TiO2-Photocatalyst-Induced Degradation of Dog and Cat Allergens under Wet and Dry Conditions Causes a Loss in Their Allergenicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2-Coated Glass Sheet
2.2. Transmission Electron Microscope (TEM)
2.3. TiO2 Photocatalyst Treatment
2.4. Methylene Blue Degradation
2.5. Analysis of the Degradation of Animal Allergens by TiO2 Photocatalyst under Wet and Dry Conditions Using Western Blot
2.6. Allergenicity Detection of Animal Allergens by Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Statistical Analysis
3. Results
3.1. Properties of TiO2 and Degradation of Methylene Blue by TiO2
3.2. Dog Allergen Degradation by TiO2 Photocatalyst under Wet Conditions
3.3. Loss of Allergenicity of Dog Allergen by TiO2 Photocatalysis under Wet Conditions
3.4. Cat Allergen Degradation by TiO2 Photocatalyst under Wet Conditions
3.5. Loss of Allergenicity of Cat Allergen by TiO2 Photocatalysis under Wet Conditions
3.6. Cat Allergen Degradation by TiO2 Photocatalyst under Dry Conditions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johansson, S.G.; Bieber, T.; Dahl, R.; Friedmann, P.S.; Lanier, B.Q.; Lockey, R.F.; Motala, C.; Ortega Martell, J.A.; Platts-Mills, T.A.; Ring, J.; et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 2004, 113, 832–836. [Google Scholar] [CrossRef]
- Chan, S.K.; Leung, D.Y.M. Dog and Cat Allergies: Current State of Diagnostic Approaches and Challenges. Allergy Asthma Immunol. Res. 2018, 10, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.E.; Ratner, P.H.; Johnson, C.E.; Ambegaonkar, A.J.; Joshi, A.V.; Day, D.; Sampson, N.; Eng, B. Economic impact of workplace productivity losses due to allergic rhinitis compared with select medical conditions in the United States from an employer perspective. Curr. Med. Res. Opin. 2006, 22, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Hellgren, J.; Cervin, A.; Nordling, S.; Bergman, A.; Cardell, L.O. Allergic rhinitis and the common cold—High cost to society. Allergy 2010, 65, 776–783. [Google Scholar] [CrossRef]
- Number of Pet Dogs in Europe from 2010 to 2021. Available online: https://www.statista.com/statistics/515579/dog-population-europe/#statisticContainer (accessed on 12 June 2023).
- Number of Pet Cats in Europe from 2010 to 2021. Available online: https://www.statista.com/statistics/516041/cat-population-europe-europe/ (accessed on 12 June 2023).
- Hooker, S.D.; Freeman, L.H.; Stewart, P. Pet therapy research: A historical review. Holist. Nurs. Pract. 2002, 16, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ownby, D.R. Pet dander and difficult-to-control asthma: The burden of illness. Allergy Asthma Proc. 2010, 31, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, A.H. Human allergy to cats: A review of the impact on cat ownership and relinquishment. J. Feline Med. Surg. 2022, 24, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Martínez, J.; Sanz, M.L.; Bartolomé, B.; Palacios, R. Dander is the best epithelial source for dog allergenic extract preparations. Allergy 1994, 49, 664–667. [Google Scholar] [CrossRef]
- Bonnet, B.; Messaoudi, K.; Jacomet, F.; Michaud, E.; Fauquert, J.L.; Caillaud, D.; Evrard, B. An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen. Allergy Asthma Clin. Immunol. 2018, 14, 14. [Google Scholar] [CrossRef]
- Poole, T.B.; King, S.P.; Suphioglu, C. Effectiveness of vacuuming and carpet washing in the removal of the major cat allergen, Fel d 1. Allergy 2020, 75, 2694–2695. [Google Scholar] [CrossRef]
- Custovic, A.; Green, R.; Fletcher, A.; Smith, A.; Pickering, C.A.; Chapman, M.D.; Woodcock, A. Aerodynamic properties of the major dog allergen Can f 1: Distribution in homes, concentration, and particle size of allergen in the air. Am. J. Respir. Crit. Care Med. 1997, 155, 94–98. [Google Scholar] [CrossRef]
- Custovic, A.; Simpson, A.; Pahdi, H.; Green, R.M.; Chapman, M.D.; Woodcock, A. Distribution, aerodynamic characteristics, and removal of the major cat allergen Fel d 1 in British homes. Thorax 1998, 53, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Hodson, T.; Custovic, A.; Simpson, A.; Chapman, M.; Woodcock, A.; Green, R. Washing the dog reduces dog allergen levels, but the dog needs to be washed twice a week. J. Allergy Clin. Immunol. 1999, 103, 581–585. [Google Scholar] [CrossRef]
- Matsui, E.; Kagey-Sobotka, A.; Chichester, K.; Eggleston, P.A. Allergic potency of recombinant Fel d 1 is reduced by low concentrations of chlorine bleach. J. Allergy Clin. Immunol. 2003, 111, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Thoms, F.; Jennings, G.T.; Maudrich, M.; Vogel, M.; Haas, S.; Zeltins, A.; Hofmann-Lehmann, R.; Riond, B.; Grossmann, J.; Hunziker, P.; et al. Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects. J. Allergy Clin. Immunol. 2019, 144, 193–203. [Google Scholar] [CrossRef]
- Vredegoor, D.W.; Willemse, T.; Chapman, M.D.; Heederik, D.J.; Krop, E.J. Can f 1 levels in hair and homes of different dog breeds: Lack of evidence to describe any dog breed as hypoallergenic. J. Allergy Clin. Immunol. 2012, 130, 904–909.e7. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, R.; Lo, C.W.; Wada, S.; Somei, J.; Ochiai, H.; Murakami, T.; Saito, N.; Ogawa, T.; Shinjo, A.; Benno, Y.; et al. SARS-CoV-2 Disinfection of Air and Surface Contamination by TiO2 Photocatalyst-Mediated Damage to Viral Morphology, RNA, and Protein. Viruses 2021, 12, 942. [Google Scholar] [CrossRef]
- Matsuura, R.; Maeda, K.; Hagiwara, K.; Mori, Y.; Kitamura, T.; Matsumoto, Y.; Aida, Y. WO3 Photocatalyst Containing Copper Inactivates SARS-CoV-2 Pango Lineage A and Omicron BA.2 Variant in Visible Light and in Darkness. Pathogens 2022, 11, 922. [Google Scholar] [CrossRef]
- Feng, K.; Gong, J.; Qu, J.; Niu, R. Dual-Mode-Driven Micromotor Based on Foam-like Carbon Nitride and Fe3O4 with Improved Manipulation and Photocatalytic Performance. ACS Appl. Mater. Interfaces 2022, 14, 44271–44281. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, K.; He, P.; Liu, N.; Hao, L.; Gong, J.; Niu, R.; Qu, J. A synergistic photothermal and photocatalytic membrane for efficient solar-driven contaminated water treatment. Sustain. Energy Fuels 2021, 5, 5627–5637. [Google Scholar] [CrossRef]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ji, K.; Duan, H.; Shao, M. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 2021, 1, 20210050. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, D.J.; Shetty Kodialbail, V. Suspended and polycaprolactone immobilized Ag @TiO2/polyaniline nanocomposites for water disinfection and endotoxin degradation by visible and solar light-mediated photocatalysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 12780–12791. [Google Scholar] [CrossRef]
- Cho, M.; Choi, Y.; Park, H.; Kim, K.; Woo, G.J.; Park, J. Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J. Food Prot. 2007, 70, 97–101. [Google Scholar] [CrossRef]
- Armon, R.; Weltch-Cohen, G.; Bettane, P. Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis. Waterborne Pathog. 2004, 4, 7–14. [Google Scholar] [CrossRef]
- Sreeja, S.; Vidya Shetty, K. Microbial disinfection of water with endotoxin degradation by photocatalysis using Ag@TiO2 core shell nanoparticles. Environ. Sci. Pollut. Res. Int. 2016, 23, 18154–18164. [Google Scholar] [CrossRef]
- Ibáñez, J.A.; Litter, M.I.; Pizarro, R.A. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (−) bacteria. J. Photochem. Photobiol. A 2003, 157, 81–85. [Google Scholar] [CrossRef]
- Yao, K.S.; Wang, D.Y.; Chang, C.Y.; Weng, K.W.; Yang, L.Y.; Lee, S.J.; Cheng, T.C.; Hwang, C.C. Photocatalytic disinfection of phytopathogenic bacteria by dye-sensitized TiO2 thin film activated by visible light. Surf. Coat. Technol. 2007, 202, 1329–1332. [Google Scholar] [CrossRef]
- Chun, M.J.; Shim, E.; Kho, E.H.; Park, K.J.; Jung, J.; Kim, J.M.; Kim, B.; Lee, K.H.; Cho, D.L.; Bai, D.H.; et al. Surface modifi-cation of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod. 2007, 77, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, D.; Cho, D.; Cho, S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 2003, 52, 277–281. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Robertson, P.K.J.; Officer, S.; Pollard, P.M.; McCullagh, C.; Robertson, J.M.C. Variables to be considered when assessing the photocatalytic destruction of bacterial pathogens. Chemosphere 2009, 74, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.L.; Min, H.; Kim, J.H.; Cha, G.S.; Kim, G.S.; Kim, B.H.; Ohk, S.H. Photocatalytic characteristics of TiO2 thin films deposited by PECVD. J. Ind. Eng. Chem. 2007, 13, 434–437. [Google Scholar]
- Hara-Kudo, Y.; Segawa, Y.; Kimura, K. Sanitation of seawater effluent from seaweed processing plants using a photo-catalytic TiO2 oxidation. Chemosphere 2006, 62, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, R.; Kawamura, A.; Matsumoto, Y.; Fukushima, T.; Fujimoto, K.; Ochiai, H.; Somei, J.; Aida, Y. Rutile-TiO2/PtO2 Glass Coatings Disinfects Aquatic Legionella pneumophila via Morphology Change and Endotoxin Degradation under LED Irradiation. Catalysts 2022, 12, 856. [Google Scholar] [CrossRef]
- Thomas, C.; Manisekaran, R.; Santoyo-Salazar, J.; Schoefs, B.; Castaneda, H.; Jantrania, A. Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. J. Photochem. Photobiol. A Chem. 2021, 418, 113374. [Google Scholar] [CrossRef]
- Nakano, R.; Ishiguro, H.; Yao, Y.; Kajioka, J.; Fujishima, A.; Sunada, K.; Minoshima, M.; Hashimoto, K.; Kubota, Y. Photo-catalytic inactivation of influenza virus by titanium dioxide thin film. Photochem. Photobiol. Sci. 2012, 11, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Kratzel, A.; Todt, D.; V’kovski, P.; Steiner, S.; Gultom, M.; Thao, T.T.N.; Ebert, N.; Holwerda, M.; Steinmann, J.; Niemeyer, D.; et al. Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols. Emerg. Infect. Dis. 2020, 26, 1592–1595. [Google Scholar] [CrossRef]
- Tong, Y.; Shi, G.; Hu, G.; Hu, X.; Han, L.; Xie, X.; Xu, Y.; Zhang, R.; Sun, J.; Zhong, J. Photo-catalyzed TiO2 inactivates pathogenic viruses by attacking viral genome. Chem. Eng. J. 2021, 414, 128788. [Google Scholar] [CrossRef]
- Khaiboullina, S.; Uppal, T.; Dhabarde, N.; Subramanian, V.R.; Verma, S.C. Inactivation of Human Coronavirus by Titania Nanoparticle Coatings and UVC Radiation: Throwing Light on SARS-CoV-2. Viruses 2021, 13, 19. [Google Scholar] [CrossRef]
- Yoshizawa, N.; Ishihara, R.; Omiya, D.; Ishitsuka, M.; Hirano, S.; Suzuki, T. Application of a Photocatalyst as an Inactivator of Bovine Coronavirus. Viruses 2020, 12, 1372. [Google Scholar] [CrossRef]
- Park, D.; Shahbaz, H.M.; Kim, S.H.; Lee, M.; Lee, W.; Oh, J.W.; Lee, D.U.; Park, J. Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix. Int. J. Food Microbiol. 2016, 238, 256–264. [Google Scholar] [CrossRef]
- Han, W.; Zhang, B.; Cao, W.; Yang, D.; Taira, I.; Okamoto, Y.; Arai, J.I.; Yan, X. The inactivation effect of photocatalytic tita-nium apatite filter on SARS virus. Prog. Biochem. Biophys. 2004, 31, 982–985. [Google Scholar]
- Syngouna, V.I.; Chrysikopoulos, C.V. Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light. J. Colloid Interface Sci. 2017, 497, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Sapiña, M.; Jimenez-Relinque, E.; Roman, E.; Nevshupa, R.; Castellote, M. Unusual photodegradation reactions of Asteraceae and Poaceae grass pollen enzymatic extracts on P25 photocatalyst. Environ. Sci. Pollut. Res. Int. 2021, 28, 24206–24215. [Google Scholar] [CrossRef]
- Sapiña, M.; Jimenez-Relinque, E.; Castellote, M. Controlling the levels of airborne pollen: Can heterogeneous photocatalysis help? Environ. Sci. Technol. 2013, 47, 11711–11716. [Google Scholar] [CrossRef] [PubMed]
- Sapiña, M.; Jimenez-Relinque, E.; Nevshupa, R.; Roman, E.; Castellote, M. Degradation of pollen on nanofunctionalized photocatalytic materials. J. Chem. Technol. Biotechnol. 2016, 92, 210–216. [Google Scholar] [CrossRef]
- Tomonaga, T.; Izumi, H.; Nishida, C.; Kato, K.; Yatera, K.; Kuroda, E.; Morimoto, Y. Suppression of Airway Allergic Reactions by a Photocatalytic Filter Using Mouse Model. Toxics 2022, 10, 40. [Google Scholar] [CrossRef]
- Cui, S.S.; Liu, X.; Shi, Y.B.; Ding, M.Y.; Yang, X.F. Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance. Rare Met. 2022, 41, 2405–2416. [Google Scholar] [CrossRef]
- Hojo, H.; Gondo, M.; Yoshizaki, S.; Einaga, H. Atomic and Electronic Structure of Pt/TiO2 Catalysts and Their Relationship to Catalytic Activity. Nano Lett. 2022, 22, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Boffetta, P.; Soutar, A.; Cherrie, J.W.; Granath, F.; Andersen, A.; Anttila, A.; Blettner, M.; Gaborieau, V.; Klug, S.J.; Langard, S.; et al. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 2004, 15, 697–706. [Google Scholar] [CrossRef]
- Fryzek, J.P.; Chadda, B.; Marano, D.; White, K.; Schweitzer, S.; McLaughlin, J.K.; Blot, W.J. A cohort mortality study among titanium dioxide manufacturing workers in the United States. J. Occup. Environ. Med. 2003, 45, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Cervantes, O.R.; Pérez-Larios, A.; Romero Arellano, V.H.; Sulbaran-Rangel, B.; Guzmán González, C.A. Effects in Band Gap for Photocatalysis in TiO2 Support by Adding Gold and Ruthenium. Processes 2020, 8, 1032. [Google Scholar] [CrossRef]
- Ishihara Sangyou Kaisha, Ltd. Safety Data Sheet of MPT-427; Version: 2.0.; Ishihara Sangyou Kaisha, Ltd.: Osaka, Japan, 2021. [Google Scholar]
- Photopaque (R) Visible Light Activation Type MPT-623 (Powder) STS-427 (Water Dispesion). Available online: https://www.iskweb.co.jp/eng/products/pdf/MPT-623.pdf (accessed on 22 June 2023).
- Kominami, H.; Ohtani, B. Preparation of Photocatalysts. Denki Kagaku Oyobi Kogyo Butsuri Kagaku 1998, 66, 996–1003. [Google Scholar]
- JIS R 1752:2020; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Antibacterial Activity of Photocatalytic Materials and Efficacy under Indoor Lighting Environment. Japanese Standards Association: Tokyo, Japan, 2020.
- Ukleja-Sokołowska, N.; Gawrońska-Ukleja, E.; Żbikowska-Gotz, M.; Socha, E.; Lis, K.; Sokołowski, Ł.; Kuźmiński, A.; Bartuzi, Z. Analysis of feline and canine allergen components in patients sensitized to pets. Allergy Asthma Clin. Immunol. 2016, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Van Ree, R.; van Leeuwen, W.A.; Bulder, I.; Bond, J.; Aalberse, R.C. Purified natural and recombinant Fel d 1 and cat albumin in in vitro diagnostics for cat allergy. J. Allergy Clin. Immunol. 1999, 104, 1223–1230. [Google Scholar] [CrossRef]
- Polovic, N.; Wadén, K.; Binnmyr, J.; Hamsten, C.; Grönneberg, R.; Palmberg, C.; Milcic-Matic, N.; Bergman, T.; Grönlund, H.; van Hage, M. Dog saliva—An important source of dog allergens. Allergy 2013, 68, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, L.; Lundgren, T.; Everberg, H.; Larsson, H.; Lidholm, J. Prostatic kallikrein: A new major dog allergen. J. Allergy Clin. Immunol. 2009, 123, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.M.; Karsh, J.; Marcelo, J.; Boeckh, D.; Stepner, N.; Santone, B.; Yang, J.; Yang, W.H. Fel d 1 and Fel d 4 levels in cat fur, saliva, and urine. J. Allergy Clin. Immunol. 2018, 142, 1990–1992.e3. [Google Scholar] [CrossRef]
- Bienboire-Frosini, C.; Lebrun, R.; Vervloet, D.; Pageat, P.; Ronin, C. Distribution of core fragments from the major cat allergen Fel d 1 is maintained among the main anatomical sites of production. Int. Arch. Allergy Immunol. 2010, 152, 197–206. [Google Scholar] [CrossRef]
- Kaiser, L.; Velickovic, T.C.; Badia-Martinez, D.; Adedoyin, J.; Thunberg, S.; Hallén, D.; Berndt, K.; Grönlund, H.; Gafvelin, G.; van Hage, M.; et al. Structural characterization of the tetrameric form of the major cat allergen Fel d 1. J. Mol. Biol. 2007, 370, 714–727. [Google Scholar] [CrossRef]
- Duffort, O.; Carreira, J.; Lombardero, M. Monoclonal antibodies against Fel d I and other clinically relevant cat allergens. Immunol. Lett. 1988, 17, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, J.P.; Griffith, I.J.; Brauer, A.W.; Rogers, B.L.; Bond, J.F.; Chapman, M.D.; Kuo, M.C. Amino acid sequence of Fel dI, the major allergen of the domestic cat: Protein sequence analysis and cDNA cloning. Proc. Natl. Acad. Sci. USA 1991, 88, 9690–9694. [Google Scholar] [CrossRef] [PubMed]
- Griffith, I.J.; Craig, S.; Pollock, J.; Yu, X.B.; Morgenstern, J.P.; Rogers, B.L. Expression and genomic structure of the genes encoding FdI, the major allergen from the domestic cat. Gene 1992, 113, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceram. Int. 2019, 45, 9618–9624. [Google Scholar] [CrossRef]
- Mills, A.; Lepre, A.; Elliott, N.; Bhopal, S.; Parkin, I.P.; O’Neill, S.A. Characterisation of the photocatalyst Pilkington Activ™: A reference film photocatalyst? J. Photochem. Photobiol. A Chem. 2003, 160, 213–224. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuura, R.; Kawamura, A.; Ota, R.; Fukushima, T.; Fujimoto, K.; Kozaki, M.; Yamashiro, M.; Somei, J.; Matsumoto, Y.; Aida, Y. TiO2-Photocatalyst-Induced Degradation of Dog and Cat Allergens under Wet and Dry Conditions Causes a Loss in Their Allergenicity. Toxics 2023, 11, 718. https://doi.org/10.3390/toxics11080718
Matsuura R, Kawamura A, Ota R, Fukushima T, Fujimoto K, Kozaki M, Yamashiro M, Somei J, Matsumoto Y, Aida Y. TiO2-Photocatalyst-Induced Degradation of Dog and Cat Allergens under Wet and Dry Conditions Causes a Loss in Their Allergenicity. Toxics. 2023; 11(8):718. https://doi.org/10.3390/toxics11080718
Chicago/Turabian StyleMatsuura, Ryosuke, Arisa Kawamura, Rizo Ota, Takashi Fukushima, Kazuhiro Fujimoto, Masato Kozaki, Misaki Yamashiro, Junichi Somei, Yasunobu Matsumoto, and Yoko Aida. 2023. "TiO2-Photocatalyst-Induced Degradation of Dog and Cat Allergens under Wet and Dry Conditions Causes a Loss in Their Allergenicity" Toxics 11, no. 8: 718. https://doi.org/10.3390/toxics11080718
APA StyleMatsuura, R., Kawamura, A., Ota, R., Fukushima, T., Fujimoto, K., Kozaki, M., Yamashiro, M., Somei, J., Matsumoto, Y., & Aida, Y. (2023). TiO2-Photocatalyst-Induced Degradation of Dog and Cat Allergens under Wet and Dry Conditions Causes a Loss in Their Allergenicity. Toxics, 11(8), 718. https://doi.org/10.3390/toxics11080718