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Abstract: This study aimed to investigate the association between air pollution and gestational
diabetes mellitus (GDM) in small- and medium-sized cities, identify sensitive periods and major
pollutants, and explore the effects of air pollution on different populations. A total of 9820 women
who delivered in Handan Maternal and Child Health Hospital in the Hebei Province from February
2018 to July 2020 were included in the study. Logistic regression and principal component logistic
regression models were used to assess the effects of air pollution exposure during preconception and
pregnancy on GDM risk and the differences in the effects across populations. The results suggested
that each 20 µg/m3 increase in PM2.5 and PM10 exposure during preconception and pregnancy
significantly increased the risk of GDM, and a 10 µg/m3 increase in NO2 exposure during pregnancy
was also associated with the risk of GDM. In a subgroup analysis, pregnant women aged 30–35 years,
nulliparous women, and those with less than a bachelor’s education were the most sensitive groups.
This study provides evidence for an association between air pollution and the prevalence of GDM,
with PM2.5, PM10, and NO2 as risk factors for GDM.
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1. Introduction

Air pollution is a dangerous environmental risk factor contributing to the global bur-
den of disease [1]. Evidence of the adverse health effects of air pollution has increased
significantly over the past decade. As a specific population group, pregnant women and
their babies bear a greater burden of disease due to air pollution [2]. To adapt to changes
in metabolism and oxygen consumption during pregnancy, the physiological character-
istics of pregnant women undergo significant short-term changes, including increased
alveolar ventilation, an increased blood volume, and fat deposition, which predispose
them to cardiovascular disease [3]. Although the pathophysiological mechanisms between
ambient air pollution and maternal disease remain unclear, several possible mechanisms
have been proposed, including systemic inflammation, oxidative stress, and endothelial
dysfunction [4,5]. Systemic inflammation and oxidative stress induced by air pollution
can lead to insulin resistance, which is the underlying mechanism of gestational diabetes
mellitus (GDM) in pregnant women [6].

GDM is a common complication of pregnancy, which is defined as hyperglycemia and
hyperinsulinemia caused by a woman’s first carbohydrate intolerance during pregnancy.
GDM usually develops in the second trimester and disappears after the baby is born. GDM
is detrimental to the short-term and long-term health of mothers and their fetuses. For
pregnant women, GDM is associated with an increased risk of perinatal complications,
such as pre-eclampsia, dystocia, and caesarean sections [7–9]. Approximately one third of

Toxics 2023, 11, 728. https://doi.org/10.3390/toxics11090728 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics11090728
https://doi.org/10.3390/toxics11090728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://doi.org/10.3390/toxics11090728
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics11090728?type=check_update&version=1


Toxics 2023, 11, 728 2 of 13

women with GDM will eventually develop type 2 diabetes, and women with GDM also
have a higher long-term risk of cardiovascular disease than women without GDM [10].
For fetuses, GDM is associated with macrosomia, organic macrosomia (an abnormal en-
largement of the fetal organs), shoulder dystocia, birth injury, impaired glucose tolerance,
obesity, and intellectual disability [11–15].

Understanding the health effects of air pollution is important for reducing the burden
of maternal and child disease and formulating policies for preventing and controlling air
pollution. Numerous studies have investigated the association between air pollution and
GDM. Some epidemiological studies have shown an adverse effect of air pollution on
GDM [16–19], but other studies have not found such an association [20,21]. Conclusive
epidemiological evidence on the association between exposure to air pollution and GDM is
still lacking. Currently, most studies have been carried out in European and American coun-
tries with low levels of air pollution. Previous studies have shown clear ethnic differences
in the incidence of GDM [22]. However, research data on non-western populations are very
limited. Studies in China have been limited to large cities or urban areas [16–19,22–24].
However, air pollution in small- and medium-sized cities cannot be ignored, and the health
of their inhabitants also deserves attention. In addition, some studies have included several
correlated pollutants simultaneously in a logistic regression model to adjust for the effect
of additional pollutants when examining the effect of a single pollutant [16–18]. This multi-
collinear relationship between independent variables may increase the error in parameter
estimation, or even cause the positive and negative regression coefficients to be reversed,
leading to a contradiction in the interpretation of the results [25–27].

With the rapid urbanization and industrialization around the world, especially in
developing countries, the problem of air pollution is becoming increasingly serious. In
recent years, China’s small- and medium-sized cities have accelerated the pace of their
construction, and local governments have paid attention to economic development while
neglecting environmental protection, making them more polluted than large cities [28]. As
the heart of the Central Plains Economic Zone and a major transport hub in northern China,
the air pollution in Handan is extremely severe [29]. According to the bulletin issued by
the Ministry of Ecology and Environment from 2017 to 2020, Handan ranked in the bottom
five in the list of urban ambient air quality [30–33]. The aim of this study was to re-examine
the relationship between air pollution and GDM in small- and medium-sized cities with
increasing pollution, identifying sensitive periods and key pollutants. Accordingly, using
Handan City, Hebei Province, as an example, logistic regression models were used to assess
the effects of preconception and pregnancy exposure to air pollutants, including inhalable
particulate matter (PM10), lung-entering particulate matter (PM2.5), sulfur dioxide (SO2),
nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). Due to the co-occurrence
of several pollutants in the real environment, principal component logistic regression
models were used to assess the effects of each air pollutant, adjusted for the remaining
five pollutants. In addition, a subgroup analysis of pregnant women was performed to
explore the differences in the effects of air pollution on different groups, in order to provide
a reference for targeted public health protection.

2. Materials and Methods
2.1. Study Population and Design

This birth cohort study was conducted in Handan City, Hebei Province, China. Han-
dan City is located in the southern part of the Hebei Province and has a warm, temperate,
continental monsoon climate with four distinct seasons. It covers 6 districts, 11 counties,
and 1 county-level city, with a total area of 12,000 km2. The total registered population is
10.57 million, with a permanent population of 9.55 million and a fertility rate of 11.80%.
The study was a retrospective cohort study. The participants were women who gave birth
at the Handan Maternal and Child Health Hospital between February 2018 and July 2020.
Handan Maternal and Child Health Hospital receives more than half the deliveries of
pregnant women in Handan each year, with case data covering the entire city. The hospital
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records detail maternal and fetal characteristics, as well as clinical data on pregnancy and
delivery. Pregnant women with an address outside the Handan administrative district,
missing information for any variable, multiple births, a gestational age less than 26 weeks
or more than 44 weeks, and pre-pregnancy chronic diabetes were excluded from this study.
Ultimately, 9820 pregnant women were included in the analysis. The screening details are
shown in Figure 1. This study did not require review or approval, as it was based on a
de-identified dataset.
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Figure 1. Flowchart for screening study participants.

2.2. Outcome and Covariates

Handan Maternal and Child Health Hospital follows the 2010 International Gestational
Diabetes Association diagnostic criteria for GDM. Women were screened for GDM using an
oral glucose tolerance test between 24 and 28 weeks of gestation, and GDM was diagnosed
if their glucose level after a 75 g glucose load was any of the following: 0 h (fasting blood
glucose) ≥ 5.1 mmol/L; 1 h ≥ 10 mmol/L; or 2 h ≥ 8.5 mmol/L. In addition, women
identified as high risk may be screened early during pregnancy, with the following levels
considered to be abnormal: blood glucose level of ≥11.1 mmol/L 2 h after a 75 g oral
glucose load or at any time; or fasting blood glucose of ≥7.0 mmol/L.

We assessed the following potentially relevant covariates based on previous evi-
dence [34–38]: maternal age (<25, 25–30, 30–35, and >35 years old), educational level (less
than bachelor and bachelor or above), health insurance (none, employee medical insurance,
or urban and rural medical insurance), parity (nulliparous or multiparous), conception
year (2017, 2018, or 2019), conception season (spring (March–May), summer (June–August),
autumn (September–November), or winter (December–February)), and previous adverse
pregnancy and childbirth (yes or no).
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2.3. Exposure Assessment

Data on the daily mean concentrations of six air pollutants, including PM10, PM2.5, SO2,
NO2, CO, and O3, in Handan were obtained from the Handan Ecology and Environment
Bureau at 44 monitoring sites covering all exposure windows for all the participants. The
distribution of the maternal addresses and monitoring locations is shown in Figure 2. There
were enough monitoring stations with a uniform spatial distribution. When a monitoring
network has a sufficient spatial density, the use of direct fixed measurements avoids the
potential bias associated with the use of residence-based exposure models with an uncertain
validity [17,39]. Therefore, after excluding participants who were more than 20 km away
from a monitoring station, the pollutant concentration data from the nearest monitoring
station were directly matched to the pregnant women [40,41]. Then, for each pollutant, the
average exposure concentrations were calculated in the following windows based on the
gestational age and delivery date of each pregnant woman: (1) preconception (13 weeks
before pregnancy, Pre_T); (2) first trimester (1–13 gestational weeks, T1); (3) second trimester
(14–26 gestational weeks, T2); and (4) the first two trimesters (T). To ensure that exposure
preceded outcome, exposure after 26 weeks of gestation was not included.
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2.4. Statistical Analyses

Differences in the selected characteristics between the pregnant women with and
without GDM were compared using the χ2 test. A descriptive analysis of the air pollution
exposure levels of the pregnant women in different exposure windows was performed, and
the correlation between the average exposure levels of the pollutants in different exposure
windows was shown using the Spearman correlation coefficient.

Logistic regression models were used to evaluate the effect of air pollutants on GDM
in each exposure window. To facilitate a discussion of the results and a comparison with
other literature data, the pollutant concentrations were used as continuous variables to
express the results of the study. Odds ratios (ORs) and 95% confidence intervals (95%
CIs) of GDM were estimated with each 20 µg/m3 increase in PM10, 20 µg/m3 increase in
PM2.5, 20 µg/m3 increase in O3, 10 µg/m3 increase in SO2, 10 µg/m3 increase in NO2, and
0.5 mg/m3 increase in CO during each exposure window. Two single-pollutant logistic
models were fitted. Model 1 was a crude model and model 2 was adjusted for all covariates.
Detailed methods are provided in Part 1 of the Supplementary Materials.

Due to the presence of multiple pollutants in the environment of the pregnant women,
it was necessary to adjust for other pollutants to better estimate the effects of each pollutant.
The parameter estimation for the logistic regression models required the variables to
be independent of each other. However, there was a strong correlation between the six
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pollutants, and multicollinearity would occur if all six pollutants were entered directly
and simultaneously into the model. Therefore, the principal component logistic regression
method was used for the multi-pollutant model [25–27]. Two multi-pollutant models were
fitted. Model 1 was a rough model with the first three principal component variables of the
six pollutants treated as independent variables (Table S2); and model 2 was adjusted for all
covariates, with the first eight principal component variables of the six pollutants and all
the covariates treated as independent variables (Table S3). Detailed methods are given in
Part 2 of the Supplementary Materials.

In addition, the participants were stratified by age, parity, previous adverse pregnancy
and childbirth, and educational level, and subgroup analyses were performed with the
single-pollutant and multi-pollutant models, respectively, adjusting for all the covariates,
except the grouping variable. All the statistical analyses were performed using the R
software, version 3.5.3, with a two-tailed test and an alpha level of 0.05.

3. Results
3.1. Study Population

The characteristics of the participants are shown in Table 1. Of the 9820 participants
included in the analysis, approximately 3.79% of the pregnant women were diagnosed with
GDM. The results of the χ2 test showed that there were significant differences in age and
previous adverse pregnancy and childbirth between the pregnant women with and without
GDM (p < 0.05). Pregnant women over 35 years of age were more likely to have GDM, with
a prevalence of about 5.27% occurring in this population. Compared to pregnant women
with an adverse pregnancy and childbirth history, pregnant women without an adverse
pregnancy and childbirth history were more likely to suffer from GDM, with a prevalence
of about 4.35% occurring in this population.

Table 1. Characteristics of study population.

Characteristics Total
n (%)

GDM
n (%)

Non-GDM
n (%) p a

Total 9820 (100.00) 372 (3.79) 9448 (96.21)
Age 0.002
≤25 937 (9.54) 42 (4.48) 895 (95.52)

(25, 30) 3796 (38.66) 120 (3.16) 3676 (96.84)
(30, 35) 3494 (35.58) 126 (3.61) 3368 (96.39)

>35 1593 (16.22) 84 (5.27) 1509 (94.73)
Education 0.620

Less than bachelor 4773 (48.60) 186 (3.9) 4587 (96.1)
Bachelor or above 5047 (51.40) 186 (3.69) 4861 (96.31)
Health insurance 0.108

Urban and rural medical insurance 4126 (42.02) 176 (4.27) 3950 (95.73)
Employee medical insurance 3610 (36.76) 124 (3.43) 3486 (96.57)

None 2084 (21.22) 72 (3.45) 2012 (96.55)
Parity 0.464

Nulliparous 4714 (48.00) 186 (3.95) 4528 (96.05)
Multiparous 5106 (52.00) 186 (3.64) 4920 (96.36)

Conception year 0.202
2017 1124 (11.45) 55 (4.89) 1069 (95.11)
2018 4221 (42.98) 129 (3.06) 4092 (96.94)
2019 4475 (45.57) 188 (4.20) 4287 (95.80)

Conception season 0.952
Spring 2271 (23.13) 84 (3.70) 2187 (96.30)

Summer 2877 (29.30) 114 (3.96) 2763 (96.04)
Autumn 2629 (26.77) 98 (3.73) 2531 (96.27)
Winter 2043 (20.80) 76 (3.72) 1967 (96.28)

Previous adverse pregnancy and childbirth <0.001
No 6827 (69.52) 297 (4.35) 6530 (95.65)
Yes 2993 (30.48) 75 (2.51) 2918 (97.49)

a Analysis of χ2 test.
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3.2. Air Pollution Exposure

The statistical description and Spearman’s correlation analysis of the average exposure
levels of the pollutants in different exposure windows for the pregnant women are shown
in Figure S1 and Table S1, respectively. The medians of the PM10, PM2.5, SO2, NO2, CO, and
O3 in the study periods were 119.79–125.30 µg/m3, 59.34–68.71 µg/m3, 21.11–23.31 µg/m3,
37.12–39.79 µg/m3, 1.20–1.28 mg/m3, and 102.22–123.86 µg/m3, respectively. According
to the upper and lower quartiles, the group exposure levels for each pollutant within each
window were quite different. Comparing the exposure levels of the same pollutant in each
window, it could be seen that the exposure levels of the same pollutant in different windows
were approximately the same. According to the Spearman’s correlation coefficient, the
correlations between the pollutants in each window were strong, so it was not possible to
include any two pollutants directly and simultaneously in the logistic regression model.

3.3. Association between Air Pollution and the Risk of GDM

The ORs and 95% CIs of each pollutant for GDM in the single-pollutant model are
shown in Table 2. In the model without an adjustment for the covariates, each 10 µg/m3

increase in NO2 exposure in the T and T2 periods had a significant effect on the risk of GDM,
with OR values of 1.144 (95% CI: 1.020–1.283) and 1.128 (95% CI: 1.034–1.231), respectively.
In the model adjusted for the covariates, each 20 µg/m3 increase in PM10 exposure during
the Pre_T period increased the risk of GDM by 13.8% (OR = 1.138, 95% CI: 1.041–1.246).
Each 10 µg/m3 increase in NO2 exposure during the T and T2 periods also significantly
increased the risk of GDM, with OR values of 1.305 (95% CI: 1.088–1.566) and 1.296 (95%
CI: 1.120–1.500), respectively.

Table 2. Effect of each pollutant in single-pollutant model.

Pollutants Periods OR (95% CI) a OR (95% CI) b

PM2.5

Pre_T 1.018 (0.940, 1.103) 1.110 (0.959, 1.283)
T1 0.998 (0.921, 1.081) 1.019 (0.867, 1.197)
T2 1.055 (0.975, 1.141) 1.051 (0.911, 1.214)
T 1.053 (0.942, 1.177) 1.082 (0.865, 1.352)

PM10

Pre_T 1.045 (0.990, 1.103) 1.138 (1.041, 1.246) *
T1 0.999 (0.946, 1.056) 1.038 (0.939, 1.148)
T2 1.030 (0.974, 1.090) 1.070 (0.968, 1.183)
T 1.026 (0.951, 1.107) 1.097 (0.960, 1.253)

SO2

Pre_T 0.974 (0.890, 1.067) 1.025 (0.911, 1.153)
T1 0.952 (0.868, 1.044) 0.978 (0.863, 1.109)
T2 1.088 (0.991, 1.193) 1.143 (0.974, 1.288)
T 1.021 (0.912, 1.144) 1.096 (0.939, 1.279)

NO2

Pre_T 1.012 (0.929, 1.101) 1.094 (0.952, 1.257)
T1 1.033 (0.949, 1.123) 1.092 (0.940, 1.268)
T2 1.128 (1.034, 1.231) * 1.296 (1.120, 1.500) *
T 1.144 (1.020, 1.283) * 1.305 (1.088, 1.566) *

CO

Pre_T 0.996 (0.894, 1.110) 1.137 (0.979, 1.320)
T1 0.988 (0.885, 1.102) 1.058 (0.893, 1.254)
T2 1.116 (0.999, 1.248) 1.151 (0.989, 1.339)
T 1.078 (0.938, 1.239) 1.166 (0.961, 1.414)

O3

Pre_T 1.015 (0.968, 1.064) 0.971 (0.873, 1.081)
T1 1.002 (0.956, 1.050) 1.039 (0.932, 1.159)
T2 0.966 (0.922, 1.012) 0.968 (0.870, 1.077)
T 0.969 (0.909, 1.034) 1.004 (0.867, 1.163)

a Crude models. b Models were additional adjusted for maternal age, education, health insurance, parity,
conception year, conception season, and previous adverse pregnancy and childbirth. * p < 0.05. Bold indicates
that the pollutant is a risk factor.
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Table 3 shows the ORs and 95% CIs of the effect of each pollutant on GDM in the
multi-pollutant model. No significant effect of any pollutant on GDM was found in the
model without an adjustment for the covariates. In the model adjusted for the covariates,
each 20 µg/m3 increase in PM2.5 in the Pre_T, T, and T1 periods increased the risk of GDM
by 1.6% (OR = 1.016, 95% CI: 1.001–1.028), 2.1% (OR = 1.021, 95% CI: 1.004–1.038), and 1.5%
(OR = 1.015, 95% CI: 1.006–1.024), respectively. Each 20 µg/m3 increase in PM10 exposure
in the Pre_T, T, and T2 periods also increased the risk of GDM, with OR values of 1.011 (95%
CI: 1.001–1.022), 1.015 (95% CI: 1.005–1.026), and 1.016 (95% CI: 1.005–1.027), respectively.

Table 3. Effect of each pollutant in multi-pollutant model.

Pollutants Periods OR (95% CI) a OR (95% CI) b

PM2.5

Pre_T 0.974 (0.940, 1.009) 1.016 (1.003, 1.028) *
T1 0.997 (0.959, 1.037) 1.015 (1.006, 1.024) *
T2 1.027 (0.985, 1.071) 1.014 (0.999, 1.030)
T 1.005 (0.961, 1.050) 1.021 (1.004, 1.038) *

PM10

Pre_T 0.973 (0.942, 1.006) 1.011 (1.001, 1.022) *
T1 0.995 (0.964, 1.028) 1.009 (0.999, 1.018)
T2 1.014 (0.991, 1.037) 1.016 (1.005, 1.027) *
T 1.005 (0.968, 1.044) 1.015 (1.005, 1.026) *

SO2

Pre_T 1.036 (0.987, 1.088) 0.938 (0.917, 0.960) *
T1 1.028 (0.982, 1.076) 0.990 (0.964, 1.016)
T2 0.999 (0.950, 1.052) 0.969 (0.939, 0.999) *
T 1.032 (0.974, 1.092) 0.975 (0.942, 1.009)

NO2

Pre_T 1.032 (0.975, 1.091) 1.011 (0.998, 1.025)
T1 1.003 (0.951, 1.057) 0.998 (0.962, 1.035)
T2 0.945 (0.886, 1.007) 1.001 (0.987, 1.015)
T 0.985 (0.936, 1.036) 1.002 (0.969, 1.037)

CO

Pre_T 1.025 (0.990, 1.062) 0.968 (0.950, 0.987) *
T1 1.023 (0.988, 1.060) 0.995 (0.974, 1.016)
T2 0.997 (0.974, 1.021) 1.000 (0.981, 1.020)
T 1.001 (0.922, 1.087) 0.992 (0.964, 1.020)

O3

Pre_T 0.993 (0.973, 1.014) 0.989 (0.982, 0.996) *
T1 1.001 (0.983, 1.020) 1.000 (0.990, 1.011)
T2 1.010 (0.995, 1.025) 1.002 (0.992, 1.011)
T 1.010 (0.989, 1.031) 1.004 (0.986, 1.021)

a Models were adjusted for all other pollutants. b Models were additional adjusted for maternal age, education,
health insurance, parity, conception year, conception season, and previous adverse pregnancy and childbirth.
* p < 0.05. Bold indicates that the pollutant is a risk factor.

3.4. Stratified Analyses

In both the single-pollutant model and multi-pollutant model, SO2, CO, and O3 had
no significant effect on the risk of GDM after an adjustment for the confounders, so only
the results for the other three pollutants are presented in the stratified analysis.

The effect of air pollution on the risk of GDM in pregnant women of different ages is
shown in Figure S2. The results of the single-pollutant model showed that, for pregnant
women aged 30–35 years, each 10 µg/m3 increase in NO2 exposure in the T and T2 periods
significantly increased the risk of GDM, with ORs of 1.710 (95% CI: 1.243–1.352) and 1.595
(95% CI: 1.228–2.072), respectively. However, this finding was not found in the multi-
pollutant model. For nulliparous women, the multi-pollutant model showed that, for
each 20 µg/m3 increase in PM2.5 during the T1 period, the risk of GDM increased by 1.6%
(OR = 1.016, 95% CI: 1.002–1.030) (Figure S3). Figure S4 shows the effect of GDM risk in
women with different previous pregnancy and childbirth. Pregnant women with previous
adverse pregnancy and childbirth were more sensitive to PM10 exposure in the T and T2
periods, whereas those without were more sensitive to NO2 exposure in the T and T2
periods. For pregnant women with less than a bachelor’s education, the single-pollutant
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model showed that, for each 20 µg/m3 increase in PM10 during the T2 period, the risk
of GDM was increased by 19.0% (OR = 1.190, 95% CI: 1.029–1.376) (Figure S5). Each 10
µg/m3 increase in NO2 exposure during the T and T2 periods also had a significant effect
on the risk of GDM, with ORs of 1.470 (95% CI: 1.135–1.903) and 1.473 (95% CI: 1.194–1.818),
respectively (Figure S5).

4. Discussion

As a heavily polluted city with a large population, the data from Handan are represen-
tative and universal. This study investigated the effect of air pollution exposure during
preconception and pregnancy on the risk of GDM and the sensitivity of different popula-
tions using data from pregnant women who gave birth at the Handan Maternal and Child
Health Hospital. The results showed that exposure to PM2.5, PM10, and NO2 had adverse
effects on the risk of GDM in pregnant women, and this effect varied across populations.

The prevalence of GDM has increased significantly in recent decades. However,
about half of patients do not have classic risk factors [42]. Over the 60-year period from
1950 to 2015, the emissions of air pollutants showed a clear upward trend in all regions
of Asia [43]. The available evidence suggests that environmental pollutants such as air
pollution may be risk factors for glucose tolerance and glucose homeostasis in normal
women [19]. In our study, the single-pollutant model adjusted for covariates showed that
NO2 exposure in the T and T2 periods significantly increased the risk of GDM in pregnant
women. Several studies have also reported a significant association between exposure to air
pollution and an increased risk of GDM. Jo et al. found that exposure to NO2 per 10.4 ppb
increment, PM2.5 per 6.5 µg/m3 increment, and PM10 per 16.1 µg/m3 increment during
the Pre_T period was associated with an increased risk of GDM [44]. Shen et al. showed
that exposure to PM2.5 and SO2 during the T1 and T2 periods significantly increased the
risk of GDM [22]. After controlling for nine covariates, Hu et al. found that the odds of
GDM increased by 16%, 15%, 9%, and 12% for each 5 µg/m3 increase in PM2.5 and 5 ppb
increase in O3 during the T1 and T2 periods, respectively [35]. There are also some studies
that have reported opposite results, which may be related to differences in the exposure
assessment methods, populations, geographical locations, and adjusted covariates [21,45].
The results of this study also confirmed the adverse effects of preconception exposure
to air pollution on GDM. In the multi-pollutant model adjusted for other pollutants and
the covariates, PM2.5 and PM10 exposure in the Pre_T period significantly increased the
risk of GDM. Several previous studies have also examined preconception exposure and
found that air pollution during this period may increase maternal systemic oxidative stress
and inflammation [22,44–47]. This suggests that preconception is also a critical exposure
window and that preconception care focusing on lifestyle modification and a reduction in
adverse risk factors may be effective in preventing pregnancy complications.

In our study, measurements from monitoring stations were directly used as a metric
for the exposure of the pregnant women to air pollution due to the lack of detailed data on
their activity levels. However, complex human activities may have influenced the time and
space of the exposure and thus the level of exposure. A survey of human activity patterns
showed that people spend up to 86.9% of their total time indoors [48]. Buildings and indoor
anthropogenic factors (e.g., air purifiers) may shield people from some pollutants from
outdoor sources, while some indoor emission sources (e.g., cooking and furniture) expose
people to additional pollutants [49]. There is growing evidence of differences in indoor
PM and NOx exposure between income groups in developed countries [50]. In addition,
certain studies have shown that there are small seasonal differences between indoor and
outdoor pollutant concentrations [51]. Human exposure to air pollutants results from
a combination of outdoor and indoor sources. The composition of indoor and outdoor
pollution may be the same, and the exposure–response relationship is not affected by the
source of a particular pollutant [52]. However, when pollutants have both indoor and
outdoor sources, ignoring the moderating effect of indoor factors on human exposure may
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lead to a misclassification of this exposure. Therefore, we recommend that future studies
consider indoor factors in their exposure assessments whenever possible.

The effect of PM10 exposure in the Pre_T period on GDM in the multi-pollutant
model (OR = 1.011, 95% CI: 1.001–1.022) was lower than that in the single-pollutant model
(OR = 1.138, 95% CI: 1.041–1.246), indicating that co-exposure to other pollutants in the
Pre_T period was also a risk factor for GDM. Several foreign studies have also shown that
the effects of pollutants in single-pollutant models are different from those in two-pollutant
models. After an adjustment for PM2.5 and O3, Jo et al. found that the ORs of NO2 for
GDM decreased from 1.10 (95% CI: 1.07–1.13) to 1.09 (95% CI: 1.05–1.13) and 1.04 (95% CI:
1.00–1.08), respectively [44]. In the study by Pan et al., the OR of CO for GDM decreased
from 1.08 (95% CI: 1.00–1.15) to 1.05 (95% CI: 0.98–1.13) after an adjustment for O3 [23].
The results of Choe et al. showed that the OR of PM2.5 exposure on GDM in pregnant
women during the T2 period was 1.08 (95% CI: 1.00–1.15), and the OR was 1.07 (95% CI:
1.00–1.15) after an adjustment for proximity to roads [53]. Different air pollutants coexist
in the real environment, and there may be synergistic/antagonistic effects of different
air pollutants on GDM in pregnant women. Therefore, it is necessary to adjust for the
effects of other air pollutants besides the target ones. Due to the strong correlation between
the pollutants, although previous studies have adjusted for pollutants with relatively
weak correlations with the studied pollutants, there were still multicollinearity problems
between the independent variables in the model, which may have affected the accuracy of
the parameter estimation.

To improve the estimation of parameters under the condition of multicollinearity,
researchers have developed various statistical analysis methods, such as principal compo-
nent regression, partial least squares regression, and ridge regression [25–27]. A principal
component analysis is a multivariate statistical analysis method that uses orthogonal
transformations to transform a set of possibly correlated variables into a set of linearly
uncorrelated variables (principal components). As an easy to apply and efficient method
(most of the variability in the original exposure is retained by a few factors), it has been
widely used in multi-pollutant modelling [54–56]. Several recent studies have provided
new ideas for multi-pollutant modelling, such as Bayesian kernel machine regression
(BKMR) [57] and profile regression [58]. In the future, there is a need to explore more
appropriate methods to solve the multicollinearity problem in multi-pollutant models, in
order to accurately reflect the effects of pollutants.

In the subgroup analysis, pregnant women aged 30–35 years, nulliparous women, and
those with less than a bachelor’s education were sensitive groups, which is consistent with
previous studies [24,59]. The effect of age on the association between air pollution and
GDM is currently controversial. As the body’s ability to metabolize lipids declines with
age, older pregnant women are more likely to develop atherosclerosis and cardiovascular
disease, which may be induced or exacerbated by air pollution [60]. It has also been
suggested that younger pregnant women may be more susceptible to the effects of air
pollution due to their higher respiratory minute volumes, higher levels of activity, and
more time spent outdoors [61]. Several studies have suggested that first pregnancy is also a
significant risk factor for GDM. For nulliparous women, the abnormal immune response
to the initial exposure of fetal-derived villi leads to GDM, and maternal exposure to air
pollution may aggravate this immune response [62,63]. Pregnant women with lower levels
of education have a correspondingly lower social status and a longer exposure to outdoor
air pollution during pregnancy. At the same time, their potential lack of knowledge about
perinatal health care and protection makes them a high-risk group [64]. In addition, higher
education is, to some extent, related to economic status, which may affect the basic health
and nutritional status of pregnant women.

This research has several strengths. It is the first study to focus on the residents of
small- and medium-sized cities. In the case of Handan city, the health effects of air pollution
on pregnant women with GDM were discussed. Another advantage is that the effects of air
pollutants were evaluated after adjusting for other pollutants, and the principal component
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logistic regression model was cleverly used to solve the collinearity problem among the
pollutants included in the model, making the results closer to reality. At the same time,
there were some shortcomings in this study. Due to the lack of information in the original
data, it was not possible to adjust for some potentially important confounding variables,
including maternal body mass index, maternal alcohol consumption, maternal smoking
status, maternal stress, and noise exposure, etc. Secondly, due to the limitations of the
data obtained, there was no information on the mobility of the pregnant women during
their pregnancy, the exposure of the pregnant women in their homes or workplaces could
not be taken into account, and there may have been an exposure misclassification, but the
exposure misclassification would not be differential.

5. Conclusions

This study provided evidence of an association between air pollution and the preva-
lence of GDM. Exposure to PM2.5, PM10, and NO2 during preconception and pregnancy has
adverse effects on the risk of GDM. As a result, pregnant women need to pay attention to air
pollution protection not only during pregnancy, but also during preconception. Advanced
age, non-delivery, and low educational level are high risk factors for the risk of air pollution
on GDM in pregnant women. Therefore, susceptible individuals should be more aware of
the dangers of air pollution and try to avoid outdoor activities in weather with a poor air
quality. In addition, this study confirmed that the results of the multi-pollutant model were
closer to the real situation than those of the single-pollutant model. However, due to the
correlation between the pollutants, it is necessary to explore suitable methods to solve the
multicollinearity problem in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11090728/s1, Figure S1: Distributions of average exposure
levels of pollutants during different periods. The bottom bar, the horizontal line, and the top bar
of the box indicates the 25th, 50th, and 75th percentiles, respectively. The box whiskers present the
5th and 95th percentiles.; Figure S2: Effects of air pollutants on the risk of GDM in pregnant women
of different ages in single-pollutant models (a) and multi-pollutant models (b). All models were
adjusted for maternal education, health insurance, parity, conception year, conception season, and
previous adverse pregnancy and childbirth. * p < 0.05; Figure S3: Effects of air pollutants on the risk
of GDM in pregnant women of different parity in single-pollutant models (a) and multi-pollutant
models (b). All models were adjusted for maternal age, education, health insurance, conception year,
conception season, and previous adverse pregnancy and childbirth. * p < 0.05; Figure S4: Effects
of air pollutants on the risk of GDM in pregnant women with different previous pregnancy and
childbirth in single-pollutant models (a) and multi-pollutant models (b). All models were adjusted for
maternal age, education, health insurance, parity, conception year and conception season. * p < 0.05;
Figure S5: Effects of air pollutants on the risk of GDM in pregnant women with different education
levels in single-pollutant models (a) and multi-pollutant models (b). All models were adjusted for
maternal age, health insurance, parity, conception year, conception season, and previous adverse
pregnancy and childbirth. * p < 0.05. Table S1: Spearman’s correlations of the average exposure levels
of pollutants during different periods; Table S2: Principal component analysis results of six pollutants;
Table S3: Principal component analysis results of six pollutants and confounding variables.
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