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Abstract: Prenatal exposure to endocrine disruptors such as bisphenol A (BPA) plays a critical role
in the developmental programming of liver dysfunction that is characteristic of nonalcoholic fatty
liver disease (NAFLD). Circadian and aging processes have been implicated in the pathogenesis of
NAFLD. We hypothesized that the prenatal BPA-induced fatty-liver phenotype of female sheep is
associated with premature hepatic senescence and disruption in circadian clock genes. The expression
of circadian rhythm and aging-associated genes, along with other markers of senescence such as
telomere length, mitochondrial DNA copy number, and lipofuscin accumulation, were evaluated
in the liver tissue of control and prenatal BPA groups. Prenatal BPA exposure significantly elevated
the expression of aging-associated genes GLB1 and CISD2 and induced large magnitude differences
in the expression of other aging genes—APOE, HGF, KLOTHO, and the clock genes PER2 and
CLOCK—in the liver; the other senescence markers remained unaffected. Prenatal BPA-programmed
aging-related transcriptional changes in the liver may contribute to pathological changes in liver
function, elucidating the involvement of aging genes in the pathogenesis of liver steatosis.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is emerging to be one of the leading liver
diseases, with a prevalence of 32.4% worldwide, and is projected to increase to 55.4% by
2040 [1,2]. The recent surge in the incidence of NAFLD, which is considered the hepatic
manifestation of metabolic syndrome [3], could be attributed to an increase in metabolic
risk factors [4]. According to the concept of the Developmental Origins of Health and
Disease (DOHaD) [5], an adverse environment during critical stages of development in
early life can induce metabolic changes later in life [6]. Several animal studies have provided
evidence in support of the developmental origins of metabolic disorders in offspring [7–9].
Along similar lines, the pathogenesis of NAFLD could be linked to adverse developmental
conditions [10], including developmental exposure to endocrine-disrupting chemicals
(EDCs) that impact hepatic function [11–13].

Bisphenol-A (BPA) is an endocrine disruptor found in polycarbonate plastics, epoxy
resins, and linings of food containers from where it leaches into food and beverages [14].
There is mounting evidence of the ubiquitous presence of BPA in pregnant women [15],
fetuses [16], and human tissues including the fetal liver [17]. Of relevance, exposure to
BPA leads to adverse health effects, even at low doses [18], highlighting the risk they pose
to public health. In vitro models elucidate the adverse effect of BPA at the materno-fetal
interface [19] and human studies show prenatal BPA impacts the expression and epigenetic
regulation of xenobiotic metabolizing enzyme genes in the fetal liver [20], which can all
contribute to increased susceptibility to diseases later in life. Indeed, epidemiological
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and animal studies have found that BPA plays a role in developmental programming,
and prenatal exposure to BPA has been associated with several metabolic disorders [21].
While epidemiological studies provide the associations between prenatal BPA exposure
and metabolic disorders, studies in animal models have established the causal role of
BPA in the developmental programming of metabolic disorders [22,23], including hepatic
steatosis [24,25].

Relative to the focus of this study, animal models have elucidated the adverse effects
of BPA on liver phenotype [26]. A large animal model, sheep is anatomically and physiolog-
ically similar to humans, with longer gestation times and a fetal developmental trajectory
closer to humans, making it an ideal human biomedical model [27]. Their precocious
nature improves the translational value of studies carried out in sheep in the areas of
human inflammatory diseases [28], neurological disorders [29], reproductive disorders [30],
intrauterine growth restriction [31], and cardiac dysfunction [32]. The sheep model has
also been extensively used to understand the developmental origin of metabolic diseases
and the critical window of susceptibility for the development of adult metabolic pertur-
bations has been identified as days 30–90 of gestation, using a native steroid [33]. This
framework on metabolic susceptibility in sheep offers an advantage in testing the effects of
prenatal BPA exposure on metabolic parameters [34,35]. Prior studies using the precocial
sheep model show that prenatal BPA exposure leads to increased hepatic oxidative stress
and lipid accumulation [36], peripheral insulin resistance [37], and hepatic transcriptome
changes of relevance to steatosis [38] in offspring. Studies in small animal models also show
that prenatal exposure to BPA affects lipid metabolism in the fetal liver [39], affects the
liver lipidome [40], and leads to glucose metabolism dysfunction [26] in offspring. Taken
together, these findings suggest that prenatal BPA exposure induces liver dysfunction
through the hepatic programming of insulin resistance and liver steatosis, features critical
for the progression of NAFLD [41]. The pathogenesis of NAFLD is a multifactorial process
that involves several cellular and molecular pathways [42,43].

The disruption of circadian clocks [44] and cellular senescence [45] are emerging as
key players in metabolic disorders such as NAFLD. Hepatic senescence has been associated
with the reduction of liver metabolism, potentially leading to hepatic and metabolic disease
including NAFLD [46,47]. The role of hepatic senescence, a hallmark of liver aging, in
inducing the NAFLD phenotype as a result of prenatal BPA exposure is unknown, although
the observed liver dysfunction and increased oxidative stress are consistent with age-related
changes [48]. Similarly, disruption of the liver circadian clock is related to liver diseases
including NAFLD [49]. Prenatal exposure to BPA also alters the hepatic transcriptome
related to circadian rhythm in rats [50], indicative of a role for BPA in disrupting circadian
rhythm. Additionally, there also exists a close inter-relationship between aging, circadian
rhythm, and metabolism [51], as evidenced by mouse studies that demonstrate the dis-
ruption of the circadian rhythm in liver mitochondria due to aging [52]. Aging disrupts
the liver’s circadian rhythm [51] and the circadian clock, functions at the crossroads of
liver metabolism and aging [53], warranting studies that investigate both these aspects.
Considering the fact that prenatal BPA exposure has an impact on liver phenotype and the
potential involvement of circadian and senescence genes on the liver phenotype, we hy-
pothesize that the prenatal BPA-induced fatty-liver phenotype of female sheep is associated
with premature hepatic senescence and a disruption of circadian clock genes.

2. Materials and Methods
2.1. Animals

All animal procedures were conducted at the University of Michigan Sheep Research
Facility (Ann Arbor, MI, USA) and were approved by the Institutional Animal Care and
Use Committee of the University of Michigan in keeping with the National Institutes of
Health’s Guide for the Care and Use of Laboratory Animals [54]. The Suffolk breed of sheep
was used, and their maintenance, breeding, and lambing were performed as described
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earlier [55]. The animals were housed together and were fed a maintenance diet to prevent
obesity.

2.2. Prenatal BPA Treatments

Prenatal BPA treatments have been described earlier [36]. Briefly, pregnant sheep were
randomly assigned to control (n = 8) and BPA (n = 11) treatment groups. Control ewes were
given the vehicle (corn oil), and BPA-treated ewes were given 0.5 (environmental exposure
level) mg/kg of BPA (purity ≥ 99%, cat. No. 239658: Aldrich Chemical, Milwaukee, WI,
USA) dissolved in corn oil, administered daily through subcutaneous injections during
the sexually dimorphic window of gestational day 30 to day 90 of the 147-day gestation
period. Humans are primarily exposed to BPA through the oral route but transdermal
exposure [56,57] and exposure via inhalation [58–60] have also been reported. Prior studies
have also confirmed the absence of an effect of the oral or subcutaneous routes of adminis-
tration on plasma BPA levels in neonate mice [61]. Additionally, oral administration of BPA
requires some form of restraint leading to the potential for adverse stress effects, making it
an impractical route in a large animal model.

For this study, we used 5 control (the other 3 gave birth only to male offspring) and
eleven 0.5 mg/kg/day BPA-treated female offspring. In the case of twin pregnancies, only
one randomly selected female offspring from each mother was used for the study. The
choice of female offspring is based on our previous phenotyping investigations using this
sex, which showed lipid accumulation in the liver following prenatal BPA treatment. The
administration of 0.5 mg/kg/day of BPA to the pregnant ewes produced umbilical arterial
levels of ~2.6 ng/mL of free BPA on day 90 of fetal life [62], which reflects the range of free
BPA (<LOD—52.26 ng/mL) found at mid-gestation in a human cohort study [63], thus re-
flecting environmental exposure levels. All lambs used in this study were females, weaned
at ~8 weeks of age and maintained on a diet of 0.64 kg of corn, 0.64 kg hay·lamb−1·day−1,
and 0.014 kg of supplement (36% crude protein) to avoid the development of obesity.

2.3. Tissue Collection

The focus of this study was to assess the contribution of circadian and senescent
genes in the liver to the fatty liver phenotype already characterized at 21 months of age
in prenatal BPA-treated reproductively mature adult females [36,37]. The study design is
presented in Figure 1. Archived tissues collected from adult females at ~21 months of age
(second breeding season) after 48 h of fasting [36] were used in this study. To avoid getting
the female pregnant, male offspring were not maintained. Since cyclic changes in steroid
hormone levels can influence the circadian rhythm genes [64,65], tissues were harvested
after synchronizing cycles with 2 doses of prostaglandin injections (PGF2α, 10 mg, i.m.;
Lutalyse, Pfizer Animal Health, Florham Park, NJ, USA), administered 11 days apart.
Animals were euthanized by barbiturate overdose (Fatal Plus; Vortech Pharmaceuticals,
Dearborn, MI, USA) 24 h after the second dose of prostaglandin, during the late follicular
phase. Flash-frozen (stored at −80 ◦C) and formalin-fixed and paraffin-embedded liver
tissue collected from the tip of the left lobe were both used in this study.

2.4. RT-PCR

Cellular senescence, one of the hallmarks of aging in the liver [66], was assessed by
measuring the expression of genes involved in the aging process, along with measuring
mitochondrial DNA copy number and relative telomere length.
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Figure 1. Summary of experimental design. Top panel: Schematic showing prenatal treatment (daily 
subcutaneous injections of vehicle (corn oil) or 0.5 mg/kg BPA in corn oil) from gestational days 
(GD) 30–90 (term 147 days) and timing of liver harvest from reproductively mature adult 21-month-
old female offspring following cycle synchronization. The fatty liver phenotype of BPA-treated fe-
males at this age has been previously published [36]. Bottom panel: Treatment groups, number of 
animals bred, and the number of female offspring studied are shown on the left (note 3 controls only 
provided male offspring), and the synchronization protocol on the right. Cycle synchronization in-
volved 2 injections of prostaglandin F2 (PGF2) given 11 days apart followed by euthanasia 24 h after 
the 2nd PGF 2 injection and collection of the liver during the synchronized follicular phase. # de-
notes the number of animals used. 

2.4. RT-PCR 
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2.4.1. mRNA Expression of Circadian Genes and Aging Genes 
RNA from 45 mg of frozen liver tissue was extracted using Trizol reagent (Life Tech-

nologies, Carlsbad, CA, USA), as per the manufacturer’s instructions. Using a SuperScript 
VILO kit (Thermo Fisher Scientific, Waltham, MA, USA), 1000 ng of RNA was reverse 
transcribed, as per the manufacturer’s instructions. Primers were retrieved from the pre-
vious literature or designed using Primer BLAST ® (NIH), and the primer sequences are 
indicated in Supplementary Table S1. Gene expression was analyzed using SYBRgreen-
based real-time RT-PCR on the ABI StepOnePlus™ Real-Time PCR System (Thermo 
Fisher Scientific, Waltham, MA). The cycling conditions used were enzyme activation at 
95 °C for 2 min, followed by 40 cycles of denaturation at 95 °C for 15 s and primer anneal-
ing at 60 °C for 1 min. A melt curve analysis was performed at the end of the amplification. 

Figure 1. Summary of experimental design. (Top panel): Schematic showing prenatal treatment
(daily subcutaneous injections of vehicle (corn oil) or 0.5 mg/kg BPA in corn oil) from gestational
days (GD) 30–90 (term 147 days) and timing of liver harvest from reproductively mature adult 21-
month-old female offspring following cycle synchronization. The fatty liver phenotype of BPA-treated
females at this age has been previously published [36]. (Bottom panel): Treatment groups, number
of animals bred, and the number of female offspring studied are shown on the left (note 3 controls
only provided male offspring), and the synchronization protocol on the right. Cycle synchronization
involved 2 injections of prostaglandin F2 (PGF2) given 11 days apart followed by euthanasia 24 h
after the 2nd PGF 2 injection and collection of the liver during the synchronized follicular phase.
# denotes the number of animals used.

2.4.1. mRNA Expression of Circadian Genes and Aging Genes

RNA from 45 mg of frozen liver tissue was extracted using Trizol reagent (Life Tech-
nologies, Carlsbad, CA, USA), as per the manufacturer’s instructions. Using a SuperScript
VILO kit (Thermo Fisher Scientific, Waltham, MA, USA), 1000 ng of RNA was reverse
transcribed, as per the manufacturer’s instructions. Primers were retrieved from the pre-
vious literature or designed using Primer BLAST ® (NIH), and the primer sequences are
indicated in Supplementary Table S1. Gene expression was analyzed using SYBRgreen-
based real-time RT-PCR on the ABI StepOnePlus™ Real-Time PCR System (Thermo Fisher
Scientific, Waltham, MA). The cycling conditions used were enzyme activation at 95 ◦C
for 2 min, followed by 40 cycles of denaturation at 95 ◦C for 15 s and primer annealing at
60 ◦C for 1 min. A melt curve analysis was performed at the end of the amplification. The
relative amount of each transcript was estimated by the ∆∆CT method, using GAPDH as
the endogenous reference gene. The reactions were carried out in triplicates.

2.4.2. Mitochondrial DNA Copy Number

A PCR-based analysis of the mitochondrial DNA copy number was conducted as
described earlier [67]. DNA was extracted from 45 mg of frozen liver tissue using DNAzol
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reagent (Molecular Research Center, Inc., Cincinnati, OH), as per the manufacturer’s in-
structions. For this analysis, a gene encoded by mitochondrial DNA (CYTB) was compared
to a gene encoded by genomic DNA using GAPDH primers [67]. Samples were analyzed
using SYBRgreen-based PCR on the ABI StepOnePlus™ Real-Time PCR System using the
cycling conditions described earlier [68]. A melt curve analysis was performed at the end of
the amplification. Genes were compared using the following equations: ∆CT = (nucDNA
CT − mtDNA CT) and relative mitochondrial DNA content was estimated as 2 × 2∆CT.
The reactions were carried out in triplicates.

2.4.3. Telomere Length Assay

Telomere length was measured by a PCR-based method using DNA as described
earlier [69]. The sequences of primers coding for telomeres (TELGC) and a single copy
reference gene (GDF8) are shown in Supplementary Table S1. Telomere and reference
gene reactions were run on the same plate in separate wells with primer concentrations
of 900 nM and 500 nM, respectively, in a total reaction volume of 15 µL with 1 ng DNA.
Samples were analyzed using SYBRgreen-based PCR on the ABI StepOnePlus™ Real-Time
PCR System using the cycling conditions described by Froy et al. [70] as follows: enzyme
activation at 95 ◦C for 10 min, 50 cycles of denaturation at 95 ◦C for 15 s, primer annealing
at 58 ◦C for 30 s, and signal acquisition at 72 ◦C for 30 s. This was followed by a melting
curve analysis of 95 ◦C for 1 min, 58 ◦C for 30 s, 0.11 ◦C/s to 95 ◦C, and finally 40 ◦C for
10 s. DNA from all the control samples were pooled to create a calibrator sample that
was used in every plate run to account for plate-to-plate variation. The single copy GDF8
(G) gene was used to normalize the telomere (T) data by determining the (T/G) ratio for
each sample. The relative telomere length was determined by the factor by which the T/G
ratio of the samples differed from the calibrator sample. The reactions were carried out
in triplicates.

2.5. Lipofuscin Staining

Sudan Black B (SBB) staining of the lipofuscin pigment, a marker of replicative and
stress-induced senescence [71], was visualized in the FFPE liver section. SBB staining
solution was prepared as outlined by Georgakopoulou et al. [71], by dissolving 0.7 g of SBB
in 70% ethanol, filtered and stored in an airtight container. FFPE sections were dewaxed in
xylene, dehydrated until 70% ethanol, and immersed in SBB solution for 60 min. The tissues
were washed twice in 70% ethanol, six changes of distilled water, counterstained with 0.1%
Nuclear Fast Red for 5 min, and mounted with glycerol gelatin slide-mounting medium
(Sigma-Aldrich, St. Louis, MO, USA). The slides were dried and imaged at 40x the same
day, as the Nuclear Fast Red counterstain diffused into the aqueous mounting medium on
storage. The number of cells showing lipofuscin were counted using ImageJ (v1.54b) from
10 fields/section and the average was calculated from three technical replicates—three
sections 50 µm apart for each animal. Sections from 8 control (includes 3 additional controls
from another cohort treated the same way as the controls used in this cohort) and 7 prenatal
BPA animals were used for the staining.

2.6. Statistical Analysis

The outliers were identified using the ROUT method and the data were checked for
normality using the Shapiro–Wilk normality test. Data that followed normal distribution
were analyzed by a two-tailed Student’s t-test, while a Mann–Whitney U test was used
to analyze data without a normal distribution using Prism v10.1 (GraphPad, La Jolle, CA,
USA). All significance was set at p value < 0.05. Additionally, the magnitude of difference
between the control and prenatal BPA groups was assessed by Cohen’s effect size analysis,
where a Cohen’s d of ≥0.8 represented a large effect size/large magnitude differences and a
Cohen’s d of ≥0.5 to 0.8 represented a medium effect size/medium magnitude differences.
A large Cohen’s d indicates the mean difference is large compared to the variability and the
impact is significant in real-world scenarios and a medium effect size indicates a reasonable
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overall impact [72]. Graphs were generated using Prism v10.1 software (GraphPad, La Jolle,
CA, USA).

3. Results
3.1. Effect of Prenatal BPA Exposure on Circadian Function

Prenatal BPA exposure had no effect on the expression of nine circadian genes, ARNTL,
CLOCK, CRY2, PER2, PER3, SIRT1, NR1D1, NPAS2, and TIMELESS, as illustrated in
Figure 2. However, there was a large effect size decrease in the CLOCK (Cohen’s d = 1.26)
gene and an increase in the PER2 (Cohen’s d = 1.01) gene.
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Figure 2. Effect of prenatal BPA exposure on circadian gene expression. Box plots for gene
expression changes of circadian genes in control (n = 5) and prenatal BPA (n = 11) sheep liver.
# represents a large effect size based on Cohen’s d analysis.

3.2. Effect of Prenatal BPA Exposure on Markers of Longevity and Senescence

Prenatal BPA exposure increased expression of GLB1 (p = 0.02) and CISD2 (p = 0.01).
Expression of other genes involved in the aging process such as CDKN1A, SIRT2, MCM2,
APOE, STC1, KLOTHO, HGF, CISD2, SOD2, and CCL8 did not significantly differ between
the control and prenatal BPA groups, as illustrated in Figure 3. The expression of APOE
(Cohen’s d = 1.23), HGF (Cohen’s d = 1.03), and KLOTHO (Cohen’s d = 0.9) showed a large
magnitude increase in liver tissue in response to prenatal BPA exposure. The telomere
length, a marker of biological aging [73], was also not significantly affected in response
to prenatal BPA exposure. Similarly, mitochondrial DNA copy number (mtDNA-CN),
associated with several aging-related diseases [74,75] and lipofuscin accumulation, was not
affected by prenatal BPA exposure and is represented in Figure 4.
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disruptions identified in previous studies and the overall contribution of prenatal BPA 
exposure to a NAFLD phenotype. 

Figure 3. Effect of prenatal BPA exposure on markers of longevity and senescence. Box plots for
the gene expression of aging-associated genes in control (n = 5) and prenatal BPA (n = 11) sheep.
* represents a significant difference (p < 0.05) using a Student’s t-test, # represents a large effect size
using Cohen’s d analysis.
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Figure 4. Effect of prenatal BPA exposure on Mitochondrial DNA copy number, Relative Telomere
content, and Senescence. (a) Box plots for mitochondrial DNA copy number in control (n = 5) and
prenatal BPA sheep liver (n = 11), (b) Bar graph showing relative telomere content in control (n = 5)
and prenatal BPA sheep liver (n = 11), (c) Bar graph showing lipofuscin granule distribution in control
(n = 8) and prenatal BPA (n = 7) sheep liver, (d) Representative image showing lipofuscin granules
stained by Sudan Black B in liver cells at 40× magnification.

Figure 5 provides a summary of the findings of this study in the context of metabolic
disruptions identified in previous studies and the overall contribution of prenatal BPA
exposure to a NAFLD phenotype.
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Figure 5. Graphical Summary. Summary of Circadian and Aging-related changes programmed by
prenatal BPA exposure in the liver, their relationship with previous findings in a sheep model, and
potential contribution to the NAFLD phenotype, which is characterized by fatty liver and leads to
liver cirrhosis. Our previous publications detailing phenotypic outcomes have been indicated in
parenthesis-Puttabyatappa et al., 2019 [36], Veiga-Lopez et al., 2016 [37] and Puttabyatappa et al.,
2022 [38].

4. Discussion

Findings from this study demonstrated that prenatal BPA exposure influenced aging-
associated genes and circadian gene expression (marginally) in the liver of the female
offspring. The potential contribution of these changes in increasing oxidative stress, lipid
accumulation, and insulin resistance, previously reported in the liver of female sheep
prenatally exposed to BPA [36,37], is discussed below.

4.1. Impact of Prenatal BPA on Circadian Genes

The interplay between the master circadian regulator, the suprachiasmatic nucleus
(SCN) in the hypothalamus, and the peripheral circadian clocks in the liver play a vital
role in energy homeostasis [76]. The clock genes are expressed in a circadian manner,
showing cellular rhythmicity in sheep liver [77,78] and modulating glucose homeosta-
sis [79,80]. PER2 plays an important role in liver diurnal metabolism, regulation of lipid
metabolism [81], and glucose homeostasis [82], and exacerbates nonalcoholic steatohep-
atitis, a progressive form of NAFLD [83]. The large magnitude increases in PER2 and
decreases in CLOCK gene expression evident in prenatal BPA-treated sheep liver (this
study) is in agreement with findings of gestational exposure to BPA affecting circadian
gene expression in the rat liver [50]. The increasing trend of PER2 expression, seen in our
study, may have contributed to insulin resistance, increased oxidative stress, and ectopic
lipid accumulation evidenced earlier in the liver of this sheep model of prenatal BPA expo-
sure [36,37]. In support of this premise, an increase in PER2 was found to be associated with
insulin resistance in the mouse liver [84] and other conditions of increased oxidative stress
such as fasting [85]. On the contrary, increased levels of the PER2 protein were associated
with reduced fat accumulation in mouse hepatocytes [86]. These differences are a likely
function of species differences, or our studies relating to mRNA expression as opposed to
the mouse study exploring protein levels. Findings from other studies showing PER protein
accumulation repressing PER2 transcription [87] suggest that the elevated PER2 transcript
level evident in our study is a likely response to decreased PER2 protein expression.

The CLOCK gene is the master regulator of circadian rhythms and its disruption
impairs metabolic homeostasis [88], leading to hyperlipedemia, hepatic steatosis, hyper-
glycemia, and hypoinsulinemia in mouse models [89]. In addition, human studies have
shown genetic variations in the CLOCK gene to be associated with NAFLD [90]. Downreg-
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ulation of the CLOCK gene, as seen in our study, is an indication of compromised circadian
rhythmicity, suggesting the regulatory impact of prenatal BPA on the circadian regulation
of hepatic CLOCK transcription. The decrease in CLOCK expression may have contributed
to the increased hepatic oxidative stress seen in sheep prenatally exposed to BPA [36]. This
premise is supported by studies in CLOCK mutant mice that show an increase in oxidative
stress [91] and the downregulation of the CLOCK protein in other conditions of increased
oxidative stress [92]. In the liver, the regulation of circadian genes by CLOCK is also carried
out by its ortholog, NPAS2 [93]. The absence of change in NPAS2 in the present study may
explain the absence of change in the expression of the other CLOCK-controlled genes, in
spite of the downregulation of CLOCK.

4.2. Impact of Prenatal BPA on Longevity and Senescence Genes

Increased oxidative stress and lipid accumulation evidenced earlier in the prenatal BPA
exposure sheep model [36] have been linked to the aging process [94], particularly senes-
cence [95]. Cellular senescence, one of the hallmarks of aging, contributes to the progression
of NAFLD [96], with NAFLD patients showing increased cellular senescence [97]. We have
shown the downregulation of the GLB1 gene, which codes for senescence-associated β-
galactosidase (SA-β-gal), in the liver of sheep prenatally exposed to BPA. Elevated levels
of GLB1, a lysosomal marker of cell senescence, is associated with increased liver fat,
NAFLD, aging, and type 2 diabetes mellitus [98–100], and the low levels of GLB1 seen
in our study is in contrast to our other markers pointing at accelerated aging. However,
SA-β-gal activity is not essential for senescence [101], making it a non-specific marker
of cellular senescence [102]. The gene CDGSH iron-sulfur domain 2 (CISD2), one of the
pro-longevity genes that protects the liver from age-related pathological conditions and is a
molecular target for NAFLD treatment [103], is downregulated in response to prenatal BPA
in the liver, indicating an aging phenotype. The increase in oxidative stress reported in this
model [36] could also be contributed by the lower level of CISD2, as CISD2 haploinsuffi-
ciency induces oxidative stress and NAFLD [104]. CISD2 is also downregulated during
normal aging in the mouse liver [105,106]. Prenatal BPA exposure also induced a large
effect size decrease in the mRNA of other anti-aging genes—APOE [107], KLOTHO [108],
and the antiapoptotic and antifibrotic gene HGF [109]. APOE deficiency is associated with
aging-related changes and hyperlipidemia and promotes NAFLD in mice [110–112]. The
anti-aging protein KLOTHO also regulates insulin signaling [113], lipid metabolism [114],
and oxidative stress [115,116]. Recent epidemiological studies show higher levels of plasma
KLOTHO in diabetic patients [117,118] while a lower level of KLOTHO is associated with
NAFLD [119]. HGF plays a critical role in liver metabolism as HGF treatment decreases
fasting blood glucose levels and hepatic lipid content in mice fed a high-fat diet [120] and
serum HGF is a marker of NAFLD [121]. The decreasing trend observed in the expression
of these longevity genes collectively points towards accelerated liver aging and a possible
contribution to the increased lipid accumulation, oxidative stress, and insulin resistance
seen in the liver of sheep prenatally exposed to BPA [36,37].

4.3. Impact of Prenatal BPA on Other Markers of Senescence

Mitochondrial dysfunction seen in states of increased oxidative stress and cellular
senescence [122] has been implicated in age-related diseases [123]. Mitochondrial DNA
(mtDNA) copy number is a proxy for mitochondrial function [124] and elevated liver
mtDNA is associated with NAFLD [125]. Our results indicate an absence of an effect
of prenatal BPA exposure on liver mtDNA copy number. Telomere length shortening
is another marker of aging that has been linked to oxidative stress [126], impaired lipid
metabolism [127], and several diseases [128], including NAFLD [46,129,130]. Liver telomere
length was not affected by prenatal BPA exposure. Lipofuscin accumulation, an indicator
of cellular senescence [131], was also not observed in the liver of sheep prenatally exposed
to BPA.
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The directionality of aging-related/longevity genes, coupled with an absence of change
in cellular senescence markers in the liver, suggests that exposure to prenatal BPA impacts
cellular aging in liver cells that may ultimately progress towards early senescence when
the animal ages. While several other aging genes have been identified, their mechanism of
action in the aging process is unknown [132]. As such, alternate mechanisms of senescence
may have been missed in this study.

4.4. Strengths and Limitations

The strength of this study is the use of a precocial, large animal model with a devel-
opmental trajectory similar to humans to elucidate the potential effects of prenatal BPA
exposure in humans. The clock gene rhythm in the sheep liver is regulated by a pho-
toperiod [77], providing an avenue to explore the role of prenatal BPA on circadian gene
expression in a large animal model. Hyperglycemia and hyperinsulinemia induce hepatic
steatosis in sheep [133]. Women with polycystic ovary syndrome (PCOS) are known to
develop NAFLD [134] and a similar liver phenotype has been illustrated in a sheep model
of PCOS by us [135] and others [136], making this a valid model to elucidate the potential
effects of prenatal BPA exposure in the context of changes seen in humans. The maternal
BPA treatment of 0.5 mg/kg/day produced umbilical arterial levels of ~2.6 ng/mL of
free BPA on day 90 of fetal life [62]. These levels are within the range of BPA found in
cord blood samples (range of 0.53–4.75 ng/mL) [63,137–140] from human cohort studies
and are relevant to environmental exposure levels. BPA is ubiquitously present in the
environment, air, water, soil, animal feed, wildlife, and humans [141–143]. While the role of
direct BPA exposure in the development of diabetes mellitus and obesity has been explored
extensively [144,145], there is a gap in the research on the prenatal effect of BPA on liver
pathologies. This study was performed to address causal relationships between prenatal
BPA and liver steatosis, as human studies can only point to association and not causality.
With the emerging molecular link between senescence and circadian rhythm, this is the
first study to look at the prenatal effects of BPA on senescence and circadian clock genes in
sheep liver tissue, at a dose relevant to human environmental exposure.

Some of the limitations of this study include the fact that the liver tissue was not har-
vested according to zeitgeber times, and the time of tissue collection was not synchronized
across all the animals due to practical difficulties in working with large animal models.
This could have resulted in a shift in expression due to the rhythmicity in the circadian
genes. The inter-animal differences could have led to variability in the amplitude of the
circadian rhythm between them [146], which would have influenced the circadian gene
expression. Post-transcriptional and post-translational modifications play a key role in the
rhythmic expression of circadian genes in the liver [147], which was not evaluated in this
study. Although several studies have reported Sudan black B staining of lipofuscin as a
marker of cellular senescence, it also diffusely stains distributed lipids in cells [148]. Ideally,
an assay for β-galactosidase, which is expressed from GLB1 and is a biochemical marker of
senescence, would have been more specific. However, the assay required fresh tissue or
cryosections that we did not have from this cohort of animals.

5. Conclusions

This study indicates that prenatal exposure to BPA, at a dose of human relevance,
leads to changes in the liver of adult female offspring consistent with premature senescence.
These changes in senescence genes link to previously reported phenotypic changes in the
liver of this model. Further studies need to be performed to address the mechanism of
action of these genes on liver function and their role in liver dysfunction. These results
assume significance with the increasing prevalence of BPA and metabolic diseases like
NAFLD among the general human population.
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