Monitoring of Mycotoxigenic Fungi in Fish Farm Water and Fumonisins in Feeds for Farmed Colossoma macropomum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Quantification and Qualification of Free-Living Fungi in Fishponds
2.3. Ecotoxicological Risk Biomonitoring
2.4. Fish Feeds and Storage Conditions
2.5. Determination of Mycotoxins in Fish Feeds: Acquired, Quantification and Chromatographic Conditions
2.6. Database and Statistical Analysis
3. Results
3.1. Climatic Conditions
3.2. Free-Living Fungi in Freshwater Fishponds
3.3. Ecotoxicological Risk
3.4. Mycotoxins in Fish Feeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, L.P.; Franco, V.; Dantas-Filho, J.V.; Freitas, C.O. Economic viability for the cultivations of tambaqui (Colossoma macropomum) in na excavated tank in the municipality of Urupá, Rondônia-Brazil. Rev. Adm. E Negócios Amaz. 2020, 12, 64–89. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Khaneghah, A.M.; Hosseini, H. Mycotoxins and mycotoxigenic fungi in aquaculture and seafood: A review and new perspective. Toxin Rev. 2021, 41, 1058–1065. [Google Scholar] [CrossRef]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Mally, A.; Dekant, W. Mycotoxins and the kidney: Modes of action for renal tumor formation by ochratoxin A in rodents. Mol. Nutr. Food Res. 2009, 53, 467–478. [Google Scholar] [CrossRef]
- Accensi, F.; Abarca, M.L.; Cabañes, F.J. Occurrence of Aspergillus species in mixed feeds and component raw materials and their ability to produce ochratoxin A. Food Microbiol. 2004, 21, 623–627. [Google Scholar] [CrossRef]
- Pietsch, C.; Kersen, S.; Burkhardt-Holm, P.; Valenta, H.E.; Danicke, S. Occurrence of deoxynivalenol and zearalenone in commercial fish feed: An initial study. Toxins 2013, 5, 184–192. [Google Scholar] [CrossRef]
- Matejova, I.; Svobodova, Z.; Vakula, J.; Mares, J.; Modra, H. Impact of Mycotoxins on Aquaculture Fish Species: A Review. J. World Aquac. Soc. 2016, 48, 186–200. [Google Scholar] [CrossRef]
- Namulawa, V.T.; Mutiga, S.; Musimbi, F.; Akello, S.; Ngángá, F.; Kago, L.; Kyallo, M.; Harvey, J.; Ghimire, S. Assessment of Fungal Contamination in Fish Feed from the Lake Victoria Basin, Uganda. Toxins 2020, 12, 233. [Google Scholar] [CrossRef]
- Marijani, E.; Kigadye, E.; Okoth, S. Occurrence of Fungi and Mycotoxins in Fish Feeds and Their Impact on Fish Health. Int. J. Microbiol. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Keawmanee, P.; Rattanakreetakul, C.; Pongpisutta, R. Microbial Reduction of Fumonisin B1 by the New Isolate Serratia marcescens 329-2. Toxins 2021, 13, 638. [Google Scholar] [CrossRef]
- Nogueira, W.V.; de Oliveira, F.K.; Sibaja, K.V.M.; Garcia, S.d.O.; Kupski, L.; de Souza, M.M.; Tesser, M.B.; Garda-Buffon, J. Occurrence and bioacessibility of mycotoxins in fish feed. Food Addit. Contam. Part B 2020, 13, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M.M.C.; Cunha, S.C.; Faria, M.A.; Martins, Z.E.; Ferreira, I.M.P.L.V.O. Influence of oven and microwave cooking with the addition of herbs on the exposure to multi-mycotoxins from chicken breast muscle. Food Chem. 2019, 276, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, A.N.R.; Ferreira, C.D. Mycotoxins in Grains and Cereals Intended for Human Consumption: Brazilian Legislation, Occurrence Above Maximum Levels and Co-Occurrence. Food Rev. Int. 2022, 11, 1–14. [Google Scholar] [CrossRef]
- Danial, A.M.; Medina, A.; Sulyok, M.; Magan, N. Efficacy of metabolites of a Streptomyces strain (AS1) to control growth and mycotoxin production by Penicillium verrucosum, Fusarium verticillioides and Aspergillus fumigatus in culture. Mycotoxin Res. 2020, 36, 225–234. [Google Scholar] [CrossRef]
- Montanha, F.P.; Anater, A.; Burchard, J.F.; Luciano, F.B.; Meca, G.; Manyes, L.; Pimpão, C.T. Mycotoxins in dry-cured meats: A review. Food Chem. Toxicol. 2018, 111, 494–502. [Google Scholar] [CrossRef]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef]
- Oliveira, C.A.C.R.; Santos-Souto, P.S.; Conceição-Palheta, D. Genotoxicity assessment in two Amazonian estuaries 436 using the Plagioscion squamosissimus as a biomonitor. Environ. Sci. Pollut. Res. 2022, 29, 41344–41437. [Google Scholar] [CrossRef]
- Carvalho, T.R.; Fouquet, A.; Lyra, M.L.; Giaretta, A.A.; Costa-Campos, C.E.; Rodrigues, M.T.; Haddad, C.F.B.; Ron, S.R. Species diversity and systematics of the Leptodactylus melanonotus group (Anura, Leptodactylidae): Review of diagnostic traits and a new species from the Eastern Guiana Shield. Syst. Biodivers. 2022, 20, 1–31. [Google Scholar] [CrossRef]
- Oliveira, M.; Vasconcelos, V. Occurrence of Mycotoxins in Fish Feed and Its Effects: A Review. Toxins 2020, 12, 160. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Zeitschrisft 2013, 22, 711–728. [Google Scholar] [CrossRef]
- INPE. Instituto Nacional de Pesquisas Espaciais. Centro de Previsão de Tempo e Estudos Climáticos (CPTEC). Estação meteorológica de Ouro Preto do Oeste – RO: INPE/CPTEC, 2022. Available online: https://www.cptec.inpe.br/previsao-tempo/ro/ouro-preto-do-oeste (accessed on 8 July 2023).
- Costa, R.L.; Todeschini, T.; Ribeiro, M.J.P.; Oliveira, M.T. Blooms of potentially toxic cyanobacteria in fish farms in the Center-South region of the state of Mato Grosso. Biodiversity 2017, 16, 33–46. [Google Scholar]
- Peach, M. Aquatic predacious fungi. Trans. Br. Mycol. Soc. 1950, 33, 148–153. [Google Scholar] [CrossRef]
- Klich, M.A. A Laboratory Guide to the Common Aspergillus Species and Their Teleomorphs; CSIRO-Division of Food Processing: Sydney, Australia, 2002; 116p. [Google Scholar]
- Milner, A. Freshwater Meiofauna: Biology and Ecology. J. N. Am. Benthol. Soc. 2003, 22, 164–165. [Google Scholar] [CrossRef]
- Meneguetti, D.U.O.; Silva, F.C.; Zan, R.A.; Ramos, L.J. Adaptation of the Micronucleus technique in Allium Cepa, for mutagenicity analysis of the Jamari River Valley, Western Amazon, Brazil. J. Environ. Anal. Toxicol. 2012, 2, 1000127. [Google Scholar] [CrossRef]
- Silva, F.D.; Silva, C.L.; Portes, R.G.R.; Hoffman, E.; Oliveira, R.S.; Martins, M.; Silva, C.O.; Silva, F.C. Ecotoxicological evaluation of water from the Ouro Preto stream using the bioindicator Leptodactylus petersii. South Am. J. Basic Educ. Tech. Technol. 2018, 5, 69–87. [Google Scholar]
- Tardieu, D.; Travel, A.; Metayer, J.P.; Le Bourhis, C.; Guerre, P. Zearalenone and Metabolites in Livers of Turkey Poults and Broiler Chickens Fed with Diets Containing Fusariotoxins. Toxins 2020, 12, 525. [Google Scholar] [CrossRef]
- Sant’Ana, F.J.F.; Oliveira, S.L.; Rabelo, R.E.; Vulcani, V.A.S.; Silva, S.M.G.; Ferreira-Junior, J.A. Outbreaks of Piscinoodinium pillulare and Henneguya spp. infection in intensively raised Piaractus mesopotamicus in Southwestern Goiás, Brazil. Braz. J. Vet. Res. Anim. Sci. 2012, 32, 121–125. [Google Scholar] [CrossRef]
- Dantas-Filho, J.V.; Pedroti, V.P.; Santos, B.L.T.; Pinheiro, M.M.L.; Mita, A.B.; Silva, F.C.; Silva, E.C.S.; Cavali, J.; Guedes, E.A.C.; Schons, S.V. First evidence of microplastics in freshwater from fish farms in Rondônia state, Brazil. Heliyon 2023, 9, e15066. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Xu, G.; Zu, H. Use of multiple functional traits of protozoa for bioassessment of marine pollution. Mar. Pollut. Bull. 2017, 119, 33–38. [Google Scholar] [CrossRef]
- Nunes, L.P.S.; Cardoso-Filho, F.C.; Costa, A.P.R.; Muratori, M.C.S. Monitoring of mycotoxigenic fungi in the cultivated fish, in the water and in the substrate from fishponds in farms. Acta Vet. Bras. 2015, 9, 199–204. [Google Scholar]
- Bonatti, T.R.; Siqueira-Castro, I.C.V.; Franco, R.M.B. Checklist of ciliated protozoa from surface water and sediment samples of Atibaia River, Campinas, São Paulo (Southeast Brazil). Rev. Bras. De Zoociências 2016, 17, 63–76. [Google Scholar]
- Rudramurthy, S.M.; Paul, R.A.; Chakrabarti, A.; Mouton, J.W.; Meis, J.F. Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. J. Fungi 2019, 5, 55. [Google Scholar] [CrossRef]
- Okado, N.; Hasegawa, K.; Mizuhashi, F.; Lynch, B.S.; Vo, T.D.; Roberts, A.S. Safety evaluation of nuclease P1 from Penicillium citrinum. Food Chem. Toxicol. 2016, 88, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, C.L.; Sá, J.O.; Silva, R.M.; Carmo, C.O.; Haddad, L.S.M.; Soares, A.C.F.; Duarte, E.A.A. Penicillium citrinum as a Potential Biocontrol Agent for Sisal Bole Rot Disease. J. Agric. Sci. 2019, 11, 206. [Google Scholar] [CrossRef]
- Vitale, S.; Di-Pietro, A.; Turra, D. Autocrine pheromone signalling regulates community behaviour in the fungal pathogen Fusarium oxysporum. Nat. Microbiol. 2019, 4, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, A.; Kizievicz, B.; Muszynska, E.; Mezalska, B. Aquatic fungi and Heterotrophic Straminipiles from fish ponds. Pol. J. Environ. Stud. 2012, 21, 615–625. [Google Scholar]
- Ülger, T.G.; Uçar, A.; Çakıroğlu, F.P.; Yilmaz, S. Genotoxic effects of mycotoxins. Toxicon 2020, 185, 104–113. [Google Scholar] [CrossRef]
- Sandoval-Herrera, N.; Paz Castillo, J.; Herrera-Montalvo, L.G.; Welch, K.C. Micronucleus Test Reveals Genotoxic Effects in Bats Associated with Agricultural Activity. Environ. Toxicol. Chem. 2020, 40, 202–207. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.; Chen, H.; Lei, H.; Liu, H.; Huang, G.; Shi, W.; Ying, G.; Xie, L. Cyclophosphamide affects eye development and locomotion in zebrafish (Danio rerio). Sci. Total Environ. 2022, 805, 150460. [Google Scholar] [CrossRef]
- AnvariFar, H.; Amirkolaie, A.K.; Miandare, H.K.; Ouraji, H.; Jalali, M.A.; Üçüncü, S.İ. Apoptosis in fish: Environmental factors and programmed cell death. Cell Tissue Res. 2016, 368, 425–439. [Google Scholar]
- Miller, M.A.; Zachary, J.F. Mechanisms and Morphology of Cellular Injury, Adaptation, and Death11For a glossary of abbreviations and terms used in this chapter see E-Glossary 1-1. Pathol. Basis Vet. Dis. 2017, 2, 43.e19. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento. Portaria MA/SNAD/SFA No. 07, de 09/11/88-publicada no Diário Oficial da União de 09 de novembro de 1988 - Seacom I, página 21.968, 1988. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/arquivos-alimentacao-animal/ElieneWorkshop_rao_amostragem_LANAGRO_2017.12.12.pdf (accessed on 8 July 2023).
- Pietsch, C.; Junge, R.; Burkhardt-Holm, P. Immunomodulation by ZEN ralenone in Carp (Cyprinus carpio L.). BioMed Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Mansour, A.T.; Omar, E.A.; Soliman, M.K.; Srour, T.M.; Nour, A.M. The Antagonistic Effect of Whey on Ochratoxin A toxicity on the Growth Performance, Feed Utilization, Liver and Kidney Functions of Nile Tilapia (Oreochromis niloticus). Middle East J. Appl. Sci. 2015, 5, 176–183. [Google Scholar]
- Deng, S.X.; Tian, L.X.; Liu, F.J.; Jin, S.J.; Liang, G.Y.; Yang, H.J.; Du, Z.Y.; Liu, Y.J. Toxic effects and residue of aflatoxin B1 in tilapia (Oreochromis niloticus × O. aureus) during long-term dietary exposure. Aquaculture 2010, 307, 233–240. [Google Scholar] [CrossRef]
- Gonçalves-Nunes, E.M.C.; Gomes-Pereira, M.M.; Raposo-Costa, A.P.; Da Rocha-Rosa, C.A.; Pereyra, C.M.; Calvet, R.M.; Alves-Marques, A.L.; Cardoso-Filho, F.; Sanches-Murator, M.C. Screening of aflatoxin B1 and mycobiota related to raw materials and finished feed destined for fish. Lat. Am. J. Aquat. Res. 2015, 43, 595–600. [Google Scholar] [CrossRef]
- Barbosa, T.S.; Pereyra, C.M.; Soleiro, C.A.; Dias, E.O.; Oliveira, A.A.; Keller, K.M.; Silva, P.P.O.; Cavaglieri, L.R.; Rosa, C.A.R. Mycobiota and mycotoxins present in finished fish feeds from farms in the Rio de Janeiro State, Brazil. Int. Aquat. Res. 2013, 5, 2–9. [Google Scholar] [CrossRef]
- Mwihia, E.W.; Mbuthia, P.G.; Eriksen, G.S.; Gathumbi, J.K.; Maina, J.G.; Mutoloki, S.; Waruiru, R.M.; Mulei, I.R.; Lyche, J.L. Occurrence and levels of aflatoxins in fish feeds and their potential effects on fish in Nyeri, Kenya. Toxins 2018, 10, 543. [Google Scholar] [CrossRef]
- Wozny, M.; Obremski, K.; Jakimiuk, E.; Gusiatin, M.; Brzuzan, P. Zearalenone contamination in rainbow trout farms in north-eastern Poland. Aquaculture 2013, 416, 209–211. [Google Scholar] [CrossRef]
- Olorunfemi, M.F.; Odebode, A.C.; Joseph, O.O.; Ezekiel, C.; Sulyok, M.; Krska, R.; Oyedele, A. Multi-mycotoxin contaminations in fish feeds from different Agro-Ecological Zones in Nigeria. In Agricultural Development within the Rural-Urban Continuum; Tielkes, E.C., Ed.; Verlag: Göttingen, Germany, 2002; pp. 557–562. [Google Scholar]
- Turner, P.; Nikiema, P.; Wild, C. Fumonisin contamination of food: Progress in development of biomarkers to better assess human health risks. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 1999, 443, 81–93. [Google Scholar] [CrossRef]
- Scott, P.M. Recent research on fumonisins: A review. Food Addit. Contam. Part A 2012, 29, 242–248. [Google Scholar] [CrossRef]
- Selim, K.M.; El-hofy, H.; Khalil, R.H. The efficacy of three mycotoxin adsorbents to alleviate aflatoxin B1-induced toxicity in Oreochromis niloticus. Aquac. Int. 2013, 22, 523–540. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Z.; Wang, Y.; Long, M.; Wu, W.; Kuca, K. Fumonisin B1: Mechanisms of toxicity and biological detoxification progress in animals. Food Chem. Toxicol. 2021, 149, 111977. [Google Scholar] [CrossRef]
- Pepeljnjak, S.; Petrinec, Z.; Kovacic, S.; Segvic, M. Screening toxicity study in young carp (Cyprinus carpio L.) on feed amended with fumonisin B1. Mycopathologia 2022, 156, 139–145. [Google Scholar] [CrossRef]
- Kovacic, S.; Pepeljnjak, S.; Petrinec, Z.; Klaric, M.S. Fumonisin B1 neurotoxicity in young carp (Cyprinus carpio L.). Arh. Za Hig. Rada I Toksikol. 2009, 60, 419–426. [Google Scholar] [CrossRef]
- Carlson, D.B.; Williams, D.E.; Spitsbergen, J.M.; Ross, P.F.; Bacon, C.W.; Mereditth, F.I.; Riley, R.T. Fumonisin B1 promotes aflatoxin B1 and n-methyl-n’-nitronitrosoguanidina-initiated liver tumors in rainbow trout. Toxicol. Appl. Pharmacol. 2001, 172, 29–36. [Google Scholar] [CrossRef]
- Hashimoto, E.H.; Santos, M.A.S.; Ono, E.Y.S.; Hayashi, C.; Bracarense, A.P.F.R.L.; Hirooka, E.Y. Bromatology and fumonisin and aflatoxin contamination in Aquaculture feed of the region of Londrina, State of Paraná, Brazil. Semin. Ciências Agrárias 2003, 24, 123–132. [Google Scholar]
- Manning, B.B.; Abbas, H.K. The effect of Fusarium mycotoxins deoxynivalenol, fumonisin, and moniliformin from contaminated moldy grains on aquaculture fish. Toxin Rev. 2012, 31, 11–15. [Google Scholar] [CrossRef]
- Gonçalves, R.A.; Schatzmayr, D.; Hofstetter, U.; Santos, G.A. Occurrence of mycotoxins in aquaculture: Preliminary overview of Asian and European plant ingredients and finished feeds. World Mycotoxin J. 2017, 10, 183–194. [Google Scholar] [CrossRef]
- Cyrino, J.E.P.; Fracalossi, D.M. (Eds.) Nutriaqua: Nutrição e Alimentação de Espécies de Interesse Para a Aquicultura Brasileira; EMBRAPA: Florianópolis, Brazil, 2012; 373p. [Google Scholar]
- Moro, G.V.; Rodrigues, A.P.P. Rações Para Organismos Aquáticos: Tipos e Formas de Processamento; EMBRAPA: Brasília, Brazil, 2015; 37p. [Google Scholar]
- Coutinho, J.J.O.; Neira, L.M.; Sandre, L.C.G.; Costa, K.I.; Martins, M.I.E.G.; Portella, M.C.; Carneiroa, D.J. Carbohydrate-to-lipid ratio in extruded diets for Nile tilapia farmed in net cages. Aquaculture 2018, 497, 520–525. [Google Scholar] [CrossRef]
- Choi, S.; Jun, H.; Bang, J.; Chung, S.-H.; Kim, Y.; Kim, B.-S.; Kim, H.; Beuchat, L.R.; Ryu, J.-H. Behaviour of Aspergillus flavus and Fusarium graminearum on rice as affected by degree of milling, temperature, and relative humidity during storage. Food Microbiol. 2015, 46, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Krusche, A.V.; Ballester, M.V.; Victoria, R.L.; Bernardes, M.C.; Leite, N.K.; Hanada, L.; Victoria, D.D.; Toledo, A.M.; Ometto, J.P.; Moreira, M.Z.; et al. Effects of land use changes in the biogeochemistry of fluvial systems of the Ji-Paraná river basin, Rondônia. Acta Amaz. 2005, 35, 197–205. [Google Scholar] [CrossRef]
- Bezerra-Neto, E.B.; Amaral, R.V.A.; Borges, E.L.; Checchia, T.E.; Faria-Junior, C.H.; Zacardi, D.M.; Campos, C.P.; Sousa, R.G.C. Support capacity of a floodplain lake for intensive fish production (Rondônia, Brazil). Ambiente Água-Interndisciplinary J. Appl. Sci. 2023, 18, e28772023. [Google Scholar] [CrossRef]
- Boyd, C.E.; Torrans, E.L.; Tucker, C.S. Dissolved Oxygen and Aeration in Ictalurid Catfish Aquaculture. J. World Aquac. Soc. 2017, 49, 7–70. [Google Scholar] [CrossRef]
- Moura, R.S.T.; Lopes, Y.V.A.; Henry-Silva, G. Sedimentation of nutrients and particulate matter in a reservoir supporting aquaculture activities in the Semi-arid region of Rio Grande do Norte. Quim. Nova 2014, 37, 1283–1288. [Google Scholar] [CrossRef]
- Amorim, C.A.; Dantas, E.W.; Moura, A.N. Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions. Sci. Total Environ. 2020, 744, 140659. [Google Scholar] [CrossRef]
- Amorim, C.A.; Moura, A.N. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Sci. Total Environ. 2021, 758, 143605. [Google Scholar] [CrossRef]
- Codd, G.A.; Testai, E.; Funari, E.; Svirčev, Z. Cyanobacteria, Cyanotoxins, and Human Health. In Water Treatment for Purification from Cyanobacteria and Cyanotoxins; Wiley: Hoboken, NJ, USA, 2020; pp. 37–68. [Google Scholar] [CrossRef]
- Amritha, J.; Faeste, C.K.; Bogevik, A.S.; Berge, G.M.; Fernandes, J.M.O.; Ivanova, L. Development and Validation of a Liquid Chromatography High-Resolution Mass Spectrometry Method for the Simultaneous Determination of Mycotoxins and Phytoestrogens in Plant-Based Fish Feed and Exposed Fish. Toxins 2019, 11, e222. [Google Scholar] [CrossRef]
Feed Composition | Content (g kg−1) | Feed Composition | Content (g kg−1) |
---|---|---|---|
Dry matter (g) | 910.0 | Ethereal extract (min, g) | 80.0 |
Crude protein (min, g) | 360.0 | Calcium (max, g) | 35.0 |
Fibrous matter (max, g) | 95.0 | Calcium (min, g) | 20.0 |
Mineral matter (max, g) 1 | 15.0 | Phosphorus (min, g) | 15.0 |
Species | Taxonomic Classification | |||
---|---|---|---|---|
Family | Order | Class | Phylum | |
Aspergillus fumigatus Fresen. (P. Micheli, 1729) | Trichocomaceae | Eurotiales | Ascomycetes | Ascomycota |
Penicillium citrinum (Thom, C. 1910) | Trichocomaceae | Eurotiales | Eurotiomycetes | Ascomycota |
Penicillium implicatum (Biourge, P. 1923) | Trichocomaceae | Eurotiales | Eurotiomycetes | Ascomycota |
Fusarium oxysporum Schlecht. emend. Snyder & Hansen | Nectriaceae | Hypocreales | Sordariomycetes | Ascomycota |
Alternaria alternata (Fr.:Fr.) Keissl. | Pleosporaceae | Pleosporales | Dothideomycetes | Ascomycota |
Count (UFC mL−1 in log10(x+1)) | Species | |||||
---|---|---|---|---|---|---|
Fish Fams | Seasons | A. fumigatus | P. citrinum | P. implicatum | F. oxysporum | A. alternata |
P7 | Rainy | 3.22 | 0.44 | 0.10 | 2.95 | 1.63 |
Dry | 1.00 | 0.20 | 0.15 | 1.00 | 2.20 | |
P11 | Rainy | 2.17 | 0.26 | 0.11 | 0.80 | 1.55 |
Dry | 1.33 | 0.22 | 0.30 | 1.11 | 0.34 | |
P13 | Rainy | 0.12 | 0.00 | 0.00 | 1.55 | 0.96 |
Dry | 0.00 | 0.20 | 0.00 | 1.10 | 0.90 | |
P18 | Rainy | 2.10 | 0.60 | 0.43 | 2.00 | 1.50 |
Dry | 1.16 | 0.50 | 0.77 | 2.25 | 1.00 | |
P20 | Rainy | 3.22 | 1.33 | 0.81 | 1.77 | 1.43 |
Dry | 3.07 | 1.00 | 0.92 | 0.00 | 1.04 | |
P31 | Rainy | 0.85 | 0.00 | 0.00 | 0.00 | 0.55 |
Dry | 0.40 | 0.10 | 0.00 | 0.10 | 0.24 | |
P32 | Rainy | 0.33 | 0.20 | 0.15 | 0.00 | 0.67 |
Dry | 0.10 | 0.00 | 0.00 | 0.10 | 0.12 | |
P33 | Rainy | 0.80 | 0.14 | 0.14 | 0.00 | 0.25 |
Dry | 0.41 | 0.90 | 0.22 | 0.11 | 0.13 |
Fish Farms | Mycotoxins (μg kg−1) | |||||
---|---|---|---|---|---|---|
AFB1 | AFB2 | AFG1 | FB (B1 + B2) | DON | OTA | |
P1 | <LQ | <LQ | <LQ | 463 ± 70 | <LQ | <LQ |
P2 | <LQ | <LQ | <LQ | 1215 ± 184 | <LQ | <LQ |
P3 | <LQ | <LQ | <LQ | 430 ± 65 | <LQ | <LQ |
P4 | <LQ | <LQ | <LQ | 375 ± 57 | <LQ | <LQ |
P5 | <LQ | <LQ | <LQ | 922 ± 140 | <LQ | <LQ |
P6 | <LQ | <LQ | <LQ | 852 ± 129 | <LQ | <LQ |
P7 | <LQ | <LQ | <LQ | 1418 ± 215 | <LQ | <LQ |
P8 | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ |
P9 | <LQ | <LQ | <LQ | 920 ± 139 | <LQ | <LQ |
P10 | <LQ | <LQ | <LQ | 517 ± 78 | <LQ | <LQ |
P11 | <LQ | <LQ | <LQ | 1262 ± 185 | <LQ | <LQ |
P12 | AI | AI | AI | 0 | AI | AI |
P13 | AI | AI | AI | 0 | AI | AI |
P14 | <LQ | <LQ | <LQ | 474 ± 72 | <LQ | <LQ |
P15 | <LQ | <LQ | <LQ | 909 ± 138 | <LQ | <LQ |
P16 | <LQ | <LQ | <LQ | 1378 ± 209 | <LQ | <LQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa Terada-Nascimento, J.; Vieira Dantas-Filho, J.; Temponi-Santos, B.L.; Perez-Pedroti, V.; de Lima Pinheiro, M.M.; García-Nuñez, R.Y.; Mansur Muniz, I.; Bezerra de Mira, Á.; Guedes, E.A.C.; de Vargas Schons, S. Monitoring of Mycotoxigenic Fungi in Fish Farm Water and Fumonisins in Feeds for Farmed Colossoma macropomum. Toxics 2023, 11, 762. https://doi.org/10.3390/toxics11090762
Sousa Terada-Nascimento J, Vieira Dantas-Filho J, Temponi-Santos BL, Perez-Pedroti V, de Lima Pinheiro MM, García-Nuñez RY, Mansur Muniz I, Bezerra de Mira Á, Guedes EAC, de Vargas Schons S. Monitoring of Mycotoxigenic Fungi in Fish Farm Water and Fumonisins in Feeds for Farmed Colossoma macropomum. Toxics. 2023; 11(9):762. https://doi.org/10.3390/toxics11090762
Chicago/Turabian StyleSousa Terada-Nascimento, Juliana, Jerônimo Vieira Dantas-Filho, Bruna Lucieny Temponi-Santos, Vinícius Perez-Pedroti, Maria Mirtes de Lima Pinheiro, Ricardo Ysaac García-Nuñez, Igor Mansur Muniz, Átila Bezerra de Mira, Elica Amara Cecilia Guedes, and Sandro de Vargas Schons. 2023. "Monitoring of Mycotoxigenic Fungi in Fish Farm Water and Fumonisins in Feeds for Farmed Colossoma macropomum" Toxics 11, no. 9: 762. https://doi.org/10.3390/toxics11090762
APA StyleSousa Terada-Nascimento, J., Vieira Dantas-Filho, J., Temponi-Santos, B. L., Perez-Pedroti, V., de Lima Pinheiro, M. M., García-Nuñez, R. Y., Mansur Muniz, I., Bezerra de Mira, Á., Guedes, E. A. C., & de Vargas Schons, S. (2023). Monitoring of Mycotoxigenic Fungi in Fish Farm Water and Fumonisins in Feeds for Farmed Colossoma macropomum. Toxics, 11(9), 762. https://doi.org/10.3390/toxics11090762