively [114]. Correspondingly,
despite an inverse relationship of total urinary As and MMA levels with BMI, DMA levels
were found to increase along with BMI up to 4.26µg/L/day, while at higher concentrations
BMI tended to decrease [115]. Correspondingly, urinary As levels adjusted for creatinine
and osmolality were inversely associated with BMI and waist-to-height ratio), in agreement
with earlier observations in Taiwan [116,117]. Altogether these data support a significant
role of As metabolism through methylation in its effect on obesity.

The observed associations between As exposure biomarkers and obesity seem to be
mediated by As-induced adipose tissue dysfunction [118]. In an in vitro model of umbil-
ical cord derived mesenchymal stem cells, As exposure inhibited adipogenesis through
down-regulation of PPARγ, FABP4, and SLC2A4 mRNA expression and a concomitant
up-regulation of proinflammatory cytokine expression. Moreover, results from an epidemi-
ological study using 22 cord blood corroborated the observed in vitro findings, demon-
strating a significant inverse correlation between toenail As levels and PPARG, aP2, and
SLC2A4 mRNA expression in prenatally exposed children [119]. These findings agree
with the results of earlier studies demonstrating down-regulation of PPARγ, aP2, and
C/EBPs expression in inhibitory effect of As on [120,121]. Inhibition of adipogenesis upon
As exposure may also involve ERS and up-regulation of CHOP10 that decreases C/EBPβ
binding activity and affects adipogenic transcription factor activation [24]. Inhibitory effect
of As exposure on adipogenesis was shown to be mediated by up-regulation of miR-29b
expression that affected cell cycle by sustained cyclin D expression [122].

As exposure was shown to induce retroperitoneal adipose tissue hypertrophy with
impairment of insulin-induced lipolysis characterized by down-regulation of genes in-
volved in lipolysis, fatty acid uptake, oxidation, and glycerol transport [123]. In agreement
with the results of epidemiological studies. demonstrating distinct association between As
metabolites and obesity, AS3MT deficiency is also associated with altered metabolic profile
characterized by increased body adiposity and insulin resistance [124]

The effect of As on body weight may also be mediated additional mechanisms beyond
modulation of adipogenesis. As exposure in mice significantly reduced metabolic heat pro-
duction as well as an increase in body fat and inguinal WAT mass due to down-regulation
of protein expression of TOMM20, PGC1A, and CPT1B involved in mitochondrial biogen-
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esis, functioning, and fatty acid oxidation, altogether being indicative of reduced energy
expenditure [125]. Zuo et al. (2019) demonstrated cold intolerance, lipid accumulation in
BAT, and impaired lipolysis [126]. Correspondingly, in an in vitro study reduced brown
adipogenesis and down-regulation of UCP1 expression significantly contribute to inhibi-
tion of thermogenesis upon As exposure [127]. In addition, As-induced alterations in gut
microbiota including reduced relative abundance of Lactobacilli, Bifidobacteria, Akkermansia,
Lachenospiraceae, Fecalibacterium, Eubacterium, and clostridium coccoid group with increased
Enterobacteriaceae abundance may contribute to inhibition of adipogenesis, lipolysis, and
thermogenesis in gonadal WAT, as well as increased adipogenesis and thermogenesis
in BAT, as well as systemic inflammation [128]. It is also worth mentioning that Gong
et al. (2021) demonstrated transgenerational effect of paternal As exposure, characterized
by reduced body adiposity in F2 offspring and increased susceptibility to diet-induced
increase in body adiposity in F3 offspring [129]. Taken together, the potential role of As
as an obesogen remains unsolved, although adipose tissue dysfunction induced by As
exposure is expected to aggravate metabolic risk [130,131].

Hyperglycemia and type 2 diabetes mellitus (DM2) have also been shown to be related
to As exposure. A meta-analysis of 38 studies by Sung et al. (2015) revealed a significant
association between As exposure and DM with a risk ratio of 1.71 (95% CI 1.32–2.23) [132].
Recent epidemiological findings corroborated these results. Specifically, the results from
NHANES (2015–2016) demonstrated that total urinary As level was directly associated
with insulin resistance after adjustment for possible confounding factors [133]. In American
Indian adults without prediabetes exposed to low-to-moderate doses of As, total urinary
As levels were also associated with increased hazard ratio of DM2 [134]. It has been also
demonstrated that hyperglycemic effect of As exposure is more profound in subjects with
low skeletal muscle mass, low socioeconomic status as well as obesity may be associated
with increased sensitivity to As-induced diabetes [135–137]. Polymorphisms of genes
involved in diabetes pathogenesis, including IL8RA, TXN, NR3C2, COX5A, and GCLC,
significantly modulated the association between urinary As levels and the odds of diabetes
in a general Spanish population [138].

The role of As exposure in DM2 pathogenesis involves modulation of carbohydrate
metabolism, insulin sensitivity in various tissues, insulin production, and beta-cell dys-
function [139] (Figure 3). It has been proposed that As-induced alterations in insulin
secretion mainly contribute to impaired carbohydrate metabolism rather than peripheral
insulin resistance. Both organic and inorganic As species reduced glucose-induced insulin
secretion in murine pancreatic islets through inhibition of Ca2+ influx [140,141]. Styblo’s
group demonstrated that inorganic and organic arsenicals significantly altered Krebs cycle
and mitochondrial function, and impaired amino acid, carbohydrate, phospholipid and
carnitine metabolism in beta-cells, altogether resulting in inhibition of glucose-stimulated
insulin secretion [142,143].

As displayed toxic effects on pancreatic beta cells through the induction of ROS over-
production and oxidative stress, as well as p38-MAPK- and NF-kB-mediated inflammation.
Beta-cell damage was shown to be dependent on NLRP3 inflammasome activation through
As-induced down-regulation of Annexin A1 mRNA and protein expression and endoplas-
mic reticulum stress with IRE1α phosphorylation, contributing to pyroptosis and β cell
dysfunction [144,145]. Another mechanism of As-induced beta-cell dysfunction involves
ferroptosis [146]. Dysregulation of autophagy also appears to play a significant role in
As-induced beta-cell damage. Specifically, As-induced toxicity to beta cells was shown to
be associated with induction of endoplasmic reticulum stress and subsequent activation of
LC3II-mediated autophagy, whereas PERK knockdown ameliorated As-induced autophagy.
At the same time, As exposure resulted in ROS-induced down-regulation of PPARγ signal-
ing, resulting in inhibition of PTEN-induced kinase 1 (PINK1)-mediated mitophagy and
subsequent beta-cell apoptosis [147].
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Figure 3. Molecular mechanisms underlying hyperglycemic effects of As exposure. As exposure
was shown to induce β-cell dysfunction and death through ferroptosis, resulting in reduced insulin
production. Alteration of IR/IRS/PI3K/Akt signaling pathway upon As exposure was shown
to inhibit insulin signaling, thus resulting in insulin resistance. As-induced ROS overproduction
was also shown to promote NF-κB and MAPK activation with subsequent NLRP3 inflammasome
activation and gasdermin D-dependent pyroptosis that is considered as a potential player in the
development of both insulin resistance and insulin deficiency. Activation of endoplasmic reticulum
(ER) stress upon As exposure also promote inflammasome activation. In addition, recent findings
demonstrated that that As-induced β-cell dysfunction may be mediated by up-regulation of miR-29a,
miR-146, and miR-209 expression. The effects of the latter are at least partially associated with
inhibition of transcriptional factor PDX1 expression. In addition, metalloid-induced miR-191 up-
regulation significantly contributes to inhibition of IRS1/PI3K/Akt pathway. Different colors (pink,
grey, blue, yellow) are indicative of distinct pathways for better visualization. Red and blue arrows
show the increase and decrease effects.

The diabetogenic effect of As was shown to be mediated by epigenetic mechanisms. In
particular, As-induced inhibition of insulin secretion in pancreatic beta cells is associated with
altered DNA methylation of the glucose transporter 2 (Glut2) gene [148,149]. Ramdas et al.
(2018) demonstrated that β-cell dysfunction in response to As treatment may be mediated by
miR-2909-mediated inhibition of pancreatic duodenal homeobox 1 (PDX1) protein expression,
which is considered as a key transcription factor regulating β-cell functioning [150]. Up-
regulation of miR-146 following As exposure was shown to contribute to beta cell dysfunction
and altered insulin synthesis [151,152]. Adverse effects of As exposure on beta-cell gene
expression were also shown to be mediated by up-regulation of miR-29a [152].

In addition to alterations of insulin production, As significantly affected the insulin-
signaling cascade in various tissues, including liver, skeletal muscle, and brain. Transcrip-
tomic analysis demonstrated that As and high-fat diet coexposure significantly affects
hepatic expression of genes involved in insulin signaling [153]. Both inorganic arsenite and
methylarsonite significantly down-regulated Akt phosphorylation, resulting in impaired
PI3K/Akt pathway signaling and subsequently leading to inhibited insulin-induced activa-
tion of glycogen synthase along with stimulating glycogen phosphorylase activity [154].
Further studies revealed potential mechanisms which mediate the adverse effects of As on
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insulin signaling. Specifically, in liver cells, insulin resistance following As exposure was
shown to be mediated by increased mitochondrial ROS production, mtDNA oxidation, and
PINK1-mediated mitophagy with subsequent NLRP3 inflammasome activation [155].

Another mechanism of As involvement with MetS may involve arsenite methyltrans-
ferase (AS3MT)-mediated N6-methyladenosine (m6A) methylation of NLRP3 mRNA and
its subsequent activation [156]. Activation of NLRP3 inflammasome was shown to con-
tribute to As-induced hepatic insulin resistance by suppression of glycolysis via binding
to pyruvate kinase, liver and RBC (PKLR). As-induced NRLP3 inflammasome activation
along with inhibition of gasdermin D ubiquitination resulted in promotion of gasdermin
D-mediated pyroptosis and subsequent hepatic insulin resistance [157,158]. As-induced
increase in miR-191 expression significantly inhibits IRS1/PI3K/Akt pathway, resulting in
a reduction of GLUT4 translocation in hepatocytes [159]. In skeletal muscles, As-induced
insulin resistance characterized by reduced IRS, Akt, and GluT4 protein expression was
shown to be dependent on ROS-induced autophagy [160]. It has also been demonstrated
that As exposure induces insulin resistance in brain cells by inhibition of IR and IRS-1
tyrosine phosphorylation, due to impaired insulin receptor tyrosine protein kinase activity
and down-regulation of PI3K/Akt signaling [160,161].

As exposure plays a significant role in atherogenesis. A meta-analysis of five previ-
ously published studies demonstrated that As exposure results in reduced HDL-C and
increased LDL-C concentrations [162]. It has been demonstrated that organic and inorganic
As metabolites are differentially associated with lipid profile. Specifically, urinary As levels,
and especially arsenic acid concentrations, were shown to be directly associated with serum
TC, whereas both total As and its methylated metabolites (DMA/MMA) were characterized
by a direct relationship with LDL-C [163]. It is also notable that dietary As sources also
have a significant impact on the relationship between As exposure and dyslipidemia. Total
As intake with dietary items and water was found to be associated with increased HDL-C
levels and hypertension risk, whereas As intake from rice consumption directly correlated
with LDL-C concentration [164]. In agreement with the observed association between As
exposure and atherogenic lipid profile, a positive relationship between increased risk of
carotid atherosclerosis as well as hypertension and drinking water As levels, even within
the WHO provisional guideline value of 10 µg/L, was found [165].

Additional epidemiological studies have found an association between body As
burden and the risk of dyslipidemia and atherosclerosis [166,167]. In agreement with these
epidemiological data, laboratory findings demonstrated an adverse effect of As exposure
on serum lipid profile, characterized by reduced HDL-C and increased circulating TC, TG,
and LDL-C concentrations [168]. Increased LDL oxidation upon As exposure may be also
mediated by reduced PON1 activity [169]. In addition, As exposure was shown to inhibit
cholesterol efflux from macrophages via ROS-induced activation of DNA methyltransferase
1 (DNMT1) and subsequent ABCA1 promoter methylation [170].

In HUVECs, As exposure significantly up-regulated vascular cell adhesion molecule-1,
intercellular adhesion molecule-1, and pentraxin 3 mRNA and protein expression, being
in agreement with the observed association between As levels and circulating VCAM-1
levels and 15-F2t-IsoP in adults from the New Hampshire Health Study exposed to low-to-
moderate doses of As [171,172]. As reduced fibrinolytic tissue-type plasminogen activator
synthesis through the Nrf2-mediated pathway [173]. Increased expression of As3MT was
observed in plaque-resident cell types, being indicative of its essential role in atherogenic
effect of As [174]. As-induced dysregulation of lipid metabolism were also shown to be
mediated by alterations in gut microbiota, as evidenced by the opposite effects of As on
lipid metabolism in antibiotic-treated mice [175].

Epidemiological studies have provided evidence that As overexposure is associated
with dysregulation of blood pressure and hypertension [32]. The results of a meta-analysis
demonstrated a significant dose-dependent relationship between increased water As levels
and hypertension, when every 1 µg/L increase in water As was associated with an 0.08%
increase in the odds of hypertension [176]. Correspondingly, a 4.03 mmHg (95% CI:
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1.24–6.82) increase in blood pressure was revealed in As-exposed subjects in another meta-
analysis [177]. As accumulation in the organism was also associated with blood pressure
elevation and hypertension. Specifically, hair As levels in hypertensive women were more
than two-fold higher as compared to control subjects, although being unrelated to single
nucleotide polymorphisms in genes related to phase II metabolism enzymes [178]. In turn,
increased serum As levels promoted the association between ccm3 genetic polymorphism
and elevated blood pressure [179]. Prenatal exposure, as assessed by maternal urinary
As levels, was significantly associated with increased blood pressure in adolescents along
with current exposure [180]. It is also notable that the As-associated elevation of blood
pressure was higher in subjects with diabetes at baseline [181]. In agreement with the
epidemiological studies, As exposure significantly increased blood pressure in laboratory
rodents. As treatment also altered vascular relaxation induced by acetylcholine and sodium
nitroprusside or 8-bromo-3′,5′-cyclic GMP [182–185].

The hypertensive effect of As would be expected to result from the imbalance be-
tween vasorelaxation and vasoconstrictor signals, especially reduced NO production or
bioavailability. It has been demonstrated that As exposure resulted in blood pressure
elevation in rats due to inhibition of eNOS and up-regulation of iNOS and NOX expression
altogether resulting in reduced NO bioavailability [186]. The latter may be also mediated
by up-regulation of asymmetric dimethylarginine (ADMA) production due to its reduced
degradation by dimethylarginine dimethylaminohydrolase (DDAH), as well as depletion
of L-arginine levels [187].

As has been shown to promote the vasoconstrictor effect of angiotensin II through
an increase in circulating angiotensin II level and ACE activity, up-regulation of AT1
receptor and Gαq/11 protein expression, and MAPK pathway, thus promoting angiotensin
II signaling [188]. Rahaman et al. (2023) demonstrated that the hypertensive effect of As in
mice involves an increase in angiotensin II and a concomitant reduction in angiotensin (1–7)
levels, as well as down-regulation of aortal ACE2, MasR, SIRT1, and specificity protein 1
(Sp1) expression [189]. Interestingly, endothelial dysfunction upon As exposure was shown
to be mediated by autophagy activation, whereas As-induced hypertension and autophagy
in aorta, characterized by increased Beclin-1 levels and LC3II/I ratio, may be dependent on
the up-regulation of SIRT1 signaling [190].

Taken together, recent epidemiological studies provide evidence supporting the asso-
ciation between As exposure and metabolic syndrome and its components, with a special
focus on its metabolism and the differential relationship between As metabolites with MetS.
These studies have further deepened the understanding of the role of oxidative stress,
inflammation, beta-cell dysfunction and insulin resistance, and the dysregulation of lipid
metabolism and vascular tone regulation in particular components of MetS, demonstrat-
ing the role of micro RNAs, epigenetic effects, gut microbiota modulation, as well as the
induction of pyroptosis and autophagy in As-induced MetS.

1.3. Mercury (Hg)

Humans can be exposed to Hg in three distinct forms, elemental Hg vapor (Hg0),
inorganic mercury compounds, and organic mercury compounds. All Hg compounds
can be potentially harmful to humans, depending on the dose, exposure route, and du-
ration [191]. In respect to MetS, methylmercury (MeHg) is the major species of Hg to be
investigated, although there are some reports on HgCl2. MeHg is a major environmental
pollutant that is a contaminant of our fish supply, with the highest concentrations present in
large predatory species, such as swordfish, tuna, and shark. MeHg has long been described
as a neurotoxicant, with its effects varying depending on the life-stage of the individual,
dose, and duration of exposure. Developmental exposure to MeHg has been linked to
cognitive and behavioral dysfunction in children, while cumulative exposure to MeHg
over an adult’s lifetime has been linked to the development of neurodegenerative diseases,
such as Parkinson’s disease [192,193]. Early studies of MeHg poisoning demonstrated an
anorexic effect on weight in humans [194,195] and experimental animals [194,196,197].
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The evaluation of longitudinal data has revealed relationships between MetS, obe-
sity, and lipid dysregulation with various types of Hg exposures. NHANES, conducted
at various locations across the United States, has revealed associations between heavy
metal exposure and MetS and obesity comorbidities. In examining NHANES data from
~9500 participants, from 2003–2014, Wang et al. found correlations between rates of obe-
sity, including high BMI, higher skinfold thickness, and high percentage body fat, and
comorbidities, such as type 2 diabetes, with cumulative exposures to mixtures of metals,
including Hg (measured in blood and urine), As (measured in urine), Pb (measured in
blood), Cd (measured in blood), Ba(measured in urine), and Tl (measured in urine) [22].
These observations were independent of age, race, cigarette smoking, education, or physical
activity level. Similar associations were made in examining larger numbers of NHANES
participants from 2007–2018 [198]. The Bulka et al. report of NHANES data from 2011–2014
revealed an increased odds ratio for developing obesity with pairs of metals rather than
mixtures of many metals. In 1088 participants, the authors found an increased chance
of obesity in individuals exposed to both Hg and Mn and in individuals exposed to Hg
and As [199]. In the individuals exposed to As and Hg, there was an elevated prevalence
of high blood pressure, low HDL cholesterol, and high triglycerides among those with
greater exposures [199]. Similarly, in participants from the Korean National Environmental
Health Survey (KoNEHS) from 2015–2017, increased blood and urine levels of Hg, Pb, and
Cd were associated with obesity and nonalcoholic fatty liver disease [200]. Conversely, in
the Study of Women’s Health Across the Nation Multi-Pollutant Study with 947 midlife
women, mixtures of Cd, cesium, Hg, molybdenum, Pb, and tin did not associate with
MetS markers (high blood pressure, impaired fasting glucose, abdominal obesity, high
triglycerides, and poor high-density lipoprotein cholesterol) [109].

While these data explored exposure to heavy metal mixtures, epidemiological data has
emerged linking exposure solely to MeHg and MetS parameters. Lee found that elevated
blood Hg levels were associated with higher body weights and obesity in participants from
KoNEHS from 2011–2013 [201]. Elevated blood Hg levels were also found to correlate to
hyperlipidemia and increased serum liver enzymes, a marker of liver disease, in partici-
pants from KoNES from 2012–2014 [202]. In these studies, Hg exposure occurred through
the dietary consumption of MeHg in fish and seafood. Likewise, high blood Hg levels
were observed in obese individuals with high body mass index, waist circumference, and
visceral adipose tissue; high blood pressure, fasting glucose, and insulin resistance after
adjusting for alcohol and cigarette usage [20]. Additionally, links between Hg exposure and
type 2 diabetes were found upon examining 646 participants from the National Nutrition
and Health Survey in Taiwan (NAHSIT) 2005–2008 [203]. While blood Hg levels inform
about current exposure to Hg, long term exposures to Hg are better reflected by hair or
nail accumulation, two biomarkers that grow, and have Hg deposited into them, at defined
rates [204,205]. In a study of 500 participants, the Trace Element Study of Korean Adults,
higher toenail Hg levels were associated with regular consumption of large predatory fish
and mammal meat, as well as the presence of MetS [206,207]. Furthermore, individuals
with higher toenail selenium, as reflected in diet, had lower Hg levels and MetS [206]. Simi-
larly, in a study of 440 adults, increased hair Hg levels in overweight and obese individuals
were associated with adverse metabolic markers, such as elevated serum creatinine, uric
acid, glucose, LDL, and triglycerides, as compared to individuals with high hair Hg and
normal body weight [208].

It has long been appreciated that children and the developing fetus are at higher risk
for the neurotoxicity associated with MeHg exposure [209]. As rates of childhood and
adolescent obesity are on the rise globally [210,211], it is critical to assess whether childhood
obesity is influenced by Hg. Emerging data suggest that early life exposure to Hg, either in
utero or during childhood, can influence development of obesity and MetS in children and
adolescents. Women with high blood levels of nonessential metals, including As, Ba, Cd,
Cs, Pb, and Hg, during their first trimester of pregnancy had children with larger trunk fat
mass index, waist circumference, and BMI in mid-childhood and early adolescence [212].
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These data suggest that early exposure to metals during pregnancy may affect the weight
and development of obesity in children many years post-birth. Similar results were found
in a study of 1442 mother–child pairs that examined the levels of only Hg, Pb, and Cd [213].

In a small study of 92 mother–child pairs (all children 6 years of age) conducted in
New Zealand, the level of Hg measured in mothers’ hair correlated to the level of Hg in
the hair of their children, suggesting a common source of Hg, i.e., a fish-based diet [214].
Interestingly, the incidence of obesity was significantly associated with higher levels of Hg
in the children, but not in the mothers [214], suggesting Hg had an effect on development
in children, leading to higher body weights, than similar levels of Hg in the mother. In
utero exposure to low maternal blood Hg (1.04–3.7 µg/L) increased the risk of developing
childhood overweight or obesity between ages 2–15 years [215]. The risk was augmented if
the mother was diabetic, overweight, or obese [215], suggesting that the Hg might interact
with other obesogenic factors circulating in the mother’s blood. Interestingly, adequate
maternal folate levels could mitigate the effects of blood Hg on developing overweight or
obesity in childhood as compared to mothers with insufficient folate [215].

An examination of the KoNEHS from 2010–2013 identified that high levels of total
blood Hg in adolescents was associated with increased body weight, abdominal obesity,
high waist-to-height ratio, and an increased risk of developing obesity [216,217]. Further-
more, upon combining data from 2010–2013 and 2016 KoNEHS, it was found that blood
Hg was higher in males than in females, and male adolescents with the highest levels of
blood Hg were at a higher risk of hypercholesterolemia, independent of body weight [218].
This agrees with data from 5400 children and adolescent participants in NHANES from
2011–2014, where blood Hg levels correlated with serum cholesterol levels [219]. While
information exists on Hg’s association with childhood and adolescent Hg, whether these
children remain obese into adulthood has only recently been investigated. Betanzos-
Robledo et al. reported on data from the Early Life Exposures in Mexico to Environmental
Toxicants study, where 100 adolescents (age 14–16 years) were recruited, measuring BMI,
blood Hg, and blood Pb levels, then at age 21–22 years, fat accumulation measurements
were performed. High blood Hg levels in adolescence were associated with increased
subcutaneous and abdominal fat stores in early adulthood [220]. It will be interesting to
pursue this population in the future to reevaluate Hg levels and fat accumulation as the
participants age.

From many of these epidemiological studies, it is apparent that in higher weight
individuals and patients with MetS, there are elevated levels of Hg in blood, nails, and
hair. There are two ways to interpret these data: (1) Exposure to Hg can influence the
development of MetS; or (2) Individuals with higher body weight have altered toxicoki-
netics, resulting in less elimination of Hg and the retention of higher levels of Hg than in
lower body weight individuals. Recent toxicokinetic analysis in participants that consumed
known concentrations of MeHg in tuna steaks revealed no statistical significance between
normal body weight, overweight, or obese individuals in the elimination rate of Hg from
hair [221]. This suggests that MeHg may influence the development of MetS rather than
body weight altering MeHg toxicokinetics. Mechanistic studies in experimental animal
models and cell culture have been performed that build a case that exposure to MeHg can
cause lipid dysregulation and the physiological changes associated with the development
of MetS.

The effect of MeHg on bodyweight in rodents appears to be dose-dependent. High
doses of MeHg (5 mg/kg/day for 30 days) in Wistar rats were shown to cause significant
weight loss [222]. Similar doses in C57BL/6J mice and KK-Ay genetically obese mice
had anorexic effects [223,224]. Rats that were exposed to lower doses of MeHg (1 or
3 mg/kg/day) did not have significant changes in total body weight [222]. It should
be pointed out that in many rodent models of both obesogen and diet induced obesity,
increased body weight is not always observed, while other parameters, such as serum
lipids, adipose composition, and hormone levels might differ between test and control
rodents [225]. KK-Ay diabetic mice accumulate more Hg than non-obese mice and show
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enhanced neurological damage and inflammation compared to non-obese mice [226]. There
also appear to be gender differential responses to MeHg in C57BL/6J mice. In males
exposed to 5 ppm MeHg for 30 days, ghrelin (hunger hormone) was increased as compared
to control mice, and led to body weight gain by activating the AMP-activated Kinase
(AMPK)/Uncoupled protein 2 (UCP2) signaling pathway. However, ghrelin pathways were
inhibited in female mice exposed to the same regimen as the male mice [226]. Furthermore,
there were sex differences in neuropeptides pro-omiomelanocortin (Pomc), orexigenic
peptide Agouti-related peptide (Agrp), and leptin [197,224].

MeHg has been shown to alter serum lipid and glucose profiles in rodents, similar
to type 2 diabetes and dyslipidemia characteristic of MetS. Mice exposed to 40 µg/mL
MeHg in drinking water for 2 weeks had adverse effects on their serum lipid profiles as
compared to the non-exposed mice [227]. MeHg elevated total cholesterol levels as well
as non-high density lipoprotein (non-HDL) levels [227], markers of dyslipidemia and risk
factors for obesity and cardiovascular diseases. Mice exposed to lower doses of MeHg in
drinking water (2 or 20 mg/L) for 30 days had increased body weight as compared to non-
exposed mice, as well as elevated serum triglycerides, total cholesterol, as well as markers
of systemic inflammation and oxidative stress [228–230]. Similar elevations in triglycerides
and cholesterol were observed in Nile Tilapia (Oreochromis niloticus) and Bluegill (Lepomis
macrochirus) exposed to MeHg [231,232], suggesting the effects of MeHg on circulating
lipids are conserved across species. Mice exposed to 2.5, 5, or 10 mg MeHg/kg/day for
4 weeks showed glucose intolerance, insulin resistance, and hyperglycemia [233]. MeHg
significantly increased ROS, leading to lipid peroxidation in the pancreatic islets and
decreased thiol and ferric reducing antioxidants, while upregulating caspases, leading to
apoptosis [233]. These data suggest that MeHg can induce changes in the pancreas similar
to type 2 diabetes associated with MetS.

Models of MeHg exposure to adipocyte and islet cell lines, as well as the organism
Caenorhabditis elegans have provided mechanistic links on MeHg’s propensity to induce
metabolic dysregulation. MeHg has been shown to increase markers of oxidative stress,
such as lipid peroxidation product 4-hydroxynonenal, following an acute treatment in
3T3-L1 adipocytes as well as alter cellular morphology and lipid content [234]. MeHg
treated 3T3-L1 increased release of adiponectin and resistin [234], a hormone released by
adipocytes that regulates blood glucose levels and inflammation [235]. In obese individuals,
higher levels of resistin in serum were noted [235], similar to MeHg exposure to 3T3-L1
cells. The alterations in adipocyte phenotype, lipid peroxidation, and hormone secretions
in response to MeHg were attenuated by the antioxidant theaflavin-3,3′-digallate [234],
suggesting an important role for oxidative stress in the development of MeHg-induced
metabolic dysfunction in vitro. In a model of 3T3-L1 adipocyte differentiation where MeHg
was continually supplied for 8 days, MeHg enhanced the development of the lipid droplet,
accumulating more triglycerides in MeHg-exposed cells than in untreated cells [236].
Furthermore, markers of mature adipocyte differentiation were significantly increased
in the MeHg-treated cells, which included expression of PPARγ, adiponectin, and fatty acid
binding protein [236]. MeHg was also shown to increase autophagy markers in this study.
Interestingly, treatment of 3T3-L1 cells early in development with an autophagy inhibitor
chloroquine prevented the effects of MeHg on the lipid droplet; however, chloroquine had
no effect on MeHg-induced alterations if the cells received the inhibitor during late stages
of development [236]. This suggests that early induction of autophagy in pre-adipocytes
can drive the differentiation into mature adipocytes in response to MeHg. The effects
of MeHg on driving adipocyte differentiation seems to be conserved across species. In
primary pre-adipocytes from rainbow trout (Oncorhynchus mykiss) exposed to MeHg for
6 days, there was an accumulation of neutral lipids as well as the upregulation of genes
that are markers of mature adipocytes, including perilipin 2, apolipoprotein Eb, fatty acid
synthase, and fatty acid binding protein [237].

The differentiation of pre-adipocytes into mature adipocytes is a complex process
controlled by multiple transcription factors working in concert to express the proteins
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necessary for the function of storing lipids and endocrine signaling. The differentiation
of pre-adipocyte 3T3-L1 cells into mature adipocytes involves early induction of C/EBPβ
transcription factor, which transactivates the expression of C/EBPα, PPARγ, and SREBP1
transcription factors, allowing for the expression of genes that are important for lipid
storage and mobilization [238]. MeHg treatment of Caenorhabditis elegans has been shown
to increase triglyceride content and lipid storage sites, as well as increase the expression
of lipid storage, mobilization, and synthetic genes [239,240]. Interestingly, the effects of
MeHg on lipid dysregulation could be modified by the bacterial diet fed to the worms [240],
suggesting that dietary factors that the worms are exposed to at the same time as MeHg can
affect the lipid dysregulation phenotype. MeHg-dependent lipid dysregulation in worms
was associated with increased expression of cebp-1 (homolog to human C/EBP), nhr-49
(homolog to PPARγ), and sbp-1 (homolog to SREBP1) transcription factors [239]. Genetic
ablation of cebp-1 prevented the MeHg-induced increases in triglyceride levels, lipid storage,
and up-regulation of lipid metabolic genes [239]. These data demonstrate the potential
for MeHg to activate important regulators of lipid metabolism, and provide evidence
that MeHg may alter the adipocyte differentiation process through similar mechanisms in
mammalian systems.

In addition to transcription factor activation required for adipocyte differentiation,
it is apparent that expression of microRNAs (miRNAs) are important phenotypic regula-
tors involved in the development of MetS. MiRNAs are short, non-coding RNAs which
repress the expression of target genes by base pairing with the 3′ UTR region of the gene’s
mRNA, leading to translational repression [241]. Multiple studies have shown that miRNA
expression is altered in the adipose tissue of individuals with metabolic disorders [241,242].
Altering the ability of C. elegans to express miRNA significantly affected the ability of MeHg
to cause lipid dysregulation [243]. This suggests that MeHg may affect the expression
of the miRNA sequences involved in lipid homeostasis. Further characterization of the
expression of adipogenic or anti-adipogenic miRNA sequences in response to MeHg is
needed to fully understand the mechanisms of MeHg-induced adipogenesis.

MeHg has been shown to reduce the viability of the HIT-T15 pancreatic cell line and
primary mouse pancreatic islets and to decrease the amount of insulin secreted by these
cells [244]. In HIT-T15 cells, MeHg induced apoptosis, disrupting the mitochondrial mem-
brane potential with release of cytochrome c, and activated caspases [244]. MeHg-induced
apoptosis in β-cells was shown to be dependent on oxidative stress, as the antioxidant
N-acetylcysteine prevented the β-cell apoptosis [244]. Similarly, MeHg decreased the vi-
ability and insulin production in the RIN-m5F cell line, displaying not only markers of
mitochondria-dependent apoptosis, but also of endoplasmic reticulum (ER) stress [245].
Both the mitochondrial and ER stresses were shown to be dependent on ROS generation and
c-Jun N-terminal kinase (JNK) activation, as treatment with N-acetylcysteine, 6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), or a specific JNK inhibitor (SP600125)
prevented MeHg-induced toxicity to the RIN-m5F cells [245]. These data suggest that the
glucose intolerance and low insulin levels observed in vivo may be due to the cytotoxicity
of MeHg to pancreatic β-cells.

In contrast to MeHg, inorganic HgCl2 has been shown to be anorexic in both rodents
and cell lines. Male Wistar rats exposed to a low dose of HgCl2 for 60 days (0.07 µg/kg/day)
showed a decrease in the size of epididymal white adipocytes but had increased serum
triglycerides, decreased insulin, and increased plasma glucose levels as compared to
unexposed rats [246]. Furthermore, important adipocyte regulators such as PPARα, and
PPARγ mRNA were increased, suggesting impaired adipocyte function [246]. Similarly,
Kawakami et al. found that HgCl2 exposure to mice fed a high fat diet, decreased visceral
white adipose tissue size and decreased leptin (the satiety hormone) and insulin, but also
decreased PPARα and PPARγmRNA [247], suggesting there might be differential responses
in different populations of adipocytes. Similarly, in 3T3-L1 and C3H10T1/2 adipocyte
cell lines, HgCl2 decreased the number of phenotypic adipocytes without affecting cell
viability [248], suggesting the HgCl2 prevented adipocyte differentiation. Markers of
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differentiation, such as expression of PPARγ and GLUT4, as well as lipid storage (measured
by Oil Red O staining), were significantly reduced in HgCl2-treated cells than in the control
adipocytes [248].

Overall, epidemiological studies, in vivo animal studies, and in vitro studies have
described the potential of MeHg to cause the phenotypic changes characteristic of MetS.
Further research is needed to define the mechanisms of MeHg-induced metabolic dys-
function as well as to better understand the exposure conditions that can cause metabolic
dysregulations in humans.

1.4. Lead (Pb)

Lead (Pb) is a well-established toxic heavy metal that is present in ecosystems due
to its long-standing use in many industrial applications in the past, such as gasoline and
paints. Currently, most of the past processes that required the use of Pb have been restricted
to reduce its release into the environment and reduce exposure to humans in at least
major portions of the world [249]. Although acute intoxications with high doses of Pb
are infrequent at present, exposure to environmental concentrations of this metal still
comprise a public health issue. A notable exception is the recent poisoning incident in
Flint, Michigan, USA, in which Pb contamination of the drinking water supply increased
the percentage of children with elevated blood Pb levels (BLL) [250]. As children are the
most vulnerable population, the Center for Disease Control and Prevention (CDC) uses
3.5 g/dL as the blood lead reference value (BLRV) for children as a level of concern to take
action. Having no known biological function, Pb harms developing organisms primarily
through the central nervous system [251,252]. Notably, increasing evidence demonstrates
that other systems are affected by Pb as well, such as renal, cardiovascular, hematopoietic,
reproductive, and endocrine, including the disruption of metabolic pathways in a variety
of tissues.

Recently, Pb exposure has been related to the development of MetS and obesity. Based
on the results of a study on 2833 Korean subjects (1230 men and 1603 women), BLL
were significantly correlated with all metabolic syndrome variables, including systolic
and diastolic blood pressure, waist circumference, fasting blood sugar, TG, and HDL
cholesterol. [253]. Another study included 3787 adults (aged ≥19 years) who participated
in the Korean National Environmental Health Survey 2015–2017 and investigated the
association of toxic heavy metals (Pb, Hg, and Cd) with metabolic disorders. In this case,
both Pb and Hg exposures were associated with an increased risk of obesity. In contrast,
no correlation was found in a male population (313 men aged 50–75 years) in north-
western Poland between BLL (median of 77 µg/L) and metabolic syndrome development or
exacerbation [254]. Interestingly, analysis of the data from NHANES 1999–2006 supported
an inverse association of BLL and body weight outcomes in children and adolescents
and adults in the U.S. population. In children, adolescents, and adults, a lower BMI was
associated with higher BLL quartiles (1.1 to 1.6 µg/dL or higher) [255].

Similarly, rat and mouse model studies have linked Pb with MetS. A study conducted
by Wang and colleagues [256] revealed that chronic Pb exposure to mice to 200 mg/L
Pb or/and HFD for 24 weeks resulted in 10 µg/dL in the blood Pb content of rodents,
significantly increased body weight, visceral obesity, fasting blood glucose levels, and
insulin resistance. In addition, aggravated liver damage, hepatic lipid accumulation, and
steatosis were found in HFD-fed C57BL/6J male mice. However, the effects of Pb exposure
in normal diet-fed mice were not found. Further analysis showed that Pb significantly
inhibited insulin signaling pathway PI3K/AKT and fatty acid β-oxidation, and accelerated
fatty acid synthesis. Moreover, Pb exacerbated HFD-induced disruption of gut microbiota
homeostasis. They also showed that both “HFD” only and “Pb plus HFD” animals had an
increased hepatic expression of SREBP-1, FASN, and SCD-1 compared to controls, Pb, or
HFD intervention alone. Furthermore, the expression of key lipolytic regulator PPAR-α
and its downstream genes (CPT-1a and Acox) was downregulated, with the lowest levels
noted in the “Pb plus HFD” combined group [256].
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Moreover, Pb exposure has been associated with impaired glucose homeostasis. When
female ZDF fa/fa obese rats were treated with 0.05% w/v Pb in drinking water, Pb exposure
induced fasting hyperglycemia after 8 weeks and glucose intolerance after 12 weeks of
exposure. In addition, Pb-exposed animals showed elevated hepatic triglyceride levels and
increased expression of the gluconeogenic genes PEPCK and glucose-6-phosphatase [257].
In addition, in a study conducted in male Wistar rats under a similar exposure paradigm
(0.05% Pb, drinking water, or fed with an HFD for 28 weeks), the animals exposed to
Pb displayed impaired glucose homeostasis, as evidenced by increased fasting plasma
glucose and hepatic glucose production. Moreover, the gene expression levels of PEPCK,
G6PC, and FBP1 were increased. In addition, the mRNA expression levels of PEPCK,
G6PC, and FBP1 in the human hepatocarcinoma HepG2 cell line were also increased in
response to Pb exposure (2.5 to 10 µM Pb acetate). Interestingly, sub-chronic Pb exposure
(0.2% Pb, drinking water, 32 days) was able to disrupt the insulin secretory function of
Islets of Langerhans through activating GSK-3 and ER stress, and increased activity of
gluconeogenic enzymes, PEPCK, and G6P in the liver, demonstrated by glucose intolerance
in male adult Wistar rats [258].

2. Concluding Remarks

MetS is an important public health concern that impacts millions of individuals around
the world. Growing evidence suggests the involvement of metals such as Cd, Hg, and Pb,
and metalloids such as As, in the development of obesity, hypertension, atherosclerosis,
and diabetes, suggesting that those environmental contaminants are risk factors for MetS.

Overall, epidemiological studies suggest an association between exposure to heavy
metals or metalloids and MetS. Recent findings demonstrated that along with oxidative
and endoplasmic stress, inflammation, and apoptosis, other novel mechanisms including
ferroptosis, pyroptosis, epigenetics, and gut microbiota modulation may contribute to
target tissue dysfunction during MetS pathogenesis (Figure 4).
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However, a clear understanding of the mechanisms triggered by toxic compounds
and MetS etiology has yet to be fully characterized. Thus, proteomic and transcriptomic
analysis, alongside novel bioinformatic tools, will be crucial for enhancing knowledge of
the disease mechanisms induced by toxic metals and metalloids. Moreover, studies to
investigate potential molecular targets for these illnesses are urgently necessary.
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