Modeling the Chlorine Series from the Treatment Plant of Drinking Water in Constanta, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Series and Statistical Analysis
2.2. Statistical Analysis
2.3. Mathematical Modeling
- Determine the trend using the linear trend computed via Sen’s method;
- Calculate the detrended series by subtracting the trend from the data series;
- Determine the seasonal component;
- Determine the remainder (random or residual component) as the difference between the detrended series and the seasonal component.
3. Results and Discussion
3.1. Results of the Statistical Analysis
3.2. Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandt, M.J.; Johnson, K.M.; Elphinston, A.J.; Ratnayaka, D.D. (Eds.) The Demand for Potable Water. In Twort’s Water Supply, 7th ed.; Butterworth-Heinemann: Amsterdam, The Netherlands, 2017; Chapter 1; pp. 1–36. [Google Scholar]
- Brandt, M.J.; Johnson, K.M.; Elphinston, A.J.; Ratnayaka, D.D. (Eds.) Disinfection of Water. In Twort’s Water Supply, 7th ed.; Butterworth-Heinemann: Amsterdam, The Netherlands, 2017; Chapter 11; pp. 475–511. [Google Scholar]
- Moran, S. (Ed.) Clean water unit operation design: Biological processes. In An Applied Guide to Water and Effluent Treatment Plant Design; Butterworth-Heinemann: Amsterdam, The Netherlands, 2018; Chapter 9; pp. 111–116. [Google Scholar]
- Mosse, P.; Murray, B. Good Practice Guide to the Operation of Drinking Water Supply Systems for the Management of Microbial Risk; Final Report–WaterRA Project 1074; Water Research Australia Limited: Adelaide, Australia, 2015; p. 23. Available online: https://www.wsaa.asn.au/sites/default/files/publication/download/Good%20Practice%20Guide%20April%2015.pdf (accessed on 10 June 2023).
- Bărbulescu, A.; Barbeș, L. Statistical methods for assessing the water quality after the treatment on a Sequencing Batch Reactor. Sci. Total Environ. 2021, 752, 141991. [Google Scholar] [CrossRef] [PubMed]
- Ecological Risk Models and Tools. U.S. Environmental Protection Agency (EPA). 2021. Available online: https://www.epa.gov/risk/ecological-risk-models-and-tools (accessed on 10 June 2023).
- Alcayhuamán Guzmán, R.M.; Al-Emam, R.; Alhassan, H.; Ali, A.; Allély-Fermé, D.; Ampomah, B.; Anarna, M.S.S.; Bakir, H.; Bani-Khalaf, R.; Bartram, J.; et al. Water Safety Plan Manual-Step-by-Step Risk Management for Drinking Water Suppliers; World Health Organization: Geneva, Switzerland, 2009; Available online: www.who.int (accessed on 10 June 2023).
- WHO. Water Safety in Distribution Systems; World Health Organization Document Production Services: Geneva, Switzerland, 2014; Available online: www.who.int (accessed on 10 June 2023).
- Basic Information about Chloramines and Drinking Water Disinfection. Available online: https://www.epa.gov/dwreginfo/basic-information-about-chloramines-and-drinking-water-disinfection (accessed on 10 June 2023).
- Dubey, S.; Gusain, D.; Sharma, Y.C.; Bux, F. The occurrence of various types of disinfectant by-products (trihalomethanes, haloacetic acids, haloacetonitrile) in drinking water. In Disinfection By-products in Drinking Water; Priya, T., Mishra, B.K., Prasad, M.N.V., Eds.; Butterworth-Heinemann: Amsterdam, The Netherlands, 2020; Chapter 15; pp. 371–391. [Google Scholar]
- Free Chlorine Residual Definition. Available online: https://www.lawinsider.com/dictionary/free-chlorine-residual (accessed on 15 July 2023).
- Romanian Law no. 458/2002 about the Quality of the Drinking Water. Available online: http://legislatie.just.ro/Public/DetaliiDocument/37723 (accessed on 15 July 2023).
- Iordache, A.; Woinaroschy, A. Analysis of the efficiency of water treatment process with chlorine. Environ. Eng. Manag. J. 2020, 19, 1309–1313. [Google Scholar]
- Gibbs, M.S.; Morgan, N.; Maier, H.R.; Dandy, G.C.; Nixon, J.B.; Holmes, M. Investigation into the relationship between chlorine decay and water distribution parameters using data driven methods. Math. Comput. Modell. 2006, 44, 485–498. [Google Scholar] [CrossRef]
- Priya, T.; Mishra, B.K.; Prasad, M.N.V. (Eds.) Physico-chemical techniques for the removal of disinfection by-products precursors from water. In Disinfection By-Products in Drinking Water; Butterworth-Heinemann: Amsterdam, The Netherlands, 2020; Chapter 2; pp. 23–58. [Google Scholar]
- Gang, D.C.; Clevenger, T.E.; Banerji, S.K. Modeling Chlorine Decay in Surface Water. J. Environ. Inform. 2015, 1, 21–27. [Google Scholar] [CrossRef]
- Gómez-Coronel, L.; Delgado-Aguiñaga, J.A.; Santos-Ruiz, I.; Navarro-Díaz, A. Estimation of Chlorine Concentration in Water Distribution Systems Based on a Genetic Algorithm. Processes 2022, 11, 676. [Google Scholar] [CrossRef]
- Monteiro, L.; Figueiredo, D.; Dias, S.; Freitas, R.; Covas, D.; Menaia, J.; Coelho, S.T. Modeling of chlorine decay in drinking water supply systems using EPANET MSX. Procedia Eng. 2014, 70, 1192–1200. [Google Scholar]
- García-Ávila, F.; Avilés-Añazco, A.; Ordoñez-Jara, J.; Guanuchi-Quezada, C.; Flores del Pino, L.; Ramos-Fernández, L. Modeling of residual chlorine in a drinking water network in times of pandemic of the SARS-CoV-2 (COVID-19). Sustain. Environ. Res. 2021, 31, 12. [Google Scholar] [CrossRef]
- Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró-Escofet, M.À.; Sanz, G.; Mirats, J. Chlorine Decay Model Calibration and Comparison: Application to a Real Water Network. Procedia Eng. 2014, 70, 1221–1230. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gao, X.; Smith, K.; Inial, G.; Liu, S.; Conil, L.B.; Pan, B. Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Res. 2019, 164, 114888. [Google Scholar] [CrossRef]
- Gámiz, J.; Grau, A.; Martínez, H.; Bolea, Y. Automated Chlorine Dosage in a Simulated Drinking Water Treatment Plant: A Real Case Study. Appl. Sci. 2020, 10, 4035. [Google Scholar] [CrossRef]
- Pérez, R.; Martínez Torrents, A.; Martínez, M.; Grau, S.; Vinardell, L.; Tomàs, R.; Martínez Lladó, X.; Jubany, I. Chlorine Concentration Modelling and Supervision in Water Distribution Systems. Sensors 2022, 22, 5578. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Hasmi, I.; Qazi, I.A.; Qaiser, A.; Rasheed, S. Monitoring of Coliforms and chlorine residual in water distribution network of Rawalpindi, Pakistan. Environ. Monit. Assess. 2008, 140, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Cun, C.; Durand, M.; Leguyader, M.; Martin, J.; Vilagines, R. Statistical study of the relationship between free chlorine levels and bacteriological checks B on systems in the Paris area. Sci. Total Environ. 2002, 284, 49–59. [Google Scholar] [CrossRef]
- Paun, I.; Chiriac, F.L.; Iancu, V.I.; Pirvu, F.; Niculescu, M.; Vasilache, N. Disinfection by-products in drinking water distribution system of Bucharest City. Rom. J. Ecol. Environ. Chem. 2021, 3, 13–18. [Google Scholar] [CrossRef]
- Vîrlan, C.-M.; Toma, D.; Stătescu, F.; Marcoie, N.; Prăjanu, C.-C. Modeling the chlorine-conveying process within a drinking water distribution network. Environ. Eng. Manag. J. 2021, 20, 487–494. [Google Scholar]
- Aivaz, K.-A.; Florea Munteanu, I.; Stan, M.-I.; Chiriac, A. A Links Between Transport Noncompliance and Financial Uncertainty in Times of COVID-19 PandMultivariate Analysis on the emics and War. Sustainability 2022, 14, 10040. [Google Scholar] [CrossRef]
- Aivaz, K.-A. Correlations Between Infrastructure, Medical Staff and Financial Indicators of Companies Operating in the Field of Health and Social Care Services. The Case of Constanta County, Romania. In Under the Pressure of Digitalization: Challenges and Solutions at Organizational and Industrial Levels, 1st ed.; Edu, T., Schipor, G.-L., Vancea, D.P.C., Zaharia, R.M., Eds.; Filodiritto Publisher, Inforomatica SRL: Bologna, Italy, 2021; pp. 17–25. [Google Scholar]
- Vancea, D.P.C.; Aivaz, K.-A.; Duhnea, A. Political Uncertainty and Volatility on the Financial Markets-the Case of Romania. Transform. Bus. Econ. 2017, 16, 457–477. [Google Scholar]
- Bărbulescu, A.; Dumitriu, C.S. ARIMA and Wavelet-ARIMA models for the signal produced by ultrasound in diesel. In Proceedings of the 2021 25th International Conference on Systems, Theory, Control and Computing (ICSTCC), Iasi, Romania, 20–23 October 2021. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Nazzal, Y.; Howari, F. Assessing the groundwater quality in the Liwa area, the United Arab Emirates. Water 2020, 12, 2816. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeș, L. Models for pollutants’ correlation in the Romanian littoral. Rom. Rep. Phys. 2014, 66, 1189–1199. [Google Scholar]
- Nazzal, Y.H.; Bărbulescu, A.; Howari, F.; Al-Taani, A.A.; Iqbal, J.; Xavier, C.M.; Sharma, M.; Dumitriu, C.S. Assessment of metals concentrations in soils of Abu Dhabi Emirate using pollution indices and multivariate statistics. Toxics 2021, 9, 95. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeș, L. Assessing the Danube River water quality of the Danube River (at Chiciu, Romania) by statistical methods. Environ. Earth Sci. 2020, 79, 122. [Google Scholar]
- Singh, I.; Juneja, P.; Kaur, B.; Kumar, P. Pharmaceutical Applications of Chemometric Techniques. Int. Scholarly Resear. Not. 2013, 13, 795178. [Google Scholar] [CrossRef] [Green Version]
- Frîncu, R.-M. Long-Term Trends in Water Quality Indices in the Lower Danube and Tributaries in Romania (1996–2017). Int. J. Environ. Res. Public Health 2021, 18, 1665. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 80/778/EEC Relating to the Quality of Water Intended for Human Consumption. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC037618/ (accessed on 15 July 2023).
- Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption-Repealed. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC018700 (accessed on 15 July 2023).
- Water Framework Directive. Directive 2000/60/EC of the European Parliament and of the Council. 2000. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF (accessed on 15 July 2023).
- County Report. Drinking Water Quality. Constanta. 2020. Available online: https://dspct.ro/wp-content/uploads/2021/08/RAPORT-JUDETEAN-APA-POTABILA-2020.pdf (accessed on 20 July 2023). (In Romanian).
- Xie, Y.; Zilberman, D. Theoretical implications of institutional, environmental, and technological changes for capacity choices of water projects. Water Resour. Econ. 2016, 13, 19–29. [Google Scholar] [CrossRef]
- Lanz, B.; Provins, A. The demand for tap water quality: Survey evidence on water hardness and aesthetic quality. Water Resour. Econ. 2016, 16, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Gel, Y.R.; Gastwirth, J.L. A robust modification of the Jarque-Bera test of normality. Econ. Lett. 2008, 99, 30–32. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. A Test of Goodness-of-Fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
- Levene, H. Robust test for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ed.; Stanford University Press: Stanford, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econ. 1992, 54, 159–178. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods, 5th ed.; Oxford University Press: London, UK, 1990. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier Science: New York, NY, USA, 1994. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- 3.2 Time Series Components. Available online: https://otexts.com/fpp3/components.html (accessed on 23 April 2023).
- 8.3 Methods with Seasonality. Available online: https://otexts.com/fpp3/holt-winters.html (accessed on 23 April 2023).
- SARIMA Models. Available online: https://real-statistics.com/time-series-analysis/seasonal-arima-sarima/sarima-models/ (accessed on 23 April 2023).
- Ljung, G.M.; Box, G.E.P. On a Measure of a Lack of Fit in Time Series Models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Jonkergouw, P.M.R.; Khu, S.-T.; Savic, D.A.; Zhong, D.; Hou, X.Q.; Zhao, H.-B. A Variable Rate Coefficient Chlorine Decay Model. Environ. Sci. Technol. 2009, 43, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.J.; West, J.R.; Powell, J.; Serodes, J.B. Application of two approaches to model chlorine residuals in Severn Trent Water Ltd. (STW) distribution systems. Water Sci. Technol. 1997, 36, 317–324. [Google Scholar] [CrossRef]
- Serodes, J.B.; Rodriguez, M.J.; Ponton, A. Chlorcast ©: A methodology for developing decision-making tools for chlorine disinfection control. Environ. Modell. Softw. 2001, 16, 53–62. [Google Scholar] [CrossRef]
- Serodes, J.B.; Rodriguez, M.J. Predicting residual chlorine evolution in storage tanks within distribution systems: Application of a neural network approach. J. Water Supp. Resear. Techn.-Aqua 1996, 45, 57–66. [Google Scholar]
- Rodriguez, M.J.; Serodes, J.B. Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems. Environ. Modell. Softw. 1999, 14, 93–102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A.; Barbeș, L. Modeling the Chlorine Series from the Treatment Plant of Drinking Water in Constanta, Romania. Toxics 2023, 11, 699. https://doi.org/10.3390/toxics11080699
Bărbulescu A, Barbeș L. Modeling the Chlorine Series from the Treatment Plant of Drinking Water in Constanta, Romania. Toxics. 2023; 11(8):699. https://doi.org/10.3390/toxics11080699
Chicago/Turabian StyleBărbulescu, Alina, and Lucica Barbeș. 2023. "Modeling the Chlorine Series from the Treatment Plant of Drinking Water in Constanta, Romania" Toxics 11, no. 8: 699. https://doi.org/10.3390/toxics11080699
APA StyleBărbulescu, A., & Barbeș, L. (2023). Modeling the Chlorine Series from the Treatment Plant of Drinking Water in Constanta, Romania. Toxics, 11(8), 699. https://doi.org/10.3390/toxics11080699