Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sampling
2.3. Analytical Procedure
2.3.1. SPE Extraction
2.3.2. LC-QTOF Analysis
2.3.3. Data Treatment
3. Results and Discussion
3.1. Lists for Suspect Screening
3.2. Occurrence and Identification of Compounds in WWTPs Samples
3.2.1. Occurrence of the Six Parent Psychotropic Drugs
3.2.2. Case of the Potential TPs of the Six Selected Drugs
3.2.3. Comparison of the WWTPs
3.2.4. Potential Persistent TPs of the Six Selected Drugs
3.2.5. Potential TPs of the Six Selected Drugs Present in Raw Water Only
3.2.6. Potential TPs of the Six Selected Drugs Formed during Water Treatments (Present in Treated Water Only)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Silva, L.; Laranjeiro, C.; Lino, C.; Pena, A. Selected pharmaceuticals in different aquatic compartments: Part I-source, fate and occurrence. Molecules 2020, 25, 1026. [Google Scholar] [CrossRef] [PubMed]
- Mohan, H.; Rajput, S.S.; Jadhav, E.B.; Sankhla, M.S.; Sonone, S.S.; Jadhav, S.; Kumar, R. Ecotoxicity, occurrence, and removal of pharmaceuticals and illicit drugs from aquatic systems. Biointerface Res. Appl. Chem. 2021, 11, 12530–12546. [Google Scholar] [CrossRef]
- Calisto, V.; Esteves, V.I. Psychiatric Pharmaceuticals in the Environment. Chemosphere 2009, 77, 1257–1274. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, Fate and Transformation of Emerging Contaminants in Water: An Overarching Review of the Field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef]
- Ma, L.; Li, J.; Li, J.; Liu, M.; Yan, D.; Shi, W.; Xu, G. Occurrence and Source Analysis of Selected Antidepressants and Their Metabolites in Municipal Wastewater and Receiving Surface Water. Environ. Sci. Process. Impacts 2018, 20, 1020–1029. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and Antidepressants Occurrence in Surface Waters and Sediments Collected in the North of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef]
- Xiang, Y.; Wu, H.; Li, L.; Ren, M.; Qie, H.; Lin, A. A Review of Distribution and Risk of Pharmaceuticals and Personal Care Products in the Aquatic Environment in China. Ecotoxicol. Environ. Saf. 2021, 213, 112044. [Google Scholar] [CrossRef]
- Davey, C.J.E.; Kraak, M.H.S.; Praetorius, A.; ter Laak, T.L.; van Wezel, A.P. Occurrence, Hazard, and Risk of Psychopharmaceuticals and Illicit Drugs in European Surface Waters. Water Res. 2022, 222, 118878. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Li, W.C. Occurrence, Sources, and Fate of Pharmaceuticals in Aquatic Environment and Soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G.; Ruhoy, I.S. Environmental footprint of pharmaceuticals: The significance of factors beyond direct excretion to sewers. Environ. Toxicol. Chem. 2009, 28, 2495–2521. [Google Scholar] [CrossRef] [PubMed]
- Whitacre, D.M.; Monteiro, S.C.; Boxall, A.B. Occurrence and fate of human pharmaceuticals in the environment. Rev. Environ. Contam. Toxicol. 2010, 202, 53–154. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal Occurrence, Removal, Mass Loading and Environmental Risk Assessment of 55 Pharmaceuticals and Personal Care Products in a Municipal Wastewater Treatment Plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef]
- Rivera-Jaimes, J.A.; Postigo, C.; Melgoza-Alemán, R.M.; Aceña, J.; Barceló, D.; López de Alda, M. Study of Pharmaceuticals in Surface and Wastewater from Cuernavaca, Morelos, Mexico: Occurrence and Environmental Risk Assessment. Sci. Total Environ. 2018, 613–614, 1263–1274. [Google Scholar] [CrossRef]
- Couto, C.F.; Lange, L.C.; Amaral, M.C.S. Occurrence, Fate and Removal of Pharmaceutically Active Compounds (PhACs) in Water and Wastewater Treatment Plants—A Review. J. Water Process. Eng. 2019, 32, 100927. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Silva, S.; Cardoso, V.V.; Benoliel, M.J.; Cardoso, E.; Coelho, M.R.; Martins, A.; Almeida, C.M.M. Screening and Seasonal Behavior of Analgesics, Non-Steroidal Anti-Inflammatory Drugs, and Antibiotics in Two Urban Wastewater Treatment Plants. J. Environ. Manag. 2021, 68, 411–425. [Google Scholar] [CrossRef]
- Ofrydopoulou, A.; Nannou, C.; Evgenidou, E.; Christodoulou, A.; Lambropoulou, D. Assessment of a Wide Array of Organic Micropollutants of Emerging Concern in Wastewater Treatment Plants in Greece: Occurrence, Removals, Mass Loading and Potential Risks. Sci. Total Environ. 2022, 802, 149860. [Google Scholar] [CrossRef]
- Aymerich, I.; Acuña, V.; Barceló, D.; García, M.J.; Petrovic, M.; Poch, M.; Rodriguez-Mozaz, S.; Rodríguez-Roda, I.; Sabater, S.; von Schiller, D.; et al. Attenuation of Pharmaceuticals and Their Transformation Products in a Wastewater Treatment Plant and Its Receiving River Ecosystem. Water Res. 2016, 100, 126–136. [Google Scholar] [CrossRef]
- Brezina, E.; Prasse, C.; Meyer, J.; Mückter, H.; Ternes, T.A. Investigation and Risk Evaluation of the Occurrence of Carbamazepine, Oxcarbazepine, Their Human Metabolites and Transformation Products in the Urban Water Cycle. Environ. Pollut. 2017, 225, 261–269. [Google Scholar] [CrossRef]
- Brown, A.K.; Wong, C.S. Distribution and Fate of Pharmaceuticals and Their Metabolite Conjugates in a Municipal Wastewater Treatment Plant. Water Res. 2018, 144, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Hermes, N.; Jewell, K.S.; Wick, A.; Ternes, T.A. Quantification of More than 150 Micropollutants Including Transformation Products in Aqueous Samples by Liquid Chromatography-Tandem Mass Spectrometry Using Scheduled Multiple Reaction Monitoring. J. Chromatogr. A 2018, 1531, 64–73. [Google Scholar] [CrossRef] [PubMed]
- French Health Insurance 2021. Available online: https://assurance-maladie.ameli.fr/etudes-et-donnees/medicaments-classe-atc-medicam (accessed on 30 January 2023).
- Wang, C.; Hou, L.; Li, J.; Xu, Z.; Gao, T.; Yang, J.; Zhang, H.; Li, X.; Du, P. Occurrence of Diazepam and Its Metabolites in Wastewater and Surface Waters in Beijing. Environ. Sci. Pollut. Res. 2017, 24, 15379–15389. [Google Scholar] [CrossRef] [PubMed]
- López-García, E.; Mastroianni, N.; Postigo, C.; Barceló, D.; López de Alda, M. A fully automated approach for the analysis of 37 psychoactive substances in raw wastewater based on on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1576, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Kosma, C.I.; Nannou, C.I.; Boti, V.I.; Albanis, T.A. Psychiatrics and Selected Metabolites in Hospital and Urban Wastewaters: Occurrence, Removal, Mass Loading, Seasonal Influence and Risk Assessment. Sci. Total Environ. 2019, 659, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Pivetta, R.C.; Rodrigues-Silva, C.; Ribeiro, A.R.; Rath, S. Tracking the Occurrence of Psychotropic Pharmaceuticals in Brazilian Wastewater Treatment Plants and Surface Water, with Assessment of Environmental Risks. Sci. Total Environ. 2020, 727, 138661. [Google Scholar] [CrossRef]
- Golbaz, S.; Zamanzadeh, M.; Yaghmaeian, K.; Nabizadeh, R.; Rastkari, N.; Esfahani, H. Occurrence and Removal of Psychiatric Pharmaceuticals in the Tehran South Municipal Wastewater Treatment Plant. Environ. Sci. Pollut. Res. 2022, 30, 27041–27055. [Google Scholar] [CrossRef]
- Lajeunesse, A.; Gagnon, C.; Sauvé, S. Determination of Basic Antidepressants and Their N-Desmethyl Metabolites in Raw Sewage and Wastewater Using Solid-Phase Extraction and Liquid Chromatography—Tandem Mass Spectrometry. Anal. Chem. 2008, 80, 5325–5333. [Google Scholar] [CrossRef]
- Metcalfe, C.D.; Chu, S.; Judt, C.; Li, H.; Oakes, K.D.; Servos, M.R.; Andrews, D.M. Antidepressants and Their Metabolites in Municipal Wastewater, and Downstream Exposure in an Urban Watershed. Environ. Toxicol. Chem. 2010, 29, 79–89. [Google Scholar] [CrossRef]
- Singh, A.; Saidulu, D.; Gupta, A.K.; Kubsad, V.; Saidulu, D.; Kumar, V. Occurrence and fate of antidepressants in the aquatic environment: Insights into toxicological effects on the aquatic life, analytical methods, and removal techniques. J. Environ. Chem. Eng. 2022, 10, 109012. [Google Scholar] [CrossRef]
- Margot, J.; Rossi, L.; Barry, D.A.; Holliger, C. A Review of the Fate of Micropollutants in Wastewater Treatment Plants. Wiley Interdiscip. Rev. Water 2015, 2, 457–487. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment Technologies for Emerging Contaminants in Wastewater Treatment Plants: A Review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment—A Review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Pomiès, M.; Choubert, J.-M.; Wisniewski, C.; Coquery, M. Modelling of Micropollutant Removal in Biological Wastewater Treatments: A Review. Sci. Total Environ. 2013, 443, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and Fate of Emerging Contaminants in Water Environment: A Review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M.; Barceló, D. Analysis of Pharmaceuticals in Wastewater and Removal Using a Membrane Bioreactor. Anal. Bioanal. Chem. 2007, 387, 1365–1377. [Google Scholar] [CrossRef]
- Melvin, S.D.; Leusch, F.D.L. Removal of Trace Organic Contaminants from Domestic Wastewater: A Meta-Analysis Comparison of Sewage Treatment Technologies. Environ. Int. 2016, 92–93, 183–188. [Google Scholar] [CrossRef]
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Review on Fate and Mechanism of Removal of Pharmaceutical Pollutants from Wastewater Using Biological Approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent Trends in Disposal and Treatment Technologies of Emerging-Pollutants—A Critical Review. TrAC Trends Anal. Chem. 2020, 122, 115744. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Achak, M.; Sillanpää, M.; Barka, N. Comparative Overview of Advanced Oxidation Processes and Biological Approaches for the Removal Pharmaceuticals. J. Environ. Manag. 2021, 288, 112404. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Grillini, V.; Mutavdžić Pavlović, D.; Verlicchi, P. Activated Carbon Coupled with Advanced Biological Wastewater Treatment: A Review of the Enhancement in Micropollutant Removal. Sci. Total Environ. 2021, 790, 148050. [Google Scholar] [CrossRef] [PubMed]
- Radjenović, J.; Petrović, M.; Barceló, D. Fate and Distribution of Pharmaceuticals in Wastewater and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Subedi, B.; Kannan, K. Occurrence and Fate of Select Psychoactive Pharmaceuticals and Antihypertensives in Two Wastewater Treatment Plants in New York State, USA. Sci. Total Environ. 2015, 514, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Boix, C.; Ibáñez, M.; Sancho, J.V.; Parsons, J.R.; de Voogt, P.; Hernández, F. Biotransformation of Pharmaceuticals in Surface Water and during Waste Water Treatment: Identification and Occurrence of Transformation Products. J. Hazard. Mater. 2016, 302, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a Full-Scale Wastewater Treatment Plant Upgraded with Ozonation and Biological Post-Treatments: Abatement of Micropollutants, Formation of Transformation Products and Oxidation by-Products. Water Res. 2018, 129, 486–498. [Google Scholar] [CrossRef]
- Schollée, J.E.; Bourgin, M.; von Gunten, U.; McArdell, C.S.; Hollender, J. Non-Target Screening to Trace Ozonation Transformation Products in a Wastewater Treatment Train Including Different Post-Treatments. Water Res. 2018, 142, 267–278. [Google Scholar] [CrossRef]
- Gulde, R.; Rutsch, M.; Clerc, B.; Schollée, J.E.; von Gunten, U.; McArdell, C.S. Formation of Transformation Products during Ozonation of Secondary Wastewater Effluent and Their Fate in Post-Treatment: From Laboratory- to Full-Scale. Water Res. 2021, 200, 117200. [Google Scholar] [CrossRef]
- Escher, B.I.; Fenner, K. Recent Advances in Environmental Risk Assessment of Transformation Products. Environ. Sci. Technol. 2011, 45, 3835–3847. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, W.; Liu, X.; Zhang, J.; Peng, M.; Zhang, T. A Review on Analytical Methods for Pharmaceutical and Personal Care Products and Their Transformation Products. J. Environ. Sci. 2021, 101, 260–281. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Anfruns, A.; Gonzalez-Olmos, R.; Rodríguez-Mozaz, S.; Comas, J. UV/H2O2degradation of the Antidepressants Venlafaxine and O-Desmethylvenlafaxine: Elucidation of Their Transformation Pathway and Environmental Fate. J. Hazard. Mater. 2016, 311, 70–80. [Google Scholar] [CrossRef]
- Lv, J.; Ou, C.; Fu, M.; Xu, Z. Characteristics and Transformation Pathways of Venlafaxine Degradation during Disinfection Processes Using Free Chlorine and Chlorine Dioxide. Chemosphere 2021, 276, 130147. [Google Scholar] [CrossRef] [PubMed]
- Boxall, A.B.A.; Sinclair, C.J.; Fenner, K.; Kolpin, D.; Maund, S.J. When synthetic chemicals degrade in the environment. Environ. Sci. Technol. 2004, 38, 368A–375A. [Google Scholar] [CrossRef] [PubMed]
- Farré, M.l.; Pérez, S.; Kantiani, L.; Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal. Chem. 2008, 27, 991–1007. [Google Scholar] [CrossRef]
- Maculewicz, J.; Kowalska, D.; Świacka, K.; Toński, M.; Stepnowski, P.; Białk-Bielińska, A.; Dołżonek, J. Transformation Products of Pharmaceuticals in the Environment: Their Fate, (Eco)Toxicity and Bioaccumulation Potential. Sci. Total Environ. 2022, 802, 149916. [Google Scholar] [CrossRef] [PubMed]
- Krauss, M.; Singer, H.; Hollender, J. LC–High Resolution MS in Environmental Analysis: From Target Screening to the Identification of Unknowns. Anal. Bioanal. Chem. 2010, 397, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Creek, D.J.; Dunn, W.B.; Fiehn, O.; Griffin, J.L.; Hall, R.D.; Lei, Z.; Mistrik, R.; Neumann, S.; Schymanski, E.L.; Sumner, L.W.; et al. Metabolite Identification: Are You Sure? And How Do Your Peers Gauge Your Confidence? Metabolomics 2014, 10, 350–353. [Google Scholar] [CrossRef]
- Hollender, J.; Bourgin, M.; Fenner, K.B.; Longrée, P.; Mcardell, C.S.; Moschet, C.; Ruff, M.; Schymanski, E.L.; Singer, H.P. Exploring the Behaviour of Emerging Contaminants in the Water Cycle Using the Capabilities of High Resolution Mass Spectrometry. Chimia 2014, 68, 793. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Singer, H.P.; Longrée, P.; Loos, M.; Ruff, M.; Stravs, M.A.; Ripollés Vidal, C.; Hollender, J. Strategies to Characterize Polar Organic Contamination in Wastewater: Exploring the Capability of High Resolution Mass Spectrometry. Environ. Sci. Technol. 2014, 48, 1811–1818. [Google Scholar] [CrossRef]
- Krauss, M.; Hug, C.; Bloch, R.; Schulze, T.; Brack, W. Prioritising Site-Specific Micropollutants in Surface Water from LC-HRMS Non-Target Screening Data Using a Rarity Score. Environ. Sci. Eur. 2019, 31, 45. [Google Scholar] [CrossRef]
- Hug, C.; Ulrich, N.; Schulze, T.; Brack, W.; Krauss, M. Identification of Novel Micropollutants in Wastewater by a Combination of Suspect and Nontarget Screening. Environ. Pollut. 2014, 184, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Deeb, A.A.; Stephan, S.; Schmitz, O.J.; Schmidt, T.C. Suspect Screening of Micropollutants and Their Transformation Products in Advanced Wastewater Treatment. Sci. Total Environ. 2017, 601–602, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Wicker, J.; Lorsbach, T.; Gütlein, M.; Schmid, E.; Latino, D.; Kramer, S.; Fenner, K. EnviPath—The Environmental Contaminant Biotransformation Pathway Resource. Nucleic Acids Res. 2016, 44, D502–D508. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Anitha, P.; Ramesh, B.; Suresh, G. Analysis of EAWAG-BBD Pathway Prediction System for the Identification of Malathion Degrading Microbes. Bioinformation 2017, 13, 73–77. [Google Scholar] [CrossRef]
- Fenner, K.; Elsner, M.; Lueders, T.; McLachlan, M.S.; Wackett, L.P.; Zimmermann, M.; Drewes, J.E. Methodological Advances to Study Contaminant Biotransformation: New Prospects for Understanding and Reducing Environmental Persistence? ACS EST Water 2021, 1, 1541–1554. [Google Scholar] [CrossRef]
- Singh, A.K.; Bilal, M.; Iqbal, H.M.N.; Raj, A. Trends in Predictive Biodegradation for Sustainable Mitigation of Environmental Pollutants: Recent Progress and Future Outlook. Sci. Total Environ. 2021, 770, 144561. [Google Scholar] [CrossRef]
- Solliec, M.; Roy-Lachapelle, A.; Storck, V.; Callender, K.; Greer, C.W.; Barbeau, B. A Data-Independent Acquisition Approach Based on HRMS to Explore the Biodegradation Process of Organic Micropollutants Involved in a Biological Ion-Exchange Drinking Water Filter. Chemosphere 2021, 277, 130216. [Google Scholar] [CrossRef]
- Singh, A.K.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. A Predictive Toolset for the Identification of Degradation Pattern and Toxic Hazard Estimation of Multimeric Hazardous Compounds Persists in Water Bodies. Sci. Total Environ. 2022, 824, 153979. [Google Scholar] [CrossRef]
- Del Mar Gómez-Ramos, M.; Pérez-Parada, A.; García-Reyes, J.F.; Fernández-Alba, A.R.; Agüera, A. Use of an Accurate-Mass Database for the Systematic Identification of Transformation Products of Organic Contaminants in Wastewater Effluents. J. Chromatogr. A 2011, 1218, 8002–8012. [Google Scholar] [CrossRef]
- Kosjek, T.; Perko, S.; Zupanc, M.; Zanoški Hren, M.; Landeka Dragičević, T.; Žigon, D.; Kompare, B.; Heath, E. Environmental Occurrence, Fate and Transformation of Benzodiazepines in Water Treatment. Water Res. 2012, 46, 355–368. [Google Scholar] [CrossRef]
- Racamonde, I.; Rodil, R.; Quintana, J.B.; Villaverde-de-Sáa, E.; Cela, R. Determination of Benzodiazepines, Related Pharmaceuticals and Metabolites in Water by Solid-Phase Extraction and Liquid-Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2014, 1352, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kaserzon, S.L.; Plassmann, M.M.; Sobek, A.; Gómez Ramos, M.J.; Radke, M. A Strategic Screening Approach to Identify Transformation Products of Organic Micropollutants Formed in Natural Waters. Environ. Sci. Process. Impacts 2017, 19, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Gago-Ferrero, P.; Schymanski, E.L.; Bletsou, A.A.; Aalizadeh, R.; Hollender, J.; Thomaidis, N.S. Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environ. Sci. Technol. 2015, 49, 12333–12341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, G.; Chen, S.; Zhang, S.; Wang, B.; Huang, J.; Deng, S.; Wang, Y. Ozonation of Antidepressant Fluoxetine and Its Metabolite Product Norfluoxetine: Kinetics, Intermediates and Toxicity. J. Chem. Eng. 2017, 316, 951–963. [Google Scholar] [CrossRef]
- Calisto, V.; Domingues, M.R.M.; Esteves, V.I. Photodegradation of Psychiatric Pharmaceuticals in Aquatic Environments—Kinetics and Photodegradation Products. Water Res. 2011, 45, 6097–6106. [Google Scholar] [CrossRef]
- Beretsou, V.G.; Psoma, A.K.; Gago-Ferrero, P.; Aalizadeh, R.; Fenner, K.; Thomaidis, N.S. Identification of Biotransformation Products of Citalopram Formed in Activated Sludge. Water Res. 2016, 103, 205–214. [Google Scholar] [CrossRef]
- Ibáñez, M.; Borova, V.; Boix, C.; Aalizadeh, R.; Bade, R.; Thomaidis, N.S.; Hernández, F. UHPLC-QTOF MS Screening of Pharmaceuticals and Their Metabolites in Treated Wastewater Samples from Athens. J. Hazard. Mater. 2017, 323, 26–35. [Google Scholar] [CrossRef]
- Yang, B.; Xu, C.; Kookana, R.S.; Williams, M.; Du, J.; Ying, G.; Gu, F. Aqueous Chlorination of Benzodiazepines Diazepam and Oxazepam: Kinetics, Transformation Products and Reaction Pathways. J. Chem. Eng. 2018, 354, 1100–1109. [Google Scholar] [CrossRef]
- Schollée, J.E.; Schymanski, E.L.; Stravs, M.A.; Gulde, R.; Thomaidis, N.S.; Hollender, J. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products. J. Am. Soc. Mass Spectrom. 2017, 28, 2692–2704. [Google Scholar] [CrossRef]
- Mole, R.A.; Brooks, B.W. Global Scanning of Selective Serotonin Reuptake Inhibitors: Occurrence, Wastewater Treatment and Hazards in Aquatic Systems. Environ. Pollut. 2019, 250, 1019–1031. [Google Scholar] [CrossRef]
- Lei, H.-J.; Yang, B.; Ye, P.; Yang, Y.-Y.; Zhao, J.-L.; Liu, Y.-S.; Xie, L.; Ying, G.-G. Occurrence, Fate and Mass Loading of Benzodiazepines and Their Transformation Products in Eleven Wastewater Treatment Plants in Guangdong Province, China. Sci. Total Environ. 2021, 755, 142648. [Google Scholar] [CrossRef] [PubMed]
- Carballa, M.; Omil, F.; Lema, J.M. Comparison of Predicted and Measured Concentrations of Selected Pharmaceuticals, Fragrances and Hormones in Spanish Sewage. Chemosphere 2008, 72, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Christophoridis, C.; Veloutsou, S.; Mitsika, E.; Zacharis, C.K.; Christia, C.; Raikos, N.; Fytianos, K. Determination of Illicit Drugs and Psychoactive Pharmaceuticals in Wastewater from the Area of Thessaloniki (Greece) Using LC–MS/MS: Estimation of Drug Consumption. Environ. Monit. Assess. 2021, 193, 249. [Google Scholar] [CrossRef]
- Kwon, J.-W.; Armbrust, K.L. Laboratory persistence and fate of fluoxetine in aquatic environments. Environ. Toxicol. Chem. 2006, 25, 2561. [Google Scholar] [CrossRef] [PubMed]
- Palma, T.L.; Costa, M.C. Anaerobic Biodegradation of Fluoxetine Using a High-Performance Bacterial Community. Anaerobe 2021, 68, 102356. [Google Scholar] [CrossRef] [PubMed]
- Qteishat, O.; Myszograj, S.; Suchowska-Kisielewicz, M. Changes of Wastewater Characteristic during Transport in Sewers. WSEAS Trans. Environ. Dev. 2011, 7, 349–358. [Google Scholar]
- Gasser, G.; Pankratov, I.; Elhanany, S.; Werner, P.; Gun, J.; Gelman, F.; Lev, O. Field and Laboratory Studies of the Fate and Enantiomeric Enrichment of Venlafaxine and O-Desmethylvenlafaxine under Aerobic and Anaerobic Conditions. Chemosphere 2012, 88, 98–105. [Google Scholar] [CrossRef]
- Rúa-Gómez, P.C.; Püttmann, W. Degradation of Lidocaine, Tramadol, Venlafaxine and the Metabolites O-Desmethyltramadol and O-Desmethylvenlafaxine in Surface Waters. Chemosphere 2013, 90, 1952–1959. [Google Scholar] [CrossRef]
- Trawiński, J.; Skibiński, R. Studies on Photodegradation Process of Psychotropic Drugs: A Review. Environ. Sci. Pollut. Res. 2017, 24, 1152–1199. [Google Scholar] [CrossRef]
- Merel, S.; Anumol, T.; Park, M.; Snyder, S.A. Application of Surrogates, Indicators, and High-Resolution Mass Spectrometry to Evaluate the Efficacy of UV Processes for Attenuation of Emerging Contaminants in Water. J. Hazard. Mater. 2015, 282, 75–85. [Google Scholar] [CrossRef]
- Kaiser, E.; Prasse, C.; Wagner, M.; Bröder, K.; Ternes, T.A. Transformation of Oxcarbazepine and Human Metabolites of Carbamazepine and Oxcarbazepine in Wastewater Treatment and Sand Filters. Environ. Sci. Technol. 2014, 48, 10208–10216. [Google Scholar] [CrossRef] [PubMed]
Code | Capacity (Eq. Inh.) | Output Rate (m3·d−1) | Type of Secondary Treatment | Tertiary Treatment |
---|---|---|---|---|
WWTP1 | 85,000 | 18,700 | Two-stage biofiltration | None |
WWTP2 | 366,000 | 210,000 | One-stage biofiltration | None |
WWTP3 | 150,000 | 25,000 | Bacterial beds | UV disinfection * |
Compound | Formula | Mass | TPs Referenced in the Literature | TPs Generated In Silico (Excel Macro) |
---|---|---|---|---|
Alprazolam | C17H13ClN4 | 308.0828 | 3 | 27 |
Citalopram | C20H21FN2O | 324.1638 | 12 | 35 |
Diazepam | C16H13ClN2O | 284.0716 | 18 | 22 |
Fluoxetine | C17H18F3NO | 309.1340 | 10 | 30 |
Oxazepam | C15H11ClN2O2 | 286.0509 | 11 | 18 |
Venlafaxine | C17H27NO2 | 277.2042 | 50 | 15 |
WWTP1 | WWTP2 | WWTP3 | ||||
---|---|---|---|---|---|---|
Compounds | Influent | Effluent | Influent | Effluent | Influent | Effluent |
TP-ALP-11 | ||||||
TP-ALP-17 | ||||||
TP-ALP-28 | ||||||
TP-ALP-43 | ||||||
TP-ALP-50 | ||||||
TP-ALP-51 | ||||||
Desmethylcitalopram | ||||||
TP-CTR-9 | ||||||
TP-CTR-44 | ||||||
TP-CTR-45 | ||||||
TP-DIA-47 | ||||||
TP-DIA-59a/1,3-Dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one | ||||||
TP-DIA-70 | ||||||
TP 163 | ||||||
TP165 | ||||||
TP298 | ||||||
TP325 | ||||||
TP-FLX-16 | ||||||
TP-FLX-24a | ||||||
TP-FLX-24b | ||||||
TP-FLX-24c | ||||||
TP-FLX-57 | ||||||
TP-FLX-67a | ||||||
TP-FLX-67b | ||||||
OXZ-VI | ||||||
TP-OXA-7 | ||||||
TP-OXA-22a/Carbamazepine 10,11 epoxide/Oxcarbazepine/1,/3,4-hydroxycarbamazepine | ||||||
TP-OXA-22b/Carbamazepine 10,11 epoxide/Oxcarbazepine/1,/3,4-hydroxycarbamazepine | ||||||
TP-OXA-22c/Carbamazepine 10,11 epoxide/Oxcarbazepine/1,/3,4-hydroxycarbamazepine | ||||||
ODV | ||||||
NODDV | ||||||
Venlafaxine-F1 | ||||||
Venlafaxine met 5/Tramadol-N-Oxide | ||||||
Venlafaxine met 9 | ||||||
Venlafaxine TP16a | ||||||
Venlafaxine TP16b | ||||||
Venlafaxine TP16c | ||||||
Venlafaxine TP23 | ||||||
Venlafaxine TP26 | ||||||
Venlafaxine TP31 | ||||||
Venlafaxine TP32 | ||||||
VB3 | ||||||
VB4 | ||||||
TP 216 | ||||||
TP-VFX-15 | ||||||
TP-VFX-16/Venlafaxine-N-Oxide | ||||||
TP-VFX-17 | ||||||
TP-VFX-25b/O-desmethyltramadol/N-desmethyltramadol/NNDDV | ||||||
TP-VFX-25c/O-desmethyltramadol/N-desmethyltramadol/NNDDV | ||||||
TP-VFX-28 | ||||||
TP-VFX-29 | ||||||
TP-VFX-34 | ||||||
TP-VFX-35 | ||||||
TP-VFX-36 | ||||||
TP-VFX-42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reverbel, S.; Dévier, M.-H.; Dupraz, V.; Geneste, E.; Budzinski, H. Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants. Toxics 2023, 11, 713. https://doi.org/10.3390/toxics11080713
Reverbel S, Dévier M-H, Dupraz V, Geneste E, Budzinski H. Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants. Toxics. 2023; 11(8):713. https://doi.org/10.3390/toxics11080713
Chicago/Turabian StyleReverbel, Solenne, Marie-Hélène Dévier, Valentin Dupraz, Emmanuel Geneste, and Hélène Budzinski. 2023. "Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants" Toxics 11, no. 8: 713. https://doi.org/10.3390/toxics11080713
APA StyleReverbel, S., Dévier, M. -H., Dupraz, V., Geneste, E., & Budzinski, H. (2023). Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants. Toxics, 11(8), 713. https://doi.org/10.3390/toxics11080713