Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Sites
2.2. Sampling Information
2.3. Chemical Analysis
2.4. Health Risk Characterization
2.4.1. Carcinogenic Metals
2.4.2. Polycyclic Aromatic Hydrocarbons (PAHs)
3. Results and Discussion
3.1. Concentration of Carcinogenic Metals and PAHs
3.2. Primary Emission Sources of Carcinogenic Metals and PAHs and Mitigation Strategies
3.3. Cancer Risk Assessment
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, M.C.; Krewski, D.; Pope, C.A.; Chen, Y.; Gapstur, S.M.; Thun, M.J. Long-Term Ambient Fine Particulate Matter Air Pollution and Lung Cancer in a Large Cohort of Never-Smokers. Am. J. Respir. Crit. Care Med. 2011, 184, 1374–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.v.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- International Agency for Research on Cancer (IARC) Global Cancer Observatory. Available online: https://gco.iarc.fr/today/home (accessed on 10 January 2023).
- Cohen, A.J.; Ross Anderson, H.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The Global Burden of Disease Due to Outdoor Air Pollution. J. Toxicol. Environ. Health A 2005, 68, 1301–1307. [Google Scholar] [CrossRef]
- Taghvaee, S.; Sowlat, M.H.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K.; Sioutas, C. Source-Specific Lung Cancer Risk Assessment of Ambient PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs) in Central Tehran. Environ. Int. 2018, 120, 321–332. [Google Scholar] [CrossRef]
- Kalagbor, I.A.; Dibofori-Orji, A.N.; Ekpete, O.A. Exposure to Heavy Metals in Soot Samples and Cancer Risk Assessment in Port Harcourt, Nigeria. J. Health Pollut. 2019, 9, 191211. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Kim, D.; Park, K. Monitoring of Ambient Particles and Heavy Metals in a Residential Area of Seoul, Korea. Environ. Monit. Assess 2008, 137, 441–449. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, S.; Shen, H.; Ma, J. Inhalation Exposure to Ambient Polycyclic Aromatic Hydrocarbons and Lung Cancer Risk of Chinese Population. Proc. Natl. Acad. Sci. USA 2009, 106, 21063–21067. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef] [PubMed]
- Boström, C.-E.; Gerde, P.; Hanberg, A.; Jernström, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer Risk Assessment, Indicators, and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air. Environ. Health Perspect. 2002, 110, 451–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Lin, T.; Li, Y.; Ji, T.; Ma, C.; Guo, Z. Sources of Polycyclic Aromatic Hydrocarbons in PM2.5 over the East China Sea, a Downwind Domain of East Asian Continental Outflow. Atmos Environ. 2014, 92, 484–492. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Zikopoulos, D.; Nikolaki, S.; Kermenidou, M. Lung Cancer Risk from PAHs Emitted from Biomass Combustion. Environ. Res. 2015, 137, 147–156. [Google Scholar] [CrossRef]
- Guo, H. Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban Air of Hong Kong. Atmos. Environ. 2003, 37, 5307–5317. [Google Scholar] [CrossRef]
- Alves, C.A.; Barbosa, C.; Rocha, S.; Calvo, A.; Nunes, T.; Cerqueira, M.; Pio, C.; Karanasiou, A.; Querol, X. Elements and Polycyclic Aromatic Hydrocarbons in Exhaust Particles Emitted by Light-Duty Vehicles. Environ. Sci. Pollut. Res. 2015, 22, 11526–11542. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA) Appendix A to 40 CFR, Part 423--126 Priority Pollutants. Available online: www.epa.gov (accessed on 10 January 2023).
- Delgado-Saborit, J.M.; Stark, C.; Harrison, R.M. Carcinogenic Potential, Levels and Sources of Polycyclic Aromatic Hydrocarbon Mixtures in Indoor and Outdoor Environments and Their Implications for Air Quality Standards. Environ. Int. 2011, 37, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Callén, M.S.; Iturmendi, A.; López, J.M. Source Apportionment of Atmospheric PM2.5-Bound Polycyclic Aromatic Hydrocarbons by a PMF Receptor Model. Assessment of Potential Risk for Human Health. Environ. Pollut. 2014, 195, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.F.; Brown, J.P.; Dawson, S.V.; Marty, M.A. Risk Assessment for Benzo[a]Pyrene. Regul. Toxicol. Pharmacol. 1991, 13, 170–184. [Google Scholar] [CrossRef]
- Lemieux, C.L.; Long, A.S.; Lambert, I.B.; Lundstedt, S.; Tysklind, M.; White, P.A. Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbon Contaminated Soils Determined Using Bioassay-Derived Levels of Benzo[ a ]Pyrene Equivalents. Environ. Sci. Technol. 2015, 49, 1797–1805. [Google Scholar] [CrossRef]
- Panne, U.; Neuhauser, R.E.; Theisen, M.; Fink, H.; Niessner, R. Analysis of Heavy Metal Aerosols on Filters by Laser-Induced Plasma Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 839–850. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Arsenic, Metals, Fibres, and Dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012.
- Fenger, J. Air Pollution in the Last 50 Years–From Local to Global. Atmos. Environ. 2009, 43, 13–22. [Google Scholar] [CrossRef]
- Suvarapu, L.N.; Baek, S.-O. Determination of Heavy Metals in the Ambient Atmosphere. Toxicol. Ind. Health 2017, 33, 79–96. [Google Scholar] [CrossRef]
- Farahani, V.J.; Altuwayjiri, A.; Pirhadi, M.; Verma, V.; Ruprecht, A.A.; Diapouli, E.; Eleftheriadis, K.; Sioutas, C. The Oxidative Potential of Particulate Matter (PM) in Different Regions around the World and Its Relation to Air Pollution Sources. Environ. Sci. Atmos. 2022, 2, 1076–1086. [Google Scholar] [CrossRef]
- Hasheminassab, S.; Daher, N.; Ostro, B.D.; Sioutas, C. Long-Term Source Apportionment of Ambient Fine Particulate Matter (PM 2.5 ) in the Los Angeles Basin: A Focus on Emissions Reduction from Vehicular Sources. Environ. Pollut. 2014, 193, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Turkiewicz, K.; Zulawnick, S.A.; Magliano, K.L. Sources of Fine Particles in the South Coast Area, California. Atmos. Environ. 2010, 44, 3095–3100. [Google Scholar] [CrossRef]
- Pirhadi, M.; Mousavi, A.; Taghvaee, S.; Shafer, M.M.; Sioutas, C. Semi-Volatile Components of PM2.5 in an Urban Environment: Volatility Profiles and Associated Oxidative Potential. Atmos. Environ. 2020, 223, 117197. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Karagkiozidou, O.; Vlachokostas, C.; Moussiopoulos, N.; Shafer, M.M.; et al. Increased Biomass Burning Due to the Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environ. Sci. Technol. 2013, 47, 13313–13320. [Google Scholar] [CrossRef] [PubMed]
- Manoli, E.; Kouras, A.; Karagkiozidou, O.; Argyropoulos, G.; Voutsa, D.; Samara, C. Polycyclic Aromatic Hydrocarbons (PAHs) at Traffic and Urban Background Sites of Northern Greece: Source Apportionment of Ambient PAH Levels and PAH-Induced Lung Cancer Risk. Environ. Sci. Pollut. Res. 2016, 23, 3556–3568. [Google Scholar] [CrossRef]
- Argyropoulos, G.; Besis, A.; Voutsa, D.; Samara, C.; Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source Apportionment of the Redox Activity of Urban Quasi-Ultrafine Particles (PM0.49) in Thessaloniki Following the Increased Biomass Burning Due to the Economic Crisis in Greece. Sci. Total Environ. 2016, 568, 124–136. [Google Scholar] [CrossRef]
- Barregard, L.; Sällsten, G.; Gustafson, P.; Andersson, L.; Johansson, L.; Basu, S.; Stigendal, L. Experimental Exposure to Wood-Smoke Particles in Healthy Humans: Effects on Markers of Inflammation, Coagulation, and Lipid Peroxidation. Inhal. Toxicol. 2006, 18, 845–853. [Google Scholar] [CrossRef] [PubMed]
- McCracken, J.P.; Smith, K.R.; Díaz, A.; Mittleman, M.A.; Schwartz, J. Chimney Stove Intervention to Reduce Long-Term Wood Smoke Exposure Lowers Blood Pressure among Guatemalan Women. Environ. Health Perspect. 2007, 115, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- Daher, N.; Ruprecht, A.; Invernizzi, G.; De Marco, C.; Miller-Schulze, J.; Heo, J.B.; Shafer, M.M.; Shelton, B.R.; Schauer, J.J.; Sioutas, C. Characterization, Sources and Redox Activity of Fine and Coarse Particulate Matter in Milan, Italy. Atmos. Environ. 2012, 49, 130–141. [Google Scholar] [CrossRef]
- Hakimzadeh, M.; Soleimanian, E.; Mousavi, A.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The Impact of Biomass Burning on the Oxidative Potential of PM2.5 in the Metropolitan Area of Milan. Atmos. Environ. 2020, 224, 117328. [Google Scholar] [CrossRef]
- Gualtieri, M.; Øvrevik, J.; Mollerup, S.; Asare, N.; Longhin, E.; Dahlman, H.-J.; Camatini, M.; Holme, J.A. Airborne Urban Particles (Milan Winter-PM2.5) Cause Mitotic Arrest and Cell Death: Effects on DNA, Mitochondria, AhR Binding and Spindle Organization. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2011, 713, 18–31. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Regional Office for Europe Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Available online: https://apps.who.int/iris/handle/10665/107823 (accessed on 15 May 2023).
- Manoli, E.; Voutsa, D.; Samara, C. Chemical Characterization and Source Identification/Apportionment of Fine and Coarse Air Particles in Thessaloniki, Greece. Atmos Environ 2002, 36, 949–961. [Google Scholar] [CrossRef]
- Dimitriou, K.; Stavroulas, I.; Grivas, G.; Chatzidiakos, C.; Kosmopoulos, G.; Kazantzidis, A.; Kourtidis, K.; Karagioras, A.; Hatzianastassiou, N.; Pandis, S.Ν.; et al. Intra- and Inter-City Variability of PM2.5 Concentrations in Greece as Determined with a Low-Cost Sensor Network. Atmos. Environ. 2023, 301, 119713. [Google Scholar] [CrossRef]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 Particulate Matter in the Ambient Air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Phuleria, H.C. Air Quality Impacts of the October 2003 Southern California Wildfires. J. Geophys. Res. 2005, 110, D07S20. [Google Scholar] [CrossRef] [Green Version]
- Putaud, J.-P.; Raes, F.; Van Dingenen, R.; Brüggemann, E.; Facchini, M.-C.; Decesari, S.; Fuzzi, S.; Gehrig, R.; Hüglin, C.; Laj, P.; et al. A European Aerosol Phenomenology—2: Chemical Characteristics of Particulate Matter at Kerbside, Urban, Rural and Background Sites in Europe. Atmos. Environ. 2004, 38, 2579–2595. [Google Scholar] [CrossRef]
- Altuwayjiri, A.; Soleimanian, E.; Moroni, S.; Palomba, P.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The Impact of Stay-Home Policies during Coronavirus-19 Pandemic on the Chemical and Toxicological Characteristics of Ambient PM2.5 in the Metropolitan Area of Milan, Italy. Sci. Total Environ. 2021, 758, 143582. [Google Scholar] [CrossRef]
- Moussiopoulos, Ν.; Vlachokostas, C.; Tsilingiridis, G.; Douros, I.; Hourdakis, E.; Naneris, C.; Sidiropoulos, C. Air Quality Status in Greater Thessaloniki Area and the Emission Reductions Needed for Attaining the EU Air Quality Legislation. Sci. Total Environ. 2009, 407, 1268–1285. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.H.; Lovett, C.; Rauber, M.; Szidat, S.; Boffi, R.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. Source Apportionment of Black Carbon (BC) from Fossil Fuel and Biomass Burning in Metropolitan Milan, Italy. Atmos. Environ. 2019, 203, 252–261. [Google Scholar] [CrossRef]
- Samara, C.; Kantiranis, N.; Kollias, P.; Planou, S.; Kouras, A.; Besis, A.; Manoli, E.; Voutsa, D. Spatial and Seasonal Variations of the Chemical, Mineralogical and Morphological Features of Quasi-Ultrafine Particles (PM0.49) at Urban Sites. Sci. Total Environ. 2016, 553, 392–403. [Google Scholar] [CrossRef]
- Samara, C.; Voutsa, D.; Kouras, A.; Eleftheriadis, K.; Maggos, T.; Saraga, D.; Petrakakis, M. Organic and Elemental Carbon Associated to PM10 and PM2.5 at Urban Sites of Northern Greece. Environ. Sci. Pollut. Res. 2014, 21, 1769–1785. [Google Scholar] [CrossRef]
- Kassomenos, P.A.; Kelessis, A.; Paschalidou, A.K.; Petrakakis, M. Identification of Sources and Processes Affecting Particulate Pollution in Thessaloniki, Greece. Atmos. Environ. 2011, 45, 7293–7300. [Google Scholar] [CrossRef]
- Voutsa, D.; Samara, C.; Manoli, E.; Lazarou, D.; Tzoumaka, P. Ionic Composition of PM2.5 at Urban Sites of Northern Greece: Secondary Inorganic Aerosol Formation. Environ. Sci. Pollut. Res. 2014, 21, 4995–5006. [Google Scholar] [CrossRef] [PubMed]
- Badami, M.M.; Tohidi, R.; Aldekheel, M.; Farahani, V.J.; Verma, V.; Sioutas, C. Design, Optimization, and Evaluation of a Wet Electrostatic Precipitator (ESP) for Aerosol Collection. Atmos. Environ. 2023, 308, 119858. [Google Scholar] [CrossRef] [PubMed]
- Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source Apportionment of Ambient Particle Number Concentrations in Central Los Angeles Using Positive Matrix Factorization (PMF). Atmos. Chem. Phys. 2016, 16, 4849–4866. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, A.; Sowlat, M.H.; Hasheminassab, S.; Polidori, A.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Impact of Emissions from the Ports of Los Angeles and Long Beach on the Oxidative Potential of Ambient PM0.25 Measured across the Los Angeles County. Sci. Total Environ. 2019, 651, 638–647. [Google Scholar] [CrossRef]
- Aldekheel, M.; Altuwayjiri, A.; Tohidi, R.; Jalali Farahani, V.; Sioutas, C. The Role of Portable Air Purifiers and Effective Ventilation in Improving Indoor Air Quality in University Classrooms. Int. J. Environ. Res. Public Health 2022, 19, 14558. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.H.; Sioutas, C. Diurnal and Seasonal Trends and Source Apportionment of Redox-Active Metals in Los Angeles Using a Novel Online Metal Monitor and Positive Matrix Factorization (PMF). Atmos. Environ. 2018, 174, 15–24. [Google Scholar] [CrossRef]
- Lough, G.C.; Schauer, J.J.; Park, J.-S.; Shafer, M.M.; DeMinter, J.T.; Weinstein, J.P. Emissions of Metals Associated with Motor Vehicle Roadways. Environ. Sci. Technol. 2005, 39, 826–836. [Google Scholar] [CrossRef]
- Chrysikou, L.P.; Samara, C.A. Seasonal Variation of the Size Distribution of Urban Particulate Matter and Associated Organic Pollutants in the Ambient Air. Atmos. Environ. 2009, 43, 4557–4569. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); US EPA: Washington, DC, USA, 2009.
- Guo, Y.; Kannan, K. Comparative Assessment of Human Exposure to Phthalate Esters from House Dust in China and the United States. Environ. Sci. Technol. 2011, 45, 3788–3794. [Google Scholar] [CrossRef]
- Hu, Y.-J.; Bao, L.-J.; Huang, C.-L.; Li, S.-M.; Liu, P.; Zeng, E.Y. Assessment of Airborne Polycyclic Aromatic Hydrocarbons in a Megacity of South China: Spatiotemporal Variability, Indoor-Outdoor Interplay and Potential Human Health Risk. Environ. Pollut. 2018, 238, 431–439. [Google Scholar] [CrossRef]
- Vega, E.; López-Veneroni, D.; Ramírez, O.; Chow, J.C.; Watson, J.G. Particle-Bound PAHs and Chemical Composition, Sources and Health Risk of PM2.5 in a Highly Industrialized Area. Aerosol. Air Qual. Res. 2021, 21, 210047. [Google Scholar] [CrossRef]
- Hoseini, M.; Yunesian, M.; Nabizadeh, R.; Yaghmaeian, K.; Ahmadkhaniha, R.; Rastkari, N.; Parmy, S.; Faridi, S.; Rafiee, A.; Naddafi, K. Characterization and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Atmospheric Particulate of Tehran, Iran. Environ. Sci. Pollut. Res. 2016, 23, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Delistraty, D. Toxic Equivalency Factor Approach for Risk Assessment of Polycyclic Aromatic Hydrocarbons. Toxicol. Environ. Chem. 1997, 64, 81–108. [Google Scholar] [CrossRef]
- OEHHA. Guidance Manual for Preparation of Health Risk Assessments Air Toxics Hot Spots Program; OEHHA: Sacramento, CA, USA, 2015.
- Kearney, J.; Wallace, L.; MacNeill, M.; Héroux, M.-E.; Kindzierski, W.; Wheeler, A. Residential Infiltration of Fine and Ultrafine Particles in Edmonton. Atmos. Environ. 2014, 94, 793–805. [Google Scholar] [CrossRef]
- Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Pandolfi, M.; Alvarez-Pedrerol, M.; Forns, J.; Alastuey, A.; Sunyer, J.; Querol, X. Outdoor Infiltration and Indoor Contribution of UFP and BC, OC, Secondary Inorganic Ions and Metals in PM2.5 in Schools. Atmos. Environ. 2015, 106, 129–138. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of Relationship between Indoor and Outdoor Particles: I/O Ratio, Infiltration Factor and Penetration Factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Allen, R.; Larson, T.; Sheppard, L.; Wallace, L.; Liu, L.-J.S. Use of Real-Time Light Scattering Data To Estimate the Contribution of Infiltrated and Indoor-Generated Particles to Indoor Air. Environ. Sci. Technol. 2003, 37, 3484–3492. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M.H.; Momeniha, F.; Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; et al. Characterization of PAHs and Metals in Indoor/Outdoor PM10/PM2.5/PM1 in a Retirement Home and a School Dormitory. Sci. Total Environ. 2015, 527–528, 100–110. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100 C.
- IARC. Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide; IARC: Lyon, France, 2006; Volume 86.
- Ramírez, O.; Sánchez de la Campa, A.M.; Sánchez-Rodas, D.; de la Rosa, J.D. Hazardous Trace Elements in Thoracic Fraction of Airborne Particulate Matter: Assessment of Temporal Variations, Sources, and Health Risks in a Megacity. Sci. Total Environ. 2020, 710, 136344. [Google Scholar] [CrossRef]
- Hao, Y.; Luo, B.; Simayi, M.; Zhang, W.; Jiang, Y.; He, J.; Xie, S. Spatiotemporal Patterns of PM2.5 Elemental Composition over China and Associated Health Risks. Environ. Pollut. 2020, 265, 114910. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, N.; Fadel, M.; Öztürk, F.; Keleş, M.; Iakovides, M.; Pikridas, M.; Abdallah, C.; Karam, C.; Sciare, J.; Hayes, P.L.; et al. Comprehensive Chemical Characterization of PM2.5 in the Large East Mediterranean-Middle East City of Beirut, Lebanon. J. Environ. Sci. 2022, 133, 118–137. [Google Scholar] [CrossRef] [PubMed]
- Martellini, T.; Giannoni, M.; Lepri, L.; Katsoyiannis, A.; Cincinelli, A. One Year Intensive PM2.5 Bound Polycyclic Aromatic Hydrocarbons Monitoring in the Area of Tuscany, Italy. Concentrations, Source Understanding and Implications. Environ. Pollut. 2012, 164, 252–258. [Google Scholar] [CrossRef]
- Callén, M.S.; López, J.M.; Mastral, A.M. Characterization of PM10-Bound Polycyclic Aromatic Hydrocarbons in the Ambient Air of Spanish Urban and Rural Areas. J. Environ. Monit. 2011, 13, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Karageorgou, K.; Manoli, E.; Kouras, A.; Samara, C. Commuter Exposure to Particle-Bound Polycyclic Aromatic Hydrocarbons in Thessaloniki, Greece. Environ. Sci. Pollut. Res. 2021, 28, 59119–59130. [Google Scholar] [CrossRef]
- Besis, A.; Romano, M.P.; Serafeim, E.; Avgenikou, A.; Kouras, A.; Lionetto, M.G.; Guascito, M.R.; De Bartolomeo, A.R.; Giordano, M.E.; Mangone, A.; et al. Size-Resolved Redox Activity and Cytotoxicity of Water-Soluble Urban Atmospheric Particulate Matter: Assessing Contributions from Chemical Components. Toxics 2023, 11, 59. [Google Scholar] [CrossRef]
- Thomaidis, N.S.; Bakeas, E.B.; Siskos, P.A. Characterization of Lead, Cadmium, Arsenic and Nickel in PM2.5 Particles in the Athens Atmosphere, Greece. Chemosphere 2003, 52, 959–966. [Google Scholar] [CrossRef]
- Schwela, D.; Morawska, L.; Kotzias, D.; Jrc, E.C. Guidelines for Concentration and Exposure-Response Measurement of Fine and Ultra Fine Particulate Matter for Use in Epidemiological Studies; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Jose, J.; Srimuruganandam, B.; Nagendra, S.S. Characterization of PM10 and PM2.5 Emission Sources at Chennai, India. Nat. Environ. Pollut. Technol. 2019, 18, 555–562. [Google Scholar]
- Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; et al. Source Origin of Trace Elements in PM from Regional Background, Urban and Industrial Sites of Spain. Atmos Environ 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Singh, M.; Jaques, P.A.; Sioutas, C. Size Distribution and Diurnal Characteristics of Particle-Bound Metals in Source and Receptor Sites of the Los Angeles Basin. Atmos. Environ. 2002, 36, 1675–1689. [Google Scholar] [CrossRef]
- Hasheminassab, S.; Sowlat, M.H.; Pakbin, P.; Katzenstein, A.; Low, J.; Polidori, A. High Time-Resolution and Time-Integrated Measurements of Particulate Metals and Elements in an Environmental Justice Community within the Los Angeles Basin: Spatio-Temporal Trends and Source Apportionment. Atmos. Environ. X 2020, 7, 100089. [Google Scholar] [CrossRef]
- Contardo, T.; Vannini, A.; Sharma, K.; Giordani, P.; Loppi, S. Disentangling Sources of Trace Element Air Pollution in Complex Urban Areas by Lichen Biomonitoring. A Case Study in Milan (Italy). Chemosphere 2020, 256, 127155. [Google Scholar] [CrossRef]
- Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, T.; Saraga, D.; Grigoratos, T.; Argyropoulos, G.; Voutsa, D.; Samara, C.; et al. Evolution of Air Pollution Source Contributions over One Decade, Derived by PM10 and PM2.5 Source Apportionment in Two Metropolitan Urban Areas in Greece. Atmos. Environ. 2017, 164, 416–430. [Google Scholar] [CrossRef]
- Saraga, D.E.; Tolis, E.I.; Maggos, T.; Vasilakos, C.; Bartzis, J.G. PM2.5 Source Apportionment for the Port City of Thessaloniki, Greece. Sci. Total Environ. 2019, 650, 2337–2354. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Huang, L.; Shin, J.Y.; Artigas, F.; Fan, Z. Characterization of Concentration, Particle Size Distribution, and Contributing Factors to Ambient Hexavalent Chromium in an Area with Multiple Emission Sources. Atmos. Environ. 2014, 94, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotaś, J.; Stasicka, Z. Chromium Occurrence in the Environment and Methods of Its Speciation. Environ. Pollut. 2000, 107, 263–283. [Google Scholar] [CrossRef]
- Bourliva, A.; Kantiranis, N.; Papadopoulou, L.; Aidona, E.; Christophoridis, C.; Kollias, P.; Evgenakis, M.; Fytianos, K. Seasonal and Spatial Variations of Magnetic Susceptibility and Potentially Toxic Elements (PTEs) in Road Dusts of Thessaloniki City, Greece: A One-Year Monitoring Period. Sci. Total Environ. 2018, 639, 417–427. [Google Scholar] [CrossRef]
- Singh, A.; Chandrasekharan Nair, K.; Kamal, R.; Bihari, V.; Gupta, M.K.; Mudiam, M.K.R.; Satyanarayana, G.N.V.; Raj, A.; Haq, I.; Shukla, N.K.; et al. Assessing Hazardous Risks of Indoor Airborne Polycyclic Aromatic Hydrocarbons in the Kitchen and Its Association with Lung Functions and Urinary PAH Metabolites in Kitchen Workers. Clin. Chim. Acta 2016, 452, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-H.; Lee, W.-J.; Chen, S.-J.; Lai, S.-O. PAH Emission from Various Industrial Stacks. J. Hazard. Mater. 1998, 60, 159–174. [Google Scholar] [CrossRef]
- Eriksson, A.C.; Nordin, E.Z.; Nyström, R.; Pettersson, E.; Swietlicki, E.; Bergvall, C.; Westerholm, R.; Boman, C.; Pagels, J.H. Particulate PAH Emissions from Residential Biomass Combustion: Time-Resolved Analysis with Aerosol Mass Spectrometry. Environ. Sci. Technol. 2014, 48, 7143–7150. [Google Scholar] [CrossRef]
- Xu, L.; Yu, J.; Wan, G.; Sun, L. Emission Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) from Used Mineral Oil Combustion. Fuel 2021, 304, 121357. [Google Scholar] [CrossRef]
- Altuwayjiri, A.; Pirhadi, M.; Taghvaee, S.; Sioutas, C. Long-Term Trends in the Contribution of PM2.5 Sources to Organic Carbon (OC) in the Los Angeles Basin and the Effect of PM Emission Regulations. Faraday Discuss 2021, 226, 74–99. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.; Henderson, V. Effects of Air Quality Regulations on Polluting Industries. J. Political Econ. 2000, 108, 379–421. [Google Scholar] [CrossRef]
- Lurmann, F.; Avol, E.; Gilliland, F. Emissions Reduction Policies and Recent Trends in Southern California’s Ambient Air Quality. J. Air Waste Manag. Assoc. 2015, 65, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Farahani, V.J.; Soleimanian, E.; Pirhadi, M.; Sioutas, C. Long-Term Trends in Concentrations and Sources of PM2.5–Bound Metals and Elements in Central Los Angeles. Atmos. Environ. 2021, 253, 118361. [Google Scholar] [CrossRef]
- Kam, W.; Delfino, R.J.; Schauer, J.J.; Sioutas, C. A Comparative Assessment of PM2.5 Exposures in Light-Rail, Subway, Freeway, and Surface Street Environments in Los Angeles and Estimated Lung Cancer Risk. Environ. Sci. Process. Impacts 2013, 15, 234–243. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Yin, W.; Xu, T.; Hu, C.; Cheng, J.; Hou, J.; He, Z.; Yuan, J. Seasonal Exposure to PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Estimated Lifetime Risk of Cancer: A Pilot Study. Sci. Total Environ. 2020, 702, 135056. [Google Scholar] [CrossRef] [PubMed]
- Masiol, M.; Hofer, A.; Squizzato, S.; Piazza, R.; Rampazzo, G.; Pavoni, B. Carcinogenic and Mutagenic Risk Associated to Airborne Particle-Phase Polycyclic Aromatic Hydrocarbons: A Source Apportionment. Atmos. Environ. 2012, 60, 375–382. [Google Scholar] [CrossRef]
- US EPA. Exposure Factors Handbook, 2011th ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [PubMed] [Green Version]
- Police, S.; Sahu, S.K.; Pandit, G.G. Chemical Characterization of Atmospheric Particulate Matter and Their Source Apportionment at an Emerging Industrial Coastal City, Visakhapatnam, India. Atmos. Pollut. Res. 2016, 7, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Rajeev, P.; Rajput, P.; Singh, D.K.; Singh, A.K.; Gupta, T. Risk Assessment of Submicron PM-Bound Hexavalent Chromium during Wintertime. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1453–1463. [Google Scholar] [CrossRef]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef] [Green Version]
- Jha, P.; Ramasundarahettige, C.; Landsman, V.; Rostron, B.; Thun, M.; Anderson, R.N.; McAfee, T.; Peto, R. 21st-Century Hazards of Smoking and Benefits of Cessation in the United States. N. Engl. J. Med. 2013, 368, 341–350. [Google Scholar] [CrossRef] [Green Version]
City | Particle Size | Sampler | Flow Rate | Number of Samples | Filter Type | Sampling Period(s) | Study |
---|---|---|---|---|---|---|---|
Los Angeles, USA | PM2.5 | Versatile Aerosol Concentration Enrichment System (VACES) | 300 L/min | 8 | Quartz | August 2018 December 2018–January 2019 | Pirhadi et al., 2020 [27] |
Milan, Italy | PM2.5 | Personal cascade impactor sampler (PCIS) | 9 L/min | 14 | Quartz | December 2018–February 2019 May–July 2019 | Hakimzadeh et al., 2020 [34] |
Thessaloniki, Greece | PM2.5 and PM0.49 | Low-volume impactor with 2.5µm cutpoint High-volume impactor with 0.49µm cutpoint | 38 L/min 1100 L/min | 26 10 | Quartz and Teflon Quartz | February–March 2012 January–February 2013 January–March 2013 May–June 2013 | Saffari et al., 2013 [28] Argyropoulos et al., 2016 [30] |
Metal | As | Cd | Cr(VI) | Ni | Pb |
---|---|---|---|---|---|
IUR value [56] (per ) | 0.0043 | 0.0018 | 0.012 | 0.00024 | 0.000012 |
PAH Species | Los Angeles (n = 8) | Thessaloniki (n = 36) | Milan (n = 14) |
---|---|---|---|
Phenanthrene | 0.04 ± 0.02 | 0.425 ± 0.33 | 0.307 ± 0.191 |
Retene | BDL | BDL | 0.383 ± 0.291 |
Anthracene | BDL | 0.165 ± 0.121 | BDL |
Pyrene | 0.032 ± 0.012 | 0.794 ± 0.546 | 1.035 ± 0.638 |
Chrysene | 0.023 ± 0.017 | 1.212 ± 0.932 | 5.228 ± 3.399 |
Benz(a)anthracene | 0.014 ± 0.011 | 1.025 ± 0.847 | 1.458 ± 0.934 |
Acephenanthrylene | BDL | 0.136 ± 0.051 | 0.096 ± 0.091 |
Fluoranthene | 0.082 ± 0.031 | 0.774 ± 0.566 | 1.108 ± 0.689 |
Benzo(ghi)fluoranthene | 0.012 ± 0.009 | BDL | 2.2 ± 1.401 |
Benzo(b)fluoranthene | 0.071 ± 0.048 | 0.586 ± 0.394 | 5.613 ± 3.514 |
Benzo(k)fluoranthene | 0.108 ± 0.042 | 0.951 ± 0.911 | 5.159 ± 3.279 |
Benzo(e)pyrene | 0.081 ± 0.044 | 1.316 ± 0.957 | 3.896 ± 2.461 |
Benzo(a)pyrene | 0.071 ± 0.047 | 1.128 ± 0.754 | 0.155 ± 0.13 |
Benzo(g,h,i)perylene | 0.201 ± 0.099 | 1.476 ± 1.139 | 1.791 ± 1.086 |
1-Methylchrysene | BDL | BDL | 0.497 ± 0.318 |
Perylene | BDL | BDL | BDL |
Benzo(j)fluoranthene | BDL | BDL | 0.192 ± 0.132 |
Dibenz(a,h)anthracene | BDL | 0.188 ± 0.141 | 0.37 ± 0.239 |
Picene | BDL | BDL | 0.233 ± 0.146 |
Cyclopenta(cd)pyrene | BDL | BDL | BDL |
Indeno(1,2,3-cd)pyrene | 0.104 ± 0.044 | 1.128 ± 0.754 | 1.579 ± 0.958 |
Dibenzo(a,e)pyrene | BDL | BDL | 0.033 ± 0.031 |
Coronene | 0.045 ± 0.036 | BDL | 0.513 ± 0.32 |
PM Species | Primary Emission Sources |
---|---|
As, Cd, and Ni | Industrial processes (e.g., metallurgical activities). Oil combustion. |
Pb | Industrial activities, including the manufacturing of lead–acid batteries, iron and steel industries, and the production of ceramics. Non-tailpipe emissions. |
Cr | Metal processing. Oil combustion. Vehicular emissions. |
PAHs | Incomplete fuel combustion in vehicle exhausts and industrial stacks. Biomass burning. |
Study | Location | (ng/m3) |
---|---|---|
Current study | Los Angeles, US | 0.1 ± 0.1 |
Current study | Thessaloniki, Greece | 2.5 ± 1.78 |
Current study | Milan, Italy | 3.5 ± 4.6 |
Wang et al. (2020) [98] | Wuhan, China | 2.9 ± 1.4 |
Masiol et al. (2012) [99] | Venice, Italy | 1.9 ± 2.6 |
Martellini et al. (2012) [73] | Florence, Italy | 0.8 |
Kam et al. (2013) [97] | I-110 freeway in Los Angeles, US | 12.7 ± 2.1 |
Kam et al. (2013) [97] | I-710 freeway in Los Angeles, US | 23.3 ± 4.4 |
Kam et al. (2013) [97] | Surface streets in Los Angeles, US | 8.6 ± 1.5 |
Los Angeles | Thessaloniki | Milan | |||||||
---|---|---|---|---|---|---|---|---|---|
Species | WS | BS | MS | WS | BS | MS | WS | BS | MS |
As | 0.33 ± 0.10 | 0.21 ± 0.07 | 0.27 ± 0.09 | 1.57 ± 0.78 | 0.97 ± 0.48 | 1.27 ± 0.63 | 2.08 ± 0.44 | 1.29 ± 0.27 | 1.69 ± 0.35 |
Cd | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.34 ± 0.19 | 0.21 ± 0.12 | 0.28 ± 0.16 | 0.46 ± 0.03 | 0.29 ± 0.02 | 0.38 ± 0.03 |
Cr(VI) | 2.69 ± 0.19 | 1.66 ± 0.12 | 2.17 ± 0.16 | 2.91 ± 1.01 | 1.80 ± 0.63 | 2.36 ± 0.82 | 9.82 ± 0.58 | 6.08 ± 0.36 | 7.95 ± 0.47 |
Ni | 0.22 ± 0.03 | 0.14 ± 0.02 | 0.18 ± 0.02 | 0.38 ± 0.23 | 0.23 ± 0.15 | 0.31 ± 0.19 | 0.6 ± 0.05 | 0.38 ± 0.03 | 0.49 ± 0.04 |
Pb | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.06 ± 0.03 | 0.04 ± 0.02 | 0.05 ± 0.02 | 0.19 ± 0.02 | 0.12 ± 0.01 | 0.16 ± 0.02 |
0.06 ± 0.05 | 0.04 ± 0.04 | 0.05 ± 0.05 | 1.25 ± 0.9 | 0.77 ± 0.56 | 1.01 ± 0.73 | 1.77 ± 2.33 | 1.1 ± 1.45 | 1.44 ± 1.89 | |
Total | 3.36 ± 0.39 | 2.07 ± 0.27 | 2.71 ± 0.34 | 6.51 ± 3.14 | 4.02 ± 1.96 | 5.28 ± 2.55 | 14.92 ± 3.45 | 9.26 ± 2.14 | 12.11 ± 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldekheel, M.; Farahani, V.J.; Sioutas, C. Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities. Toxics 2023, 11, 697. https://doi.org/10.3390/toxics11080697
Aldekheel M, Farahani VJ, Sioutas C. Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities. Toxics. 2023; 11(8):697. https://doi.org/10.3390/toxics11080697
Chicago/Turabian StyleAldekheel, Mohammad, Vahid Jalali Farahani, and Constantinos Sioutas. 2023. "Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities" Toxics 11, no. 8: 697. https://doi.org/10.3390/toxics11080697
APA StyleAldekheel, M., Farahani, V. J., & Sioutas, C. (2023). Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities. Toxics, 11(8), 697. https://doi.org/10.3390/toxics11080697