Effects of Air Pollution Exposure during Preconception and Pregnancy on Gestational Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Outcome and Covariates
2.3. Exposure Assessment
2.4. Statistical Analyses
3. Results
3.1. Study Population
3.2. Air Pollution Exposure
3.3. Association between Air Pollution and the Risk of GDM
3.4. Stratified Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Jacobs, M.; Zhang, G.C.; Chen, S.; Mullins, B.; Bell, M.; Jin, L.; Guo, Y.M.; Huxley, R.; Pereira, G. The association between ambient air pollution and selected adverse pregnancy outcomes in China: A systematic review. Sci. Total Environ. 2017, 579, 1179–1192. [Google Scholar] [CrossRef]
- Koman, P.D.; Hogan, K.A.; Sampson, N.; Mandell, R.; Coombe, C.M.; Tetteh, M.M.; Hill-Ashford, Y.R.; Wilkins, D.; Zlatnik, M.G.; Loch-Caruso, R.; et al. Examining Joint Effects of Air Pollution Exposure and Social Determinants of Health in Defining “At-Risk” Populations Under the Clean Air Act: Susceptibility of Pregnant Women to Hypertensive Disorders of Pregnancy. World Med. Health Policy 2018, 10, 7–54. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease an Update to the Scientific Statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.J.; Fussell, J.C. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic. Biol. Med. 2017, 110, 345–367. [Google Scholar] [CrossRef]
- Park, S.K. Ambient Air Pollution and Type 2 Diabetes: Do the Metabolic Effects of Air Pollution Start Early in Life? Diabetes 2017, 66, 1755–1757. [Google Scholar] [CrossRef]
- Fung, G.P.G.; Chan, L.M.; Ho, Y.C.; To, W.K.; Chan, H.B.; Lao, T.T. Does gestational diabetes mellitus affect respiratory outcome in late-preterm infants? Early Hum. Dev. 2014, 90, 527–530. [Google Scholar] [CrossRef]
- Bodmer-Roy, S.; Morin, L.; Cousineau, J.; Rey, E. Pregnancy Outcomes in Women with and without Gestational Diabetes Mellitus According to the International Association of the Diabetes and Pregnancy Study Groups Criteria Reply. Obstet. Gynecol. 2013, 121, 377–378. [Google Scholar] [CrossRef]
- Byrn, M.A.; Penckofer, S. Antenatal depression and gestational diabetes: A review of maternal and fetal outcomes. Nurs. Women’s Health 2013, 17, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Madhloum, N.; Janssen, B.G.; Martens, D.S.; Saenen, N.D.; Bijnens, E.; Gyselaers, W.; Penders, J.; Vanpoucke, C.; Lefebvre, W.; Plusquin, M.; et al. Cord plasma insulin and in utero exposure to ambient air pollution. Environ. Int. 2017, 105, 126–132. [Google Scholar] [CrossRef]
- Ray, J.G.; Park, A.L.; Bartsch, E.; Feig, D.S.; Booth, G.L. Preterm birth and small for gestational birthweight in relation to maternal relative hypoglycemia and chronic hypertension. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 211, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Tieu, J.; Middleton, P.; McPhee, A.J.; Crowther, C.A. Screening and subsequent management for gestational diabetes for improving maternal and infant health. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- Stanhope, K.K.; Cammack, A.L.; Perreira, K.M.; Fernandez-Rhodes, L.; Cordero, C.; Gallo, L.C.; Isasi, C.R.; Castaneda, S.F.; Daviglus, M.L.; Kominiarek, M.A.; et al. Adverse childhood experiences and lifetime adverse maternal outcomes (gestational diabetes and hypertensive disorders of pregnancy) in the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 2020, 50, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Seghieri, G.; Di Cianni, G.; Seghieri, M.; Lacaria, E.; Corsi, E.; Lencioni, C.; Gualdani, E.; Voller, F.; Francesconi, P. Risk and adverse outcomes of gestational diabetes in migrants: A population cohort study. Diabetes Res. Clin. Pract. 2020, 163, 108128. [Google Scholar] [CrossRef]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High Prevalence of Type 2 Diabetes and Pre-Diabetes in Adult Offspring of Women with Gestational Diabetes Mellitus or Type 1 Diabetes The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef]
- Liu, W.Y.; Lu, J.H.; He, J.R.; Zhang, L.F.; Wei, D.M.; Wang, C.R.; Xiao, X.; Xia, H.M.; Qiu, X. Combined effects of air pollutants on gestational diabetes mellitus: A prospective cohort study. Environ. Res 2022, 204 Pt D, 112393. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, D.; Yue, D.; Xu, C.; Hu, B.; Cheng, P.; Zhai, Y.; Mai, H.; Li, P.; Gong, J.; et al. Association of ambient particle pollution with gestational diabetes mellitus and fasting blood glucose levels in pregnant women from two Chinese birth cohorts. Sci. Total Environ. 2021, 762, 143176. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, H.; Ren, M.; Liang, Q.; Shen, X.; Wang, Q.; Yu, L.; Lin, H.; Luo, Q.; Chen, W.; et al. Ambient air pollution exposure and gestational diabetes mellitus in Guangzhou, China: A prospective cohort study. Sci. Total Environ. 2020, 699, 134390. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, S.; Liang, Y.; Wang, C.; Wang, C.; Wu, X.; Luo, C.; Ruan, Z.; Acharya, B.K.; Lin, H.; et al. Ambient air pollution exposure associated with glucose homeostasis during pregnancy and gestational diabetes mellitus. Environ. Res. 2020, 190, 109990. [Google Scholar] [CrossRef]
- van den Hooven, E.H.; Jaddoe, V.W.; de Kluizenaar, Y.; Hofman, A.; Mackenbach, J.P.; Steegers, E.A.; Miedema, H.M.; Pierik, F.H. Residential traffic exposure and pregnancy-related outcomes: A prospective birth cohort study. Environ. Health 2009, 8, 59. [Google Scholar] [CrossRef]
- Fleisch, A.F.; Gold, D.R.; Rifas-Shiman, S.L.; Koutrakis, P.; Schwartz, J.D.; Kloog, I.; Melly, S.; Coull, B.A.; Zanobetti, A.; Gillman, M.W.; et al. Air pollution exposure and abnormal glucose tolerance during pregnancy: The project Viva cohort. Environ. Health Perspect. 2014, 122, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.N.; Hua, S.Y.; Chiu, C.T.; Li, C.Y. Maternal Exposure to Air Pollutants and Risk of Gestational Diabetes Mellitus in Taiwan. Int. J. Environ. Res. Public Health 2017, 14, 1604. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.C.; Huang, C.C.; Lin, S.J.; Chen, B.Y.; Chan, C.C.; Leon Guo, Y.L. Gestational diabetes mellitus was related to ambient air pollutant nitric oxide during early gestation. Environ. Res. 2017, 158, 318–323. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y. Ambient air pollution exposure during pregnancy and gestational diabetes mellitus in Shenyang, China: A prospective cohort study. Environ. Sci. Pollut. Res. Int. 2021, 28, 7806–7814. [Google Scholar] [CrossRef]
- Aguilera, A.M.; Escabias, M.; Valderrama, M.J. Using principal components for estimating logistic regression with high-dimensional multicollinear data. Comput. Stat. Data Anal. 2006, 50, 1905–1924. [Google Scholar] [CrossRef]
- Barker, L.; Brown, C. Logistic regression when binary predictor variables are highly correlated. Stat. Med. 2001, 20, 1431–1442. [Google Scholar] [CrossRef]
- Escabias, M.; Aguilera, A.M.; Valderrama, M.J. Principal component estimation of functional logistic regression: Discussion of two different approaches. J. Nonparametric Stat. 2007, 16, 365–384. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Pickett, S.T.; Li, W.; Qian, Y. Multicontaminant air pollution in Chinese cities. Bull. World Health Organ. 2018, 96, 233–242E. [Google Scholar] [CrossRef]
- Yang, S.; Ma, Y.L.; Duan, F.K.; He, K.B.; Wang, L.T.; Wei, Z.; Zhu, L.D.; Ma, T.; Li, H.; Ye, S.Q. Characteristics and formation of typical winter haze in Handan, one of the most polluted cities in China. Sci. Total Environ. 2018, 613–614, 1367–1375. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. 2017 China Ecological and Environmental Bulletin; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. 2018 China Ecological and Environmental Bulletin; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2019. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. 2019 China Ecological and Environmental Bulletin; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. 2020 China Ecological and Environmental Bulletin; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021. [Google Scholar]
- Sun, Y.; Li, X.; Benmarhnia, T.; Chen, J.C.; Avila, C.; Sacks, D.A.; Chiu, V.; Slezak, J.; Molitor, J.; Getahun, D.; et al. Exposure to air pollutant mixture and gestational diabetes mellitus in Southern California: Results from electronic health record data of a large pregnancy cohort. Environ. Int. 2022, 158, 106888. [Google Scholar] [CrossRef]
- Hu, H.; Ha, S.; Henderson, B.H.; Warner, T.D.; Roth, J.; Kan, H.; Xu, X. Association of Atmospheric Particulate Matter and Ozone with Gestational Diabetes Mellitus. Environ. Health Perspect. 2015, 123, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Saunders, L.D.; Wang, F.L.; Demianczuk, N.N. Gestational diabetes mellitus: Prevalence, risk factors, maternal and infant outcomes. Int. J. Gynecol. Obstet. 2001, 75, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Bouthoorn, S.H.; Silva, L.M.; Murray, S.E.; Steegers, E.A.; Jaddoe, V.W.; Moll, H.; Hofman, A.; Mackenbach, J.P.; Raat, H. Low-educated women have an increased risk of gestational diabetes mellitus: The Generation R Study. Acta Diabetol. 2015, 52, 445–452. [Google Scholar] [CrossRef]
- Jesmin, S.; Akter, S.; Akashi, H.; Al-Mamun, A.; Rahman, M.A.; Islam, M.M.; Sohael, F.; Okazaki, O.; Moroi, M.; Kawano, S.; et al. Screening for gestational diabetes mellitus and its prevalence in Bangladesh. Diabetes Res. Clin. Pract. 2014, 103, 57–62. [Google Scholar] [CrossRef]
- Hoek, G. Methods for Assessing Long-Term Exposures to Outdoor Air Pollutants. Curr. Environ. Health Rep. 2017, 4, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Michikawa, T.; Morokuma, S.; Fukushima, K.; Ueda, K.; Takeuchi, A.; Kato, K.; Nitta, H. A register-based study of the association between air pollutants and hypertensive disorders in pregnancy among the Japanese population. Environ. Res. 2015, 142, 644–650. [Google Scholar] [CrossRef]
- Vinikoor-Imler, L.C.; Gray, S.C.; Edwards, S.E.; Miranda, M.L. The effects of exposure to particulate matter and neighbourhood deprivation on gestational hypertension. Paediatr. Perinat. Epidemiol. 2012, 26, 91–100. [Google Scholar] [CrossRef]
- Najafi, M.L.; Zarei, M.; Gohari, A.; Haghighi, L.; Heydari, H.; Miri, M. Preconception air pollution exposure and glucose tolerance in healthy pregnant women in a middle-income country. Environ. Health 2020, 19, 131. [Google Scholar] [CrossRef]
- Kurokawa, J.; Ohara, T. Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3. Atmos. Chem. Phys. 2020, 20, 12761–12793. [Google Scholar] [CrossRef]
- Jo, H.; Eckel, S.P.; Chen, J.C.; Cockburn, M.; Martinez, M.P.; Chow, T.; Lurmann, F.; Funk, W.E.; McConnell, R.; Xiang, A.H. Associations of gestational diabetes mellitus with residential air pollution exposure in a large Southern California pregnancy cohort. Environ. Int. 2019, 130, 104933. [Google Scholar] [CrossRef]
- Robledo, C.A.; Mendola, P.; Yeung, E.; Mannisto, T.; Sundaram, R.; Liu, D.; Ying, Q.; Sherman, S.; Grantz, K.L. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environ. Res. 2015, 137, 316–322. [Google Scholar] [CrossRef]
- Mendola, P.; Wallace, M.; Liu, D.; Robledo, C.; Mnnist, T.; Grantz, K.L. Air pollution exposure and preeclampsia among US women with and without asthma. Environ. Res. 2016, 148, 248–255. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, C.; Liu, D.; Ha, S.; Kim, S.S.; Pollack, A.; Mendola, P. Ambient Air Pollution and Risk of Gestational Hypertension. Am. J. Epidemiol. 2017, 186, 334–343. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Goldstein, A.H.; Nazaroff, W.W.; Weschler, C.J.; Williams, J. How Do Indoor Environments Affect Air Pollution Exposure? Environ. Sci. Technol. 2020, 55, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.; Taylor, J.; Davies, M.; Shrubsole, C.; Symonds, P.; Dimitroulopoulou, S. Exposure to indoor air pollution across socio-economic groups in high-income countries: A scoping review of the literature and a modelling methodology. Environ. Int. 2020, 143, 105748. [Google Scholar] [CrossRef] [PubMed]
- Sexton, K.; Adgate, J.L.; Ramachandran, G.; Pratt, G.C.; Mongin, S.J.; Stock, T.H.; Morandi, M.T. Comparison of personal, indoor, and outdoor exposures to hazardous air pollutants in three urban communities. Environ. Sci. Technol. 2004, 38, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Özkaynak, H.; Baxter, L.K.; Dionisio, K.L.; Burke, J. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 566–572. [Google Scholar] [CrossRef]
- Choe, S.A.; Kauderer, S.; Eliot, M.N.; Glazer, K.B.; Kingsley, S.L.; Carlson, L.; Awad, Y.A.; Schwartz, J.D.; Savitz, D.A.; Wellenius, G.A. Air pollution, land use, and complications of pregnancy. Sci. Total Environ. 2018, 645, 1057–1064. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y.; Li, W.; Li, R.; Wang, M.; Wu, Z.; Xu, Q. Multi-site time series analysis of acute effects of multiple air pollutants on respiratory mortality: A population-based study in Beijing, China. Sci. Total Environ. 2015, 508, 178–187. [Google Scholar] [CrossRef]
- Yang, Y.; Li, R.; Li, W.; Wang, M.; Cao, Y.; Wu, Z.; Xu, Q. The association between ambient air pollution and daily mortality in Beijing after the 2008 olympics: A time series study. PLoS ONE 2013, 8, e76759. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Liang, Z.; Tao, S.; Zhu, J.; Du, Y. Effects of air pollution on neonatal prematurity in guangzhou of china: A time-series study. Environ. Health 2011, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Bobb, J.F.; Claus Henn, B.; Valeri, L.; Coull, B.A. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ. Health 2018, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Molitor, J.; Su, J.G.; Molitor, N.T.; Rubio, V.G.; Richardson, S.; Hastie, D.; Morello-Frosch, R.; Jerrett, M. Identifying vulnerable populations through an examination of the association between multipollutant profiles and poverty. Environ. Sci. Technol. 2011, 45, 7754–7760. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.A.; Eliot, M.N.; Savitz, D.A.; Wellenius, G.A. Ambient air pollution during pregnancy and risk of gestational diabetes in New York City. Environ. Res. 2019, 175, 414–420. [Google Scholar] [CrossRef]
- Filardi, T.; Tavaglione, F.; Di Stasio, M.; Fazio, V.; Lenzi, A.; Morano, S. Impact of risk factors for gestational diabetes (GDM) on pregnancy outcomes in women with GDM. J. Endocrinol. Investig. 2018, 41, 671–676. [Google Scholar] [CrossRef]
- Fleisch, A.F.; Kloog, I.; Luttmann-Gibson, H.; Gold, D.R.; Oken, E.; Schwartz, J.D. Air pollution exposure and gestational diabetes mellitus among pregnant women in Massachusetts: A cohort study. Environ. Health 2016, 15, 40. [Google Scholar] [CrossRef]
- Shiozaki, A.; Matsuda, Y.; Satoh, S.; Saito, S. Comparison of risk factors for gestational hypertension and preeclampsia in Japanese singleton pregnancies. J. Obstet. Gynaecol. Res. 2013, 39, 492–499. [Google Scholar] [CrossRef]
- Li, X.; Tan, H.Z.; Huang, X.; Zhou, S.J.; Hu, S.M.; Wang, X.J.; Xu, X.; Liu, Q.; Wen, S.W. Similarities and differences between the risk factors for gestational hypertension and preeclampsia: A population based cohort study in south China. Pregnancy Hypertens. 2016, 6, 66–71. [Google Scholar] [CrossRef]
- Ng, C.; Malig, B.; Hasheminassab, S.; Sioutas, C.; Basu, R.; Ebisu, K. Source apportionment of fine particulate matter and risk of term low birth weight in California: Exploring modification by region and maternal characteristics. Sci. Total Environ. 2017, 605-606, 647–654. [Google Scholar] [CrossRef]
Characteristics | Total n (%) | GDM n (%) | Non-GDM n (%) | p a |
---|---|---|---|---|
Total | 9820 (100.00) | 372 (3.79) | 9448 (96.21) | |
Age | 0.002 | |||
≤25 | 937 (9.54) | 42 (4.48) | 895 (95.52) | |
(25, 30) | 3796 (38.66) | 120 (3.16) | 3676 (96.84) | |
(30, 35) | 3494 (35.58) | 126 (3.61) | 3368 (96.39) | |
>35 | 1593 (16.22) | 84 (5.27) | 1509 (94.73) | |
Education | 0.620 | |||
Less than bachelor | 4773 (48.60) | 186 (3.9) | 4587 (96.1) | |
Bachelor or above | 5047 (51.40) | 186 (3.69) | 4861 (96.31) | |
Health insurance | 0.108 | |||
Urban and rural medical insurance | 4126 (42.02) | 176 (4.27) | 3950 (95.73) | |
Employee medical insurance | 3610 (36.76) | 124 (3.43) | 3486 (96.57) | |
None | 2084 (21.22) | 72 (3.45) | 2012 (96.55) | |
Parity | 0.464 | |||
Nulliparous | 4714 (48.00) | 186 (3.95) | 4528 (96.05) | |
Multiparous | 5106 (52.00) | 186 (3.64) | 4920 (96.36) | |
Conception year | 0.202 | |||
2017 | 1124 (11.45) | 55 (4.89) | 1069 (95.11) | |
2018 | 4221 (42.98) | 129 (3.06) | 4092 (96.94) | |
2019 | 4475 (45.57) | 188 (4.20) | 4287 (95.80) | |
Conception season | 0.952 | |||
Spring | 2271 (23.13) | 84 (3.70) | 2187 (96.30) | |
Summer | 2877 (29.30) | 114 (3.96) | 2763 (96.04) | |
Autumn | 2629 (26.77) | 98 (3.73) | 2531 (96.27) | |
Winter | 2043 (20.80) | 76 (3.72) | 1967 (96.28) | |
Previous adverse pregnancy and childbirth | <0.001 | |||
No | 6827 (69.52) | 297 (4.35) | 6530 (95.65) | |
Yes | 2993 (30.48) | 75 (2.51) | 2918 (97.49) |
Pollutants | Periods | OR (95% CI) a | OR (95% CI) b |
---|---|---|---|
PM2.5 | Pre_T | 1.018 (0.940, 1.103) | 1.110 (0.959, 1.283) |
T1 | 0.998 (0.921, 1.081) | 1.019 (0.867, 1.197) | |
T2 | 1.055 (0.975, 1.141) | 1.051 (0.911, 1.214) | |
T | 1.053 (0.942, 1.177) | 1.082 (0.865, 1.352) | |
PM10 | Pre_T | 1.045 (0.990, 1.103) | 1.138 (1.041, 1.246) * |
T1 | 0.999 (0.946, 1.056) | 1.038 (0.939, 1.148) | |
T2 | 1.030 (0.974, 1.090) | 1.070 (0.968, 1.183) | |
T | 1.026 (0.951, 1.107) | 1.097 (0.960, 1.253) | |
SO2 | Pre_T | 0.974 (0.890, 1.067) | 1.025 (0.911, 1.153) |
T1 | 0.952 (0.868, 1.044) | 0.978 (0.863, 1.109) | |
T2 | 1.088 (0.991, 1.193) | 1.143 (0.974, 1.288) | |
T | 1.021 (0.912, 1.144) | 1.096 (0.939, 1.279) | |
NO2 | Pre_T | 1.012 (0.929, 1.101) | 1.094 (0.952, 1.257) |
T1 | 1.033 (0.949, 1.123) | 1.092 (0.940, 1.268) | |
T2 | 1.128 (1.034, 1.231) * | 1.296 (1.120, 1.500) * | |
T | 1.144 (1.020, 1.283) * | 1.305 (1.088, 1.566) * | |
CO | Pre_T | 0.996 (0.894, 1.110) | 1.137 (0.979, 1.320) |
T1 | 0.988 (0.885, 1.102) | 1.058 (0.893, 1.254) | |
T2 | 1.116 (0.999, 1.248) | 1.151 (0.989, 1.339) | |
T | 1.078 (0.938, 1.239) | 1.166 (0.961, 1.414) | |
O3 | Pre_T | 1.015 (0.968, 1.064) | 0.971 (0.873, 1.081) |
T1 | 1.002 (0.956, 1.050) | 1.039 (0.932, 1.159) | |
T2 | 0.966 (0.922, 1.012) | 0.968 (0.870, 1.077) | |
T | 0.969 (0.909, 1.034) | 1.004 (0.867, 1.163) |
Pollutants | Periods | OR (95% CI) a | OR (95% CI) b |
---|---|---|---|
PM2.5 | Pre_T | 0.974 (0.940, 1.009) | 1.016 (1.003, 1.028) * |
T1 | 0.997 (0.959, 1.037) | 1.015 (1.006, 1.024) * | |
T2 | 1.027 (0.985, 1.071) | 1.014 (0.999, 1.030) | |
T | 1.005 (0.961, 1.050) | 1.021 (1.004, 1.038) * | |
PM10 | Pre_T | 0.973 (0.942, 1.006) | 1.011 (1.001, 1.022) * |
T1 | 0.995 (0.964, 1.028) | 1.009 (0.999, 1.018) | |
T2 | 1.014 (0.991, 1.037) | 1.016 (1.005, 1.027) * | |
T | 1.005 (0.968, 1.044) | 1.015 (1.005, 1.026) * | |
SO2 | Pre_T | 1.036 (0.987, 1.088) | 0.938 (0.917, 0.960) * |
T1 | 1.028 (0.982, 1.076) | 0.990 (0.964, 1.016) | |
T2 | 0.999 (0.950, 1.052) | 0.969 (0.939, 0.999) * | |
T | 1.032 (0.974, 1.092) | 0.975 (0.942, 1.009) | |
NO2 | Pre_T | 1.032 (0.975, 1.091) | 1.011 (0.998, 1.025) |
T1 | 1.003 (0.951, 1.057) | 0.998 (0.962, 1.035) | |
T2 | 0.945 (0.886, 1.007) | 1.001 (0.987, 1.015) | |
T | 0.985 (0.936, 1.036) | 1.002 (0.969, 1.037) | |
CO | Pre_T | 1.025 (0.990, 1.062) | 0.968 (0.950, 0.987) * |
T1 | 1.023 (0.988, 1.060) | 0.995 (0.974, 1.016) | |
T2 | 0.997 (0.974, 1.021) | 1.000 (0.981, 1.020) | |
T | 1.001 (0.922, 1.087) | 0.992 (0.964, 1.020) | |
O3 | Pre_T | 0.993 (0.973, 1.014) | 0.989 (0.982, 0.996) * |
T1 | 1.001 (0.983, 1.020) | 1.000 (0.990, 1.011) | |
T2 | 1.010 (0.995, 1.025) | 1.002 (0.992, 1.011) | |
T | 1.010 (0.989, 1.031) | 1.004 (0.986, 1.021) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Diao, R.; Shi, X.; Cao, L.; Gong, Z.; Zhang, X.; Yan, X.; Wang, T.; Mao, H. Effects of Air Pollution Exposure during Preconception and Pregnancy on Gestational Diabetes Mellitus. Toxics 2023, 11, 728. https://doi.org/10.3390/toxics11090728
Cao L, Diao R, Shi X, Cao L, Gong Z, Zhang X, Yan X, Wang T, Mao H. Effects of Air Pollution Exposure during Preconception and Pregnancy on Gestational Diabetes Mellitus. Toxics. 2023; 11(9):728. https://doi.org/10.3390/toxics11090728
Chicago/Turabian StyleCao, Lei, Ruiping Diao, Xuefeng Shi, Lu Cao, Zerui Gong, Xupeng Zhang, Xiaohan Yan, Ting Wang, and Hongjun Mao. 2023. "Effects of Air Pollution Exposure during Preconception and Pregnancy on Gestational Diabetes Mellitus" Toxics 11, no. 9: 728. https://doi.org/10.3390/toxics11090728
APA StyleCao, L., Diao, R., Shi, X., Cao, L., Gong, Z., Zhang, X., Yan, X., Wang, T., & Mao, H. (2023). Effects of Air Pollution Exposure during Preconception and Pregnancy on Gestational Diabetes Mellitus. Toxics, 11(9), 728. https://doi.org/10.3390/toxics11090728