Modeling the Greenhouse Gases Data Series in Europe during 1990–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Series
2.2. Methodology
- Find the number of clusters for performing the clustering algorithms.
- Perform the k-means and hierarchical clustering for grouping the countries. Choose the best clustering using the criteria explained above.
- Select the cluster formed by the highest number of countries, as denoted by Clmax. If many clusters have the same largest number of elements, Clmax is that with the highest separation distance from the others and the lowest between the internal members [41].
- Build the Regional series by averaging the corresponding values of the series in Clmax. Thus, the value for the year j is the average of the values recorded in the year j in the countries from Clmax.
- Compute the modeling errors as differences between the recorded values and those of the Regional series.
- Determine the goodness-of-fit of the Regional series by computing the mean absolute percentage error (MAPE).
3. Results and Discussion
3.1. Building the Regional GHGs Series
3.2. Building the Representative Temporal Series
3.3. General Comments
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maji, S.; Ahmed, A.; Ghosh, S. Source Apportionment of Greenhouse Gases in the Atmosphere. In Greenhouse Gases: Sources, Sinks and Mitigation; Sonwani, S., Saxena, P., Eds.; Springer: Singapore, 2022; pp. 9–37. [Google Scholar] [CrossRef]
- Naiyer, S.; Abbas, S.S. Effect of Greenhouse Gases on Human Health. In Greenhouse Gases: Sources, Sinks and Mitigation; Sonwani, S., Saxena, P., Eds.; Springer: Singapore, 2022; pp. 85–106. [Google Scholar] [CrossRef]
- Saini, M.; Saini, S.K. Identification of Major Sinks of Greenhouse Gases. In Greenhouse Gases: Sources, Sinks and Mitigation; Sonwani, S., Saxena, P., Eds.; Springer: Singapore, 2022; pp. 39–62. [Google Scholar] [CrossRef]
- Greenhouse Gas Emissions. Sources of Greenhouse Gas Emissions. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 7 July 2023).
- Bărbulescu, A.; Postolache, F. New approaches for modeling the regional pollution in Europe. Sci. Total Environ. 2021, 753, 141993. [Google Scholar] [CrossRef] [PubMed]
- Greenhouse Gas Emissions. Inventory of U.S. Greenhouse Gas Emissions and Sinks. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 7 July 2023).
- Hadipoor, M.; Keivanimehr, F.; Baghban, A.; Reza Ganjali, M.; Habibzadeh, S. Chapter 24—Carbon dioxide as a main source of air pollution: Prospective and current trends to control. In Sorbents Materials for Controlling Environmental Pollution; Núñez-Delgado, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 623–688. [Google Scholar] [CrossRef]
- Allen, M.; Babiker, M.; Chen, Y.; de Coninck, H.; Connors, S.; van Diemen, R.; Zickfeld, K. IPCC, 2018: Summary for Policymakers. In Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/sr15/chapter/spm/ (accessed on 23 July 2023).
- Meyer, L.; Brinkman, S.; van Kesteren, L.; Leprince-Ringuet, N.; van Boxmeer, F. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Guais, A.; Brand, G.; Jacquot, L.; Karrer, M.; Dukan, S.; Grevillot, G.; Molina, T.J.; Bonte, J.; Regnier, M.; Schwartz, L. Toxicity of carbon dioxide: A review. Chem. Res. Toxicol. 2011, 24, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Hag, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Badner, N.H.; Scott Beattie, W.; Freeman, D.; Spence, J.D. Nitrous oxide induced increased homocysteine concentrations are associated with increased postoperative myocardial ischemia in patients undergoing carotid endarterectomy. Anesth. Analg. 2000, 9, 1073–1079. [Google Scholar] [CrossRef]
- Moudgil, G.C.; Gordon, J.; Forrest, J.B. Comparative effects of volatile anaesthetic agents and nitrous oxide on human leucocyte chemotaxis in vitro. Can. Anaest. Soc. J. 1984, 31, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Lopez, A.D. (Eds.) The global burden of disease: A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: Summary. In Global Burden of Disease and Injury Series; The Harvard School of Public Health: Boston, MA, USA, 1990; Volume 1. [Google Scholar]
- The Paris Agreement. United Nations. Framework Convention on Climate Change (UNFCCC). 2015. Available online: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf (accessed on 15 August 2023).
- Committee on Climate Change. Net Zero—The UK’s Contribution to Stopping Global Warming, Ch 1, 38–53. 2019. Available online: https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-contribution-to-stopping-global-warming.pdf (accessed on 18 August 2023).
- Timperley, J. Carbon Brief. The Carbon Brief Profile: India. 2019. Available online: https://www.carbonbrief.org/the-carbon-brief-profile-india (accessed on 18 August 2023).
- European Environment Agency. Climate Change Mitigation: Reducing Emissions. Available online: https://www.eea.europa.eu/en/topics/in-depth/climate-change-mitigation-reducing-emissions (accessed on 15 June 2023).
- Pan, L.; Yao, E.; Yang, Y. Impact analysis of traffic-related air pollution based on real-time traffic and basic meteorological information. J. Environ. Manag. 2016, 183, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Bărbulescu, A.; Barbeş, L. Modeling the carbon monoxide dissipation in Timisoara, Romania. J. Environ. Manag. 2017, 204, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Bărbulescu, A.; Nazzal, Y.; Howari, F. Statistical analysis and estimation of the regional trend of aerosol size over the Arabian Gulf Region during 2002–2016. Sci. Rep. 2018, 8, 9571. [Google Scholar] [CrossRef] [PubMed]
- Trofimenko, Y.V.; Komkov, V.I.; Donchenko, V.V.; Potapchenko, T.D. Model for the assessment greenhouse gas emissions from road transport. Period. Eng. Nat. Sci. 2019, 7, 465–473. Available online: http://pen.ius.edu.ba (accessed on 20 August 2023). [CrossRef]
- Alhindawi, R.; Abu Nahleh, Y.; Kumar, A.; Shiwakoti, N. Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model. Sustainability 2020, 12, 9152. [Google Scholar] [CrossRef]
- Güzel, T.D.; Alp, K. Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050. Atmos. Pollut. Res. 2022, 11, 2190–2201. [Google Scholar] [CrossRef]
- TRASfer. Modelling GHG Emissions of Road Transport in China—New Technical Paper Published. Available online: http://www.transferproject.org/modelling-ghg-emissions-of-road-transport-in-china/ (accessed on 17 August 2023).
- EEA Greenhouse Gases—Data Viewer. Available online: https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer (accessed on 15 June 2023).
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Daburra, I. K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks. Available online: https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a (accessed on 18 June 2023).
- Hierarchical Clustering in R. Available online: https://www.datacamp.com/tutorial/hierarchical-clustering-R (accessed on 18 June 2023).
- Rousseeuw, P. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- K-Mean: Getting the Optimal Number of Clusters. Available online: https://www.analyticsvidhya.com/blog/2021/05/k-mean-getting-the-optimal-number-of-clusters/ (accessed on 16 June 2023).
- Madsen, B.E.; Browning, S.R. A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic. PLoS Genet. 2009, 5, e1000384. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. Royal Stat. Soc. B 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Löhr, T. K-Means Clustering and the Gap-Statistics. Available online: https://towardsdatascience.com/k-means-clustering-and-the-gap-statistics-4c5d414acd29 (accessed on 16 June 2023).
- Sokal, R.R.; Rohlf, F.J. The comparison of dendrograms by objective methods. Taxon 1962, 11, 33–40. [Google Scholar] [CrossRef]
- Farris, J.S. On the cophenetic correlation coefficient. System. Zool. 1969, 18, 279–285. [Google Scholar] [CrossRef]
- Myrphy, P. Clustering Data in R. Available online: https://rstudio-pubs-static.s3.amazonaws.com/599072_93cf94954aa64fc7a4b99ca524e5371c.html (accessed on 30 June 2023).
- Bărbulescu, A. On the Regional Temperature Series Evolution in the South-Eastern Part of Romania. Appl. Sci. 2023, 13, 3904. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Postolache, F.; Dumitriu, C.Ș. Estimating the precipitation amount at regional scale using a new tool, Climate Analyzer. Hidrology 2021, 8, 125. [Google Scholar] [CrossRef]
- Soetewey, A. Stats and R. The Complete Guide to Clustering Analysis: K-Means and Hierarchical Clustering by Hand and in R. Available online: https://statsandr.com/blog/clustering-analysis-k-means-and-hierarchical-clustering-by-hand-and-in-r/ (accessed on 20 June 2022).
Country | AT(1) | BE(2) | BG(3) | HR(4) | CY(5) | CZ(6) | DK(7) | EE(8) | FI(9) | FR(10) |
p-val | 0.002 (+) | 0.000 (-) | 0.002 (-) | 0.116 | 0.000 (+) | 0.000 (-) | 0.000 (-) | 0.615 | 1.000 | 0.000 (-) |
Country | DE(11) | EL(12) | HU(13) | IS(14) | IE(15) | IT(16) | LV(17) | LT(18) | LU(19) | MT(20) |
p-val | 0.000 (-) | 0.095 | 0.000 (-) | 0.000 (+) | 0.446 | 0.002 (-) | 0.000 (+) | 0.001 (-) | 0.039 (-) | 0.249 |
Country | NL(21) | NO(22) | PL(23) | PT(24) | RO(25) | SK(26) | SI(27) | ES(28) | SE(29) | CH(30) |
p-val | 0.000 (-) | 0.012 (-) | 0.000 (-) | 0.961 | 0.000 (-) | 0.000 (-) | 0.168 | 0.961 | 0.000 (-) | 0.001 (-) |
Country | AT(1) | BE(2) | BG(3) | HR(4) | CY(5) | CZ(6) | DK(7) | EE(8) | FI(9) | FR(10) |
MAPE | 18.636 | 57.957 | 14.417 | 198.795 | 612.099 | 59.921 | 18.428 | 237.288 | 28.681 | 88.145 |
Country | DE(11) | EL(12) | HU(13) | IS(14) | IE(15) | IT(16) | LV(17) | LT(18) | LU(19) | MT(20) |
MAPE | 94.240 | 47.278 | 16.517 | 308.665 | 20.147 | 88.265 | 3454.276 | 265.811 | 434.350 | 2008.650 |
Country | NL(21) | NO(22) | PL(23) | PT(24) | RO(25) | SK(26) | SI(27) | ES(28) | SE(29) | CH(30) |
MAPE | 73.837 | 59.746 | 85.186 | 17.727 | 45.936 | 38.440 | 311.552 | 81.317 | 309.084 | 11.831 |
Year | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
p-val | 0.695 | 0.643 | 0.669 | 0.7219 | 0.695 | 0.775 | 0.748 | 0.775 | 0.721 | 0.695 | 0.803 |
year | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
p-val | 0.831 | 0.831 | 0.775 | 0.775 | 0.775 | 0.643 | 0.568 | 0.593 | 0.544 | 0.669 | 0.498 |
year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
p-val | 0.498 | 0.498 | 0.392 | 0.412 | 0.412 | 0.521 | 0.593 | 0.454 | 0.412 | 0.373 |
Year | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
MAPE 1 | 23.274 | 23.713 | 19.072 | 16.316 | 15.960 | 14.861 | 16.195 | 18.674 | 21.479 | 8.117 | 10.633 |
MAPE 2 | 26.432 | 25.038 | 23.194 | 27.968 | 31.817 | 29.199 | 29.481 | 43.373 | 60.698 | 27.782 | 32.982 |
year | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
MAPE 1 | 8.761 | 108.174 | 16.940 | 4.134 | 6.244 | 6.053 | 8.019 | 7.612 | 16.825 | 12.516 | 17.927 |
MAPE 2 | 33.274 | 312.412 | 59.004 | 21.449 | 19.340 | 20.283 | 19.235 | 18.006 | 13.577 | 11.532 | 9.208 |
year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | average |
MAPE 1 | 23.585 | 25.538 | 30.353 | 28.333 | 26.579 | 21.610 | 21.686 | 23.361 | 40.619 | 32.957 | 21.129 |
MAPE 2 | 9.735 | 7.143 | 7.873 | 5.442 | 5.310 | 8.093 | 7.738 | 7.081 | 15.797 | 11.657 | 30.661 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A. Modeling the Greenhouse Gases Data Series in Europe during 1990–2021. Toxics 2023, 11, 726. https://doi.org/10.3390/toxics11090726
Bărbulescu A. Modeling the Greenhouse Gases Data Series in Europe during 1990–2021. Toxics. 2023; 11(9):726. https://doi.org/10.3390/toxics11090726
Chicago/Turabian StyleBărbulescu, Alina. 2023. "Modeling the Greenhouse Gases Data Series in Europe during 1990–2021" Toxics 11, no. 9: 726. https://doi.org/10.3390/toxics11090726
APA StyleBărbulescu, A. (2023). Modeling the Greenhouse Gases Data Series in Europe during 1990–2021. Toxics, 11(9), 726. https://doi.org/10.3390/toxics11090726