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Abstract: Nowadays, climate change and atmospheric pollution are two of humanity's most signifi-
cant challenges. Greenhouse gases (GHGs) are responsible for climate change, and they create effects
that are mostly irreversible. Therefore, monitoring and reducing such emissions are compulsory
for the preservation of the environment for future generations. The European Union took action
in this direction. The article presents the evolution of the total GHGs trend, from 1990 to 2021, in
the EU countries and their associates. Trend analysis and grouping of the countries using different
clustering techniques are performed. The analysis of the existence of greenhouse gases (GHGs) series’
trend, in 30 countries from Europe, showed that the GHG emissions decreased from 1990 to 2021 in
only 17 countries. The annual series, built using the data reported by each country each year, does
not present a specific trend. After grouping the countries in clusters by k-means and hierarchical
clustering, the representative series for the annual recorded values in the 30 studied countries, called
Regional series (RegS), is built using series selected from the cluster with the highest number of
elements. The same algorithm provides the Representative Temporal series (TempS), which selects
specific years after clustering the annual GHG series.

Keywords: greenhouse gases (GHGs); clustering; regional series; representative temporal series

1. Introduction

The climate change impact on the environment, due to the continuous growth of
greenhouse gas (GHG) emissions that produce global warming, has become one of the
major concerns at the international level. With the increasing temperature trend, extreme
weather events have become more frequent in many world regions [1].

GHGs are essential components for maintaining the conditions for survival, as well
as producing an atmospheric layer that protects against the direct UV rays’ impact on
the Earth [2]. At the same time, they are the highest contributors to global temperature
augmentation. Since industrialization, an enormous quantity of GHGs have been produced
by anthropogenic activities. For example, in 2018, GHG emissions were 41% higher than in
1990 [3].

The principal anthropic sources are transportation (especially from fossil fuels burn-
ing), electricity production, agriculture, land use, and forestry [4,5]. The U.S. Inventory [6]
indicates that, in 2021, in the USA, the GHG volume exceeded 6340.2 mil mt of CO2 equiva-
lents, which 6% higher than in 2020 but 17% lower than in 2005. The study by Hadipoor
et al. [7] found that CO2 is one of the primary sources of pollution, indicating the correct
trend to control the emissions to reduce the amount of gases released in the air.

According to the Intergovernmental Panel on Climate Change (IPCC) special report
on climate change, the global temperature has been augmented by 0.8–1.2 ◦C with respect
to the pre-industrial level. It is predicted to rise by 1.5 ◦C by 2030 and about 3 ◦C by 2100 if
the emissions rate is the same [8].

Some GHG emissions are removed by natural sinks that are globally present. Still, the
others (CO2, N2O, CFCs, HCFCs, PFCs, SF6) can last in the atmosphere for several hundred
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years, contributing to global temperature increase [9]. Therefore, the GHG emissions must
be controlled, and conditions to stimulate their removal through natural sinks (or artificially
designed sinks) must be created [3].

According to Naiyer and Abbas [2], although the effect of constant direct exposure of
the human body to GHGs appears negligible, their increasing concentration over time is the
main cause of different human illnesses. The most affected systems of the human organism
are the respiratory system (provoking respiratory acidosis) [10,11], the cardiovascular
system [12], the immune system [13,14], the digestive system, and CNS (affecting the brain
cells, which may lead to memory loss) [14]. Measuring the impact of GHGs on human
health and its quantification are aspects that must be clearly established at the global
level [2].

In the context of climate change, the Paris Agreement in 2015 [15] set the goal of
limiting the temperature increase, at the global scale, under 2 ◦C by 2050–2100. The Euro-
pean Union (EU) aims to achieve net-zero emissions by 2050. Therefore, many countries
developed renewable energy sources for producing energy from non-pollutant sources. The
United Kingdom is working to enhance the removal potential of natural sinks [16]. India
(the world’s third largest contributor of GHGs) aims to reduce GHG emissions by 33–35%
by 2030, compared to 2005. It also implements measures to generate 40% of electricity from
renewable or nuclear sources by 2030 [17]. In the effort to reduce the effects of atmospheric
pollution on the climate, in 2020, the European Union achieved a more than 30% emission
decrease with respect to the levels from 1990 [18].

Controlling and monitoring the emission sources, understanding the processes pro-
duced in the atmosphere by gases’ reactions, and forecasting the effects are essential before
taking measures for GHG reduction. Atmospheric conditions and hydro-meteorological
variables [19–21] influence the gas dissipation and the apparition of secondary products.

Given the importance of the above topic and international concerns, different articles
proposed models, especially for estimating GHG emissions from transportation [22–25].
Alhindawi et al. [23] considered the ratio of vehicle–kilometer, by mode, to the number of
transportation vehicles for six transportation modes. They proposed multivariate regression
and double exponential smoothing models to forecast GHG emissions. Güzel and Alp [24]
utilized the Integrated MARKAL-EFOM System (TIMES) and an economic model for the
same goal in three scenarios. The CRTEM/HBEFA-China can be employed to compute
future emission scenarios; a software package integrated into CRTEM/HBEFA-China was
also developed [25].

In the global context, there is interest in maintaining a decreasing GHG emission
trend in Europe and determining the countries that should be sustained to reach the
imposed levels. The present study analyzes the total GHGs trend in the UE_27 and
some associated members (Switzerland, Norway, and Iceland) from 1990 to 2021. It also
groups the series into different clusters using the k-means algorithm and hierarchical
clustering. Additionally, two types of series that describe the evolution of GHGs in the EU
are proposed. The first is the Regional series (RegS), which is computed using series from
selected countries. The second one is the Representative Temporal series (TempS), which is
built by selecting specific years after clustering the annual GHG series and applying an
original algorithm [5,15].

2. Materials and Methods
2.1. Data Series

The studied data series consists of the total GHG net emissions (in mt CO2 equivalent),
reported from 1990 to 2021, by the EU-27 countries and three associated members (Switzer-
land, Norway, and Iceland) to the United Nations Framework Convention on Climate
Change. They are retrieved from [26]. Figure 1 presents the studied series, in logarithmic
scale, for image clarity.
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Figure 1. The total CHG series (mt equivalent CO2), on a logarithmic scale, in 30 European countries
from 1990 to 2021.

2.2. Methodology

The first step was to test the null hypothesis that there is no monotonic trend against
the hypothesis and that such a trend exists for all series. The Mann–Kendall test (MK) [27]
was utilized, followed by Sen’s slope procedure [28] when the MK test rejected the null
hypothesis. In such a case, a nonparametric linear slope is determined. The procedure is
applied for the series registered in each country, the total series (computed by summing
up the values recorded in all the countries), and each annual series formed by the values
recorded in a specific year in all countries.

In the second stage, the series are grouped in clusters, based on the k-means algo-
rithm [29] and hierarchical clustering [30], to determine the countries with similar pollution
levels. The silhouette [31], the elbow–knee method [32,33], and the gap statistics [34,35]
were utilized to select the optimal number of clusters, k. The ratio between clusters' sum
of squares and the total sum of squares (BSS/TSS) is computed to determine the best
clustering in the k-means algorithm. The higher the ratio, the better the clustering. Var-
ious methodologies are employed to choose k, so the results of the three algorithms are
sometimes different. Therefore, in the present study, we explore the various situations.

Hierarchical clustering provides a dendrogram, showing the hierarchy of the series,
which can be assessed and built using the matrix of the distances (Euclidean, Hamming,
Manhattan, Cambera, Jaccard, etc.) between the elements (observations, series) that will
be grouped. Based on the distance matrix, the similarities between the elements can be
assessed by the “average”, “complete”, “median”, “ward.D”, and “ward.D2” methods.
Here, we employed the first and last methods. In the average measure, the mean distance
between the observations in each group is weighted by the number of observations in each
cluster. In the “ward.D2”, the sum of squared errors is minimized, with the clusters being
combined based on smaller distances between groups.

To choose between the “average” and “ward.D2”, the cophenetic correlation coeffi-
cient [36,37] was utilized. Values above 0.9 show a very good performance, the coefficients
in the interval 0.8–0.9 indicate a good performance, and values under 0.8 prove a poor clus-
tering quality. Bootstrapping (resampling from the data set and rerunning the algorithm) is
done, and the average Jaccard measures are computed to check if the clustering algorithm
provides a good representation of the groups in the studied data set. If they are greater
than 0.85 (in the interval 0.6–0.85), the cluster is highly stable (stable). Values less than
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0.6 indicate the cluster’s instability [38]. The advantages/disadvantages of k-means and
hierarchical clustering are discussed in [39].

In the last stage, the RegS is built using the series recorded in each country (30 series)
by the following procedure [15,40].

1. Find the number of clusters for performing the clustering algorithms.
2. Perform the k-means and hierarchical clustering for grouping the countries. Choose

the best clustering using the criteria explained above.
3. Select the cluster formed by the highest number of countries, as denoted by Clmax. If

many clusters have the same largest number of elements, Clmax is that with the highest
separation distance from the others and the lowest between the internal members [41].

4. Build the Regional series by averaging the corresponding values of the series in Clmax.
Thus, the value for the year j is the average of the values recorded in the year j in the
countries from Clmax.

5. Compute the modeling errors as differences between the recorded values and those
of the Regional series.

6. Determine the goodness-of-fit of the Regional series by computing the mean absolute
percentage error (MAPE).

The same procedure is applied to the 32 annual series to determine the TempS, with
each containing 30 values (reported by a different country during a specific year.

The flowchart of the work is presented in Figure 2.
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The R 4.3.2 software (https://www.r-project.org/, accessed on 21 July 2023) was
utilized to conduct the study.

3. Results and Discussion

In the following, we shall use the abbreviations of the countries names, according
to the international conventions, as follows: Austria (AT), Belgium (BE), Bulgaria (BG),
Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland
(FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Ireland (IE), Island (IS), Italy
(IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Netherland (NL), Norway
(NO), Poland (PL), Portugal (PT), Romania (RO), Slovakia (SK), Slovenia (SI), Spain (ES),
Sweden (SE), and Switzerland (CH).

Analyzing the total annual GHGs series recorded for the EU-27 (obtained by summing
up the values recorded in all the EU countries during 1990–2021), two subperiods are
determined—before 2002, with a logarithmic trend with the equation:

yt = −2 × 108ln(t) + 5 × 109 (R2 = 0.850) (1)

and after 2003, with a linear trend with the equation:

yt = −6 × 107t + 4 × 109 (R2 = 0.915), (2)

where t is the time, and yt is the value of the series at the moment t.
Overall, the trend of the total GHGs series during 1990–2021 is decreasing.

3.1. Building the Regional GHGs Series

Table 1 contains the p-values associated with the MK test for each country’s total GHGs
series recorded from 1990 to 2021. When the p-value is less than 0.05 (the significance level),
the p-value is followed (in the brackets) by the sign plus or minus if the slope determined by
Sen's method is positive or negative, respectively. Out of 30 countries, the null hypothesis
could not be rejected for 9. A negative trend has been determined for 17 series, whereas the
estimated total GHGs series trend is positive for only 4 countries (AT, CY, IS, and LV).

Table 1. The p-values in the MK test for the total GHGs per country.

Country AT(1) BE(2) BG(3) HR(4) CY(5) CZ(6) DK(7) EE(8) FI(9) FR(10)

p-val 0.002 (+) 0.000 (-) 0.002 (-) 0.116 0.000 (+) 0.000 (-) 0.000 (-) 0.615 1.000 0.000 (-)

Country DE(11) EL(12) HU(13) IS(14) IE(15) IT(16) LV(17) LT(18) LU(19) MT(20)

p-val 0.000 (-) 0.095 0.000 (-) 0.000 (+) 0.446 0.002 (-) 0.000 (+) 0.001 (-) 0.039 (-) 0.249

Country NL(21) NO(22) PL(23) PT(24) RO(25) SK(26) SI(27) ES(28) SE(29) CH(30)

p-val 0.000 (-) 0.012 (-) 0.000 (-) 0.961 0.000 (-) 0.000 (-) 0.168 0.961 0.000 (-) 0.001 (-)

The optimal number of clusters used in the k-means algorithm was determined to be
two by the silhouette method, three by the elbow–knee method (Figure 3a,b), and one by
the gap statistics. It is known that, when some clusters are close to each other and another
one is far from them, the gap statistics can underestimate the value of k [35]. Therefore, the
option of a single cluster was removed, and the analysis was performed with two and three
clusters. Finally, the best solution was chosen.

https://www.r-project.org/
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Figure 3. The optimal number of clusters determined for the total GHG series, recorded in 30 countries
by the silhouette method (a) and the elbow–knee method (b). The clusters of the countries are
determined by k-means with k = 2 (c) and k = 3 (d).

The clusters that result when applying the k-means algorithm with k = 2 and k = 3
are presented in Figure 3c,d. When k = 2, the within-cluster sum of squares is 206.439 and
49.079, respectively, with the ratio BSS/TSS = 72.5 %. When k = 3, the within-cluster sum of
squares, by cluster, is 13.321, 0.000, and 49.079, respectively, with the ratio BSS/TSS = 93.8 %.
Figure 3d shows a better separation of the clusters (lower values of the within sum of
squares, by cluster, and a significantly higher BSS/TSS ratio). To confirm the results,
hierarchical clustering was applied for both values, with “ward.D2” and “average” methods.
The highest cophenetic coefficient (0.956) was obtained for k = 3 clusters and the “average”
method, indicating good clustering. After bootstrapping, the obtained average Jaccard
values and corresponding instabilities were 0.632 (0.368), 0.742 (0.252), and 0.964 (0.000) for
clusters 1, 2, and 3, respectively, indicating the clusters’ stability.

The k-means and hierarchical clustering provided the same groups of countries based
on the total emitted GHGs.

The phylogenic dendrogram for k = 3 is presented in Figure 4. According to Figure 4,
France, Italy, Poland, and Spain belong to the first group, Germany belongs to the second
group, and the rest of the countries are in the third cluster. Germany is the county with the
highest emissions.
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In the countries from the second group, the recorded emissions are above 228 mil
mt and below 565.4 mil mt CO2 equivalent. In the countries from the third group, the
maximum recorded value of GHGs was 228,533,250 mt CO2 equivalent.

Given the above results, the regional series was built using the series from the third
cluster. The MAPE (Table 2) goodness-of-fit indicator is a non-dimensional indicator that
gives a better image of the fitting quality than the dimensional indicators and permit
comparisons between different data series. The lower the MAPE is, the better the fitting is.
The fitting results are good for most countries. The series in the first and second clusters
are well estimated. Very high values of MAPE are recorded for some countries belonging
to the last group, which have very low emissions.

Table 2. MAPE (%) in modeling the Regional Series GHGs series.

Country AT(1) BE(2) BG(3) HR(4) CY(5) CZ(6) DK(7) EE(8) FI(9) FR(10)

MAPE 18.636 57.957 14.417 198.795 612.099 59.921 18.428 237.288 28.681 88.145

Country DE(11) EL(12) HU(13) IS(14) IE(15) IT(16) LV(17) LT(18) LU(19) MT(20)

MAPE 94.240 47.278 16.517 308.665 20.147 88.265 3454.276 265.811 434.350 2008.650

Country NL(21) NO(22) PL(23) PT(24) RO(25) SK(26) SI(27) ES(28) SE(29) CH(30)

MAPE 73.837 59.746 85.186 17.727 45.936 38.440 311.552 81.317 309.084 11.831

3.2. Building the Representative Temporal Series

According to Table 3, which contains the p-values in the MK test for the annual total
GHG series, the null hypothesis could not be rejected for all these series, so one cannot
assume the existence of a monotonic trend of annual series.
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Table 3. The p-values in the MK test for the annual total GHGs series.

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

p-val 0.695 0.643 0.669 0.7219 0.695 0.775 0.748 0.775 0.721 0.695 0.803

year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

p-val 0.831 0.831 0.775 0.775 0.775 0.643 0.568 0.593 0.544 0.669 0.498

year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

p-val 0.498 0.498 0.392 0.412 0.412 0.521 0.593 0.454 0.412 0.373

The optimal number of clusters for the annual total GHGs series is either
three—determined by the silhouette and elbow–knee methods—or five—detected by the
gap statistics (Figure 5a). Therefore, the analysis was done for k = 3 and k = 5. The clusters
obtained by the k-means algorithm for the annual GHGs series are presented in Figure 5b,c.
The years are from 1 (1990) to 32 (2021). BSS/TSS is 59.9% when k = 3 and 76.3% when
k = 5. When k = 3, 1990–1997 (1–8 in Figure 5b) belong to the first cluster, 1998–2008 and
2010 are in the second, and 2009 and 2011–2021 belong to the third.
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The within-cluster sum of squares by cluster is, respectively, 119.414, 106.360, and
147.550 (and the BSS/TSS = 59.9%). When k = 5 (Figure 5c), the clusters are formed by
the years 1990 and 1991 (cluster 3), 1992–1998 (cluster 2), 1999–2008 (cluster 3), 2009–2013
(cluster 4), 2014–2021 (cluster 5). The cophenetic coefficient was 0.8119 (0.7163) when using
the “average” (“ward.D2”) method in the hierarchical clustering. Therefore, the first one
was employed to build the clusters.

The dendrograms (Figure 6) do not confirm the clustering by the k-means. In both
dendrograms, the first years form a separate cluster. Still, for k = 3, the second cluster in the
dendrogram includes the years from the second cluster in the k-means and 2010. The first
cluster, except 1990, and the third one in the k-means are merged to obtain the third cluster
in Figure 6a.
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Figure 6. Dendrogram of the annual total GHGs series and clusters determined by hierarchical
clustering with (a) k = 3 and (b) k = 5. The years are numbered from 1 (1990) to 32 (2021).

For k = 5, 1991 (year 2 from cluster 3 in Figure 5c) forms a single cluster in the
hierarchical clustering (Figure 6b, the left-hand-side cluster), and 1991 was included in the
cluster containing 1992–1997 (the right-hand cluster in Figure 6b). The year 1998 (year 9
from cluster 2 in Figure 5c) was moved to the fourth cluster (from left to right in Figure 6b)
together with 1999–2008.

The fourth (and fifth) cluster in k-means coincides with the third (and second) in
Figure 6b. Thus, there are only a few differences between the clusters provided by the
k-means and hierarchical clustering when k = 5. After bootstrapping, the average Jaccard
values and corresponding instabilities in the k-means clustering with k = 3 are 0.824 (0.070),
0.847 (0.166), and 0.988 (0.020), respectively, indicating high stability. For k = 5, lower
stabilities were obtained. Therefore, the best clustering of the annual total of GHG series
was obtained with k = 3 (Figure 6a). Therefore, the series that will participate in building
TempS belongs to the cluster with the highest ratio of BSS/TSS in the k-means algorithm:
the third cluster.

Table 4 provides the MAPE in this case (MAPE 1) and compares them with those
obtained when the representative temporal series would be computed using the elements
from the second cluster (MAPE2). The values of MAPE1 vary between 4.134 and 40.619 for
all years but 2012. MAPE2’s variation interval is 5.310–60.698, except for 2012 when it is
312.412 because of the very low value recorded in Latvia (109.406 mt CO2 equivalent). The
average MAPE is significantly lower (21.129 compared to 30.661) when building the TempS
with the elements in the third cluster.
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Table 4. MAPE (%) in building TempS for the total GHGs series.

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

MAPE 1 23.274 23.713 19.072 16.316 15.960 14.861 16.195 18.674 21.479 8.117 10.633

MAPE 2 26.432 25.038 23.194 27.968 31.817 29.199 29.481 43.373 60.698 27.782 32.982

year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MAPE 1 8.761 108.174 16.940 4.134 6.244 6.053 8.019 7.612 16.825 12.516 17.927

MAPE 2 33.274 312.412 59.004 21.449 19.340 20.283 19.235 18.006 13.577 11.532 9.208

year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 average

MAPE 1 23.585 25.538 30.353 28.333 26.579 21.610 21.686 23.361 40.619 32.957 21.129

MAPE 2 9.735 7.143 7.873 5.442 5.310 8.093 7.738 7.081 15.797 11.657 30.661

3.3. General Comments

The charts of RegS and TempS are shown in Figure 7, together, with the corresponding
MAPEs. None of RegS and TempS are linear. An overall decreasing trend can be empha-
sized for RegS (Figure 7a), with slight subperiods of augmentation followed by periods of
abrupt decrease. The presence of decrement periods is due to the existence of series with an
increasing tendency or periods of variation around a particular value, followed by decay
periods. Still, the decrease in RegS from 1990 to 2021 is significant.
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In the case of RegS, the inhomogeneities in the GHG emissions are reflected in high
MAPE for the lowest producer countries, which might be considered outliers (the picks in
Figure 7c).

The TempS emphasizes the existence of high emissions producers, which are constantly
the same during the study period (DE, FR, IT, SE, PT). When analyzing the MAPE1, remark
that, during 1990–1998 and 2009–2011, the values are in the same range, whereas for 1999,
2001, and 2004–2008, the values are much lower; the highest values correspond to 2012–2021.
These ranges of values are related to the slight variations of the annual series.

The values of MAPE 2 are significantly higher than those of MAPE 1 between 1990
and 2009, reflecting a worse fitting of TempS. After 2012, MAPE 2 becomes lower than
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MAPE 1. Given the high variations in the previous period, the average MAPE1 is about 1.5
lower than the average MAPE 2. These values are influenced by the values of the series
that participate in building TempS. An idea that will be explored in the future is fitting
TempS using subseries that better fit the set of studied series on different subperiods.

A similar study can be performed considering other variables, such as population or
GDP, when the studied series will be formed by the annual GHG emissions in mt CO2
equivalent/per capita and GHG emissions in mt CO2 equivalent/per GDP, respectively.
In the first case, when determining the TempS, the best number of clusters is two, and the
hierarchical clustering confirms the results of the k-means algorithm (Figure 8). The cluster
that participates in building TempS contains the series recorded in the first 19 years (the
first cluster in Figure 8(left)). A detailed study will be presented in another article.
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4. Conclusions

This work analyzed the total GHG series recorded in 30 European countries to em-
phasize the series trend. The RegS and TempS were also built by an original algorithm.
The series that participated in creating these representative series were selected after deter-
mining the cluster with the highest number of elements. When using the optimal value
provided for k (for running the k-means algorithm) by different criteria differs, the separa-
tion and stability criteria are crucial for choosing the correct number of clusters to cluster
the series. Selecting the optimum number of groups (k) is essential for fitting RegS and
TempS since the estimation accuracy is influenced by the series values participating in
the process.

There are notable differences between the GHG emissions in different countries. Ger-
many is the highest pollutant producer, and small countries, such as Malta, are the lowest.
This situation and the increasing tendencies of GHG series in some countries contribute to
the low fitting quality of the recorded series in the mentioned countries.

The data series used are trustworthy. Even if some reporting errors are possible, when
one is interested in the regional or temporal evolution of GHG emissions in Europe, the
trend shown by the presented models is the same (only the accuracy is lower). The main
advantage of the proposed models is that they give an image of GHG's spatial and temporal
evolution over a region. They can be built without restrictions related to the territory or
specific requirements on the series distributions.

In a future study, we intend to extend the analysis to the specific GHGs (CO2, CH4,
N2O, fluorinated gases, etc.) and incorporate other variables, such as GDP and population.
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