Quetiapine-Related Deaths: In Search of a Surrogate Endpoint
Abstract
:1. Introduction
2. Use and Misuse
Quetiapine-Related Fatalities and Fatal Toxicity
3. A Systematic Review Strategy and a Meta-Analysis
4. Relevant Matrices
4.1. The Liver and Its Lobar Structure
4.2. First-Pass Effect and the Liver
4.3. Liver Tissue from Fresh Cadavers
4.4. Liver Tissue Modeling
4.5. Blood
4.6. Brain Tissue
4.7. Skeletal Muscle
5. Other Matrices
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soeiro, D.E.S.M.G.; Dias, V.V.; Missio, G.; Balanza-Martinez, V.; Valiengo, L.; Carvalho, A.F.; Moreno, R.A. Role of quetiapine beyond its clinical efficacy in bipolar disorder: From neuroprotection to the treatment of psychiatric disorders (Review). Exp. Ther. Med. 2015, 9, 643–652. [Google Scholar] [CrossRef]
- Morrison, P.; Taylor, D.M.; McGuire, P. Schizophrenia and Related Psychoses. In The Maudsley Prescribing Guidelines in Psychiatry; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 1–224. [Google Scholar]
- World Health Organization (WHO). WHO Model List of Essential Medicines-22nd List; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Curry, D.E.; Richards, B.L. A Brief Review of Quetiapine. Am. J. Psychiatry Resid. J. 2022, 18, 20–22. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chiang, C.H.; Tseng, M.M.; Tam, K.W.; Loh, E.W. Effects of quetiapine on sleep: A systematic review and meta-analysis of clinical trials. Eur. Neuropsychopharmacol. 2023, 67, 22–36. [Google Scholar] [CrossRef]
- Anderson, S.L.; Vande Griend, J.P. Quetiapine for insomnia: A review of the literature. Am. J. Health Syst. Pharm. 2014, 71, 394–402. [Google Scholar] [CrossRef]
- Kreys, T.J.; Phan, S.V. A literature review of quetiapine for generalized anxiety disorder. Pharmacotherapy 2015, 35, 175–188. [Google Scholar] [CrossRef]
- Sacks, O. Musicophilia-La Musique, le Cerveau et Nous; Média Diffusion: Paris, France, 2018. [Google Scholar]
- Kalari, V.K.; Morrison, P.E.; Budman, C.L. Atypical antipsychotics for treatment of Tourette syndrome. In International Review of Movement Disorders; Elsevier: Amsterdam, The Netherlands, 2022; Volume 4, pp. 203–235. [Google Scholar]
- Fischer, B.A.; Boggs, D.L. The role of antihistaminic effects in the misuse of quetiapine: A case report and review of the literature. Neurosci. Biobehav. Rev. 2010, 34, 555–558. [Google Scholar] [CrossRef]
- Terry, N.; Margolis, K.G. Serotonergic Mechanisms Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb. Exp. Pharmacol. 2017, 239, 319–342. [Google Scholar] [CrossRef]
- Moreines, J.L.; Owrutsky, Z.L.; Gagnon, K.G.; Grace, A.A. Divergent effects of acute and repeated quetiapine treatment on dopamine neuron activity in normal vs. chronic mild stress induced hypodopaminergic states. Transl. Psychiatry 2017, 7, 1275. [Google Scholar] [CrossRef]
- Barandouzi, Z.A.; Lee, J.; Del Carmen Rosas, M.; Chen, J.; Henderson, W.A.; Starkweather, A.R.; Cong, X.S. Associations of neurotransmitters and the gut microbiome with emotional distress in mixed type of irritable bowel syndrome. Sci. Rep. 2022, 12, 1648. [Google Scholar] [CrossRef]
- Mlambo, R.; Liu, J.; Wang, Q.; Tan, S.; Chen, C. Receptors Involved in Mental Disorders and the Use of Clozapine, Chlorpromazine, Olanzapine, and Aripiprazole to Treat Mental Disorders. Pharmaceuticals 2023, 16, 603. [Google Scholar] [CrossRef]
- DeVane, C.L.; Nemeroff, C.B. Clinical pharmacokinetics of quetiapine: An atypical antipsychotic. Clin. Pharmacokinet. 2001, 40, 509–522. [Google Scholar] [CrossRef]
- Pilgrim, J.L.; Drummer, O.H. The toxicology and comorbidities of fatal cases involving quetiapine. Forensic Sci. Med. Pathol. 2013, 9, 170–176. [Google Scholar] [CrossRef]
- Gibiino, S.; Trappoli, A.; Balzarro, B.; Atti, A.R.; De Ronchi, D. Coma After Quetiapine Fumarate Intentional Overdose in a 71-year-old Man: A Case Report. Drug Saf. Case Rep. 2015, 2, 3. [Google Scholar] [CrossRef]
- Parker, D.R.; McIntyre, I.M. Case studies of postmortem quetiapine: Therapeutic or toxic concentrations? J. Anal. Toxicol. 2005, 29, 407–412. [Google Scholar] [CrossRef]
- Andersen, F.D.; Simonsen, U.; Andersen, C.U. Quetiapine and other antipsychotics combined with opioids in legal autopsy cases: A random finding or cause of fatal outcome? Basic Clin. Pharmacol. Toxicol. 2021, 128, 66–79. [Google Scholar] [CrossRef]
- Wu, C.S.; Tsai, Y.T.; Tsai, H.J. Antipsychotic drugs and the risk of ventricular arrhythmia and/or sudden cardiac death: A nation-wide case-crossover study. J. Am. Heart Assoc. 2015, 4, e001568. [Google Scholar] [CrossRef]
- Saito, T.; Tsuji, T.; Namera, A.; Morita, S.; Nakagawa, Y. Comparison of serum and whole blood concentrations in quetiapine overdose cases. Forensic Toxicol. 2022, 40, 403–406. [Google Scholar] [CrossRef]
- Ostad Haji, E.; Wagner, S.; Fric, M.; Laux, G.; Pittermann, P.; Roschke, J.; Hiemke, C. Quetiapine and norquetiapine serum concentrations and clinical effects in depressed patients under augmentation therapy with quetiapine. Ther. Drug Monit. 2013, 35, 539–545. [Google Scholar] [CrossRef]
- Balit, C.R.; Isbister, G.K.; Hackett, L.P.; Whyte, I.M. Quetiapine poisoning: A case series. Ann. Emerg. Med. 2003, 42, 751–758. [Google Scholar] [CrossRef]
- Cubeddu, L.X. Iatrogenic QT Abnormalities and Fatal Arrhythmias: Mechanisms and Clinical Significance. Curr. Cardiol. Rev. 2009, 5, 166–176. [Google Scholar] [CrossRef]
- El Mazloum, R.; Snenghi, R.; Zorzi, A.; Zilio, F.; Dorigo, A.; Montisci, R.; Corrado, D.; Montisci, M. Out-of-hospital cardiac arrest after acute cocaine intoxication associated with Brugada ECG patterns: Insights into physiopathologic mechanisms and implications for therapy. Int. J. Cardiol. 2015, 195, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Montisci, M.; Thiene, G.; Ferrara, S.D.; Basso, C. Cannabis and cocaine: A lethal cocktail triggering coronary sudden death. Cardiovasc. Pathol. 2008, 17, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Andersen, F.D.; Joca, S.; Hvingelby, V.; Arjmand, S.; Pinilla, E.; Steffensen, S.C.; Simonsen, U.; Andersen, C.U. Combined effects of quetiapine and opioids: A study of autopsy cases, drug users and sedation in rats. Addict. Biol. 2022, 27, e13214. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, M.A.; Rathbone, J. Droperidol for psychosis-induced aggression or agitation. Cochrane Database Syst. Rev. 2016, 12, CD002830. [Google Scholar] [CrossRef] [PubMed]
- Culebras, X.; Corpataux, J.B.; Gaggero, G.; Tramer, M.R. The antiemetic efficacy of droperidol added to morphine patient-controlled analgesia: A randomized, controlled, multicenter dose-finding study. Anesth. Analg. 2003, 97, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Zargar, S.; Wani, T.A.; Alsaif, N.A.; Khayyat, A.I.A. A Comprehensive Investigation of Interactions between Antipsychotic Drug Quetiapine and Human Serum Albumin Using Multi-Spectroscopic, Biochemical, and Molecular Modeling Approaches. Molecules 2022, 27, 2589. [Google Scholar] [CrossRef] [PubMed]
- Narala, A.; Veerabrahma, K. Preparation, Characterization and Evaluation of Quetiapine Fumarate Solid Lipid Nanoparticles to Improve the Oral Bioavailability. J. Pharm. 2013, 2013, 265741. [Google Scholar] [CrossRef]
- Junior, E.; Duarte, L.; Suenaga, E.; de Carvalho Cruz, A.; Nakaie, C. Comparative bioavailability of two quetiapine formulations in healthy volunteers after a single dose administration. J. Bioequiv Availab. 2011, 3, 178–181. [Google Scholar] [CrossRef]
- Schonborn, J.L.; Gwinnutt, C. The Role of the Liver in Drug Metabolism Anaesthesia Tutorial of the Week 179 17th May 2010. ATOTW 2010. Available online: https://resources.wfsahq.org/atotw/the-role-of-the-liver-in-drug-metabolism/ (accessed on 20 November 2023).
- Waal, H.; Vold, J.H.; Skurtveit, S.O. Quetiapine abuse—Myth or reality? Tidsskr. Nor. Laegeforen 2020, 140, 1228–1230. [Google Scholar] [CrossRef]
- Ybanez, L.; Spiller, H.A.; Badeti, J.; Casavant, M.J.; Rine, N.; Michaels, N.L.; Zhu, M.; Smith, G.A. Suspected suicides and suicide attempts involving antipsychotic or sedative-hypnotic medications reported to America’s Poison Centers, 2000–2021. Clin. Toxicol. 2023, 61, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Cetin, N.; Konuk, N. Suicide attempt with a very high dose of quetiapine. Klin. Psikofarmakol. Bul.-Bull. Clin. Psychopharmacol. 2011, 21, 67–69. [Google Scholar] [CrossRef]
- Kinoshita, H.; Tanaka, N.; Kumihashi, M.; Jamal, G.; Ito, A.; Yamashita, T.; Ozawa, Y.; Ameno, K. An autopsy case of drowning under the influence of multiple psychotropic drugs. Arch. Med. Sadowej Kryminol. 2019, 69, 222–227. [Google Scholar] [CrossRef]
- Burke, M.P.; Path, D.F.; Alamad, S.; Dip, G.; Opeskin, K. Death by smothering following forced quetiapine administration in an infant. Am. J. Forensic Med. Pathol. 2004, 25, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Bertol, E.; Vaiano, F.; Argo, A.; Zerbo, S.; Trignano, C.; Protani, S.; Favretto, D. Overdose of Quetiapine-A Case Report with QT Prolongation. Toxics 2021, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Office for National Statistics (UK). Number of Drug-Related Deaths Due to Quetiapine Use in England and Wales from 1998 to 2021. Available online: https://www.ons.gov.uk/file?uri=%2fpeoplepopulationandcommunity%2fbirthsdeathsandmarriages%2fdeaths%2fdatasets%2fdeathsrelatedtodrugpoisoningbyselectedsubstances%2f2019registrations/2019pivot3.xlsx (accessed on 25 October 2023).
- Lee, J.; Pilgrim, J.; Gerostamoulos, D.; Robinson, J.; Wong, A. Increasing rates of quetiapine overdose, misuse, and mortality in Victoria, Australia. Drug Alcohol. Depend. 2018, 187, 95–99. [Google Scholar] [CrossRef]
- Kales, H.C.; Kim, H.M.; Zivin, K.; Valenstein, M.; Seyfried, L.S.; Chiang, C.; Cunningham, F.; Schneider, L.S.; Blow, F.C. Risk of mortality among individual antipsychotics in patients with dementia. Am. J. Psychiatry 2012, 169, 71–79. [Google Scholar] [CrossRef]
- Maust, D.T.; Kim, H.M.; Seyfried, L.S.; Chiang, C.; Kavanagh, J.; Schneider, L.S.; Kales, H.C. Antipsychotics, other psychotropics, and the risk of death in patients with dementia: Number needed to harm. JAMA Psychiatry 2015, 72, 438–445. [Google Scholar] [CrossRef]
- Breivik, H.; Frost, J.; Lokken, T.N.; Slordal, L. Post mortem tissue distribution of quetiapine in forensic autopsies. Forensic Sci. Int. 2020, 315, 110413. [Google Scholar] [CrossRef]
- Vignali, C.; Freni, F.; Magnani, C.; Moretti, M.; Siodambro, C.; Groppi, A.; Osculati, A.M.M.; Morini, L. Distribution of quetiapine and metabolites in biological fluids and tissues. Forensic Sci. Int. 2020, 307, 110108. [Google Scholar] [CrossRef]
- Aly, S.M.; Gish, A.; Hakim, F.; Guelmi, D.; Mesli, V.; Hédouin, V.; Allorge, D.; Gaulier, J.M. In the case of extensively putrefied bodies, the analysis of entomological samples may support and complement the toxicological results obtained with other alternative matrices. Leg. Med. 2023, 63, 102261. [Google Scholar] [CrossRef] [PubMed]
- Nishio, T.; Toukairin, Y.; Hoshi, T.; Arai, T.; Nogami, M. Quantification of nine psychotropic drugs in postmortem dried blood spot samples by liquid chromatography-tandem mass spectrometry for simple toxicological analysis. J. Pharm. Biomed. Anal. 2023, 233, 115438. [Google Scholar] [CrossRef]
- Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop. Med. Health 2019, 47, 46. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.T.; Fritz, K.L. Quetiapine (Seroquel) concentrations in seven postmortem cases. J. Anal. Toxicol. 2000, 24, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Hopenwasser, J.; Mozayani, A.; Danielson, T.J.; Harbin, J.; Narula, H.S.; Posey, D.H.; Shrode, P.W.; Wilson, S.K.; Li, R.; Sanchez, L.A. Postmortem distribution of the novel antipsychotic drug quetiapine. J. Anal. Toxicol. 2004, 28, 264–267. [Google Scholar] [CrossRef]
- Vaja, R.; Rana, M. Drugs and the liver. Anaesth. Intensive Care Med. 2020, 21, 517–523. [Google Scholar] [CrossRef]
- Jones, G.R.; Singer, P.P. Drugs-of-Abuse in Liver. Drug Test. Altern. Biol. Specim. 2008, 139–156. [Google Scholar] [CrossRef]
- Fuke, C.; Berry, C.L.; Pounder, D.J. Postmortem diffusion of ingested and aspirated paint thinner. Forensic Sci. Int. 1996, 78, 199–207. [Google Scholar] [CrossRef]
- Pounder, D.J.; Davies, J.I. Zopiclone poisoning: Tissue distribution and potential for postmortem diffusion. Forensic Sci. Int. 1994, 65, 177–183. [Google Scholar] [CrossRef]
- LiverTox, L. Clinical and Research Information on Drug-Induced Liver Injury [Internet] Bethesda; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. [Google Scholar]
- Abdel-Misih, S.R.; Bloomston, M. Liver anatomy. Surg. Clin. N. Am. 2010, 90, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, J.A.; Riaz, A.; Thornburg, B. Biliary Anatomy. Semin. Interv. Radiol. 2021, 38, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Hamsa, A.; Karumandampalayam Shanmugaramasamy, K.; Kariyarambath, P.; Kathirvel, S. Quetiapine Fumarate: A Review of Analytical Methods. J. Chromatogr. Sci. 2022, 61, bmac100. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.L.; Fang, L.S.; Liou, J.R.; Dai, J.S.; Chen, Y.L. Determination of quetiapine and its metabolites in plasma by field-enhanced sample stacking. J. Food Drug Anal. 2021, 29, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Choi, J.S.; Choi, B.H.; Hahn, S.J. Effects of norquetiapine, the active metabolite of quetiapine, on cloned hERG potassium channels. Neurosci. Lett. 2018, 664, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ruiz, M.; Soria-Chacartegui, P.; Villapalos-García, G.; Abad-Santos, F.; Zubiaur, P. The Pharmacogenetics of Treatment with Quetiapine. Future Pharmacol. 2022, 2, 276–286. [Google Scholar] [CrossRef]
- Muller, C.; Reuter, H.; Dohmen, C. Intoxication after extreme oral overdose of quetiapine to attempt suicide: Pharmacological concerns of side effects. Case Rep. Med. 2009, 2009, 371698. [Google Scholar] [CrossRef] [PubMed]
- Babyak, J.M.; Lee, J.A. Toxicological emergencies. In BSAVA Manual of Canine and Feline Emergency and Critical Care; BSAVA Library: Gloucester, UK, 2018; pp. 304–317. [Google Scholar]
- Kartasheva-Ebertz, D.; Gaston, J.; Lair-Mehiri, L.; Massault, P.P.; Scatton, O.; Vaillant, J.C.; Morozov, V.A.; Pol, S.; Lagaye, S. Adult human liver slice cultures: Modelling of liver fibrosis and evaluation of new anti-fibrotic drugs. World J. Hepatol. 2021, 13, 187–217. [Google Scholar] [CrossRef]
- Saxton, S.H.; Stevens, K.R. 2D and 3D liver models. J. Hepatol. 2023, 78, 873–875. [Google Scholar] [CrossRef]
- Hernández-Mesa, M.; Moreno-González, D. Current Role of Mass Spectrometry in the Determination of Pesticide Residues in Food. Separations 2022, 9, 148. [Google Scholar] [CrossRef]
- Poloznikov, A.; Gazaryan, I.; Shkurnikov, M.; Nikulin, S.; Drapkina, O.; Baranova, A.; Tonevitsky, A. In vitro and in silico liver models: Current trends, challenges and opportunities. ALTEX 2018, 35, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sun, L.; Pang, Y.; Hu, D.; Xu, H.; Mao, S.; Peng, W.; Wang, Y.; Xu, Y.; Zheng, Y.C.; et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut 2021, 70, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Fischer, I.; Milton, C.; Wallace, H. Toxicity testing is evolving! Toxicol. Res. 2020, 9, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Abstracts of the10th International ISSX meeting, September 29-October 3, 2013, Toronto, Ontario, Canada. Drug Metab. Rev. 2014, 45 (Suppl. S1), 1–286. [CrossRef]
- Le Dare, B.; Ferron, P.J.; Allard, P.M.; Clement, B.; Morel, I.; Gicquel, T. New insights into quetiapine metabolism using molecular networking. Sci. Rep. 2020, 10, 19921. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Henriques, B.; Yang, E.H.; Lapetina, D.; Carr, M.S.; Yavorskyy, V.; Hague, J.; Aitchison, K.J. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front. Genet. 2020, 11, 491895. [Google Scholar] [CrossRef] [PubMed]
- Okumura, A.; Tanimizu, N. Preparation of Functional Human Hepatocytes Ex Vivo. Methods Mol. Biol. 2022, 2544, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Frances, D.; Ronco, M.T.; Ochoa, E.; Alvarez, M.L.; Quiroga, A.; Parody, J.P.; Monti, J.; Carrillo, M.C.; Carnovale, C.E. Oxidative stress in primary culture hepatocytes isolated from partially hepatectomized rats. Can. J. Physiol. Pharmacol. 2007, 85, 1047–1051. [Google Scholar] [CrossRef]
- Rodrigues, R.M.; Heymans, A.; De Boe, V.; Sachinidis, A.; Chaudhari, U.; Govaere, O.; Roskams, T.; Vanhaecke, T.; Rogiers, V.; De Kock, J. Toxicogenomics-based prediction of acetaminophen-induced liver injury using human hepatic cell systems. Toxicol. Lett. 2016, 240, 50–59. [Google Scholar] [CrossRef]
- De Siervi, S.; Turato, C. Liver Organoids as an In Vitro Model to Study Primary Liver Cancer. Int. J. Mol. Sci. 2023, 24, 4529. [Google Scholar] [CrossRef]
- Lee, J.H.; Ho, K.L.; Fan, S.K. Liver microsystems in vitro for drug response. J. Biomed. Sci. 2019, 26, 88. [Google Scholar] [CrossRef] [PubMed]
- Dede, E.; Tindall, M.J.; Cherrie, J.W.; Hankin, S.; Collins, C. Physiologically-based pharmacokinetic and toxicokinetic models for estimating human exposure to five toxic elements through oral ingestion. Environ. Toxicol. Pharmacol. 2018, 57, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Gomez, M.E.; Camacho-Garcia, L.N.; Castillo-Alanis, L.A.; Mendoza-Melendez, M.A.; Quijano-Mateos, A. Revisiting a physiologically based pharmacokinetic model for cocaine with a forensic scope. Toxicol. Res. 2019, 8, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Beppu, S.; Nishiyama, K.; Shimizu, M.; Yamazaki, H. Pharmacokinetics of duloxetine self-administered in overdose with quetiapine and other antipsychotic drugs in a Japanese patient admitted to hospital. J. Pharm. Health Care Sci. 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Sager, J.E.; Yu, J.; Ragueneau-Majlessi, I.; Isoherranen, N. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification. Drug Metab. Dispos. 2015, 43, 1823–1837. [Google Scholar] [CrossRef] [PubMed]
- Mamada, H.; Iwamoto, K.; Nomura, Y.; Uesawa, Y. Predicting blood-to-plasma concentration ratios of drugs from chemical structures and volumes of distribution in humans. Mol. Divers. 2021, 25, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wei, W.; Chen, Z.; Lin, B.; Zhao, W.; Luo, Y.; Zhang, X. Engineered Liver-on-a-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: A Review. Micromachines 2019, 10, 676. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Shine, B. Evidence Based Pathology and Laboratory Medicine. Ann. Clin. Biochem. 2012, 49. [Google Scholar] [CrossRef]
- Jones, A.W.; Holmgren, A.; Ahlner, J. Post-mortem concentrations of drugs determined in femoral blood in single-drug fatalities compared with multi-drug poisoning deaths. Forensic Sci. Int. 2016, 267, 96–103. [Google Scholar] [CrossRef]
- Skov, L.; Johansen, S.S.; Linnet, K. Postmortem Quetiapine Reference Concentrations in Brain and Blood. J. Anal. Toxicol. 2015, 39, 557–561. [Google Scholar] [CrossRef]
- Burghardt, K.J.; Ward, K.M.; Sanders, E.J.; Howlett, B.H.; Seyoum, B.; Yi, Z. Atypical Antipsychotics and the Human Skeletal Muscle Lipidome. Metabolites 2018, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Breivik, H.; Lokken, T.N.; Slordal, L.; Frost, J. A Validated Method for the Simultaneous Determination of Quetiapine, Clozapine and Mirtazapine in Postmortem Blood and Tissue Samples. J. Anal. Toxicol. 2020, 44, 440–448. [Google Scholar] [CrossRef] [PubMed]
- de Campos, E.G.; da Costa, B.R.B.; Dos Santos, F.S.; Monedeiro, F.; Alves, M.N.R.; Santos Junior, W.J.R.; De Martinis, B.S. Alternative matrices in forensic toxicology: A critical review. Forensic Toxicol. 2022, 40, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Favretto, D.; Stocchero, G.; Nalesso, A.; Vogliardi, S.; Boscolo-Berto, R.; Montisci, M.; Ferrara, S.D. Monitoring haloperidol exposure in body fluids and hair of children by liquid chromatography-high-resolution mass spectrometry. Ther. Drug Monit. 2013, 35, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Gunther, K.N.; Johansen, S.S.; Nielsen, M.K.K.; Wicktor, P.; Banner, J.; Linnet, K. Post-mortem quetiapine concentrations in hair segments of psychiatric patients—Correlation between hair concentration, dose and concentration in blood. Forensic Sci. Int. 2018, 285, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, C.; Zhu, C.; Zheng, Y.; Li, J.; Zhu, Q.; Wang, H.; Fang, X.; Liu, Q.; Liang, M.; et al. Determination of ten antipsychotics in blood, hair and nails: Validation of a LC-MS/MS method and forensic application of keratinized matrix analysis. J. Pharm. Biomed. Anal. 2023, 234, 115557. [Google Scholar] [CrossRef]
- Ferrara, S.D.; Cecchetto, G.; Cecchi, R.; Favretto, D.; Grabherr, S.; Ishikawa, T.; Kondo, T.; Montisci, M.; Pfeiffer, H.; Bonati, M.R.; et al. Back to the Future—Part 2. Post-mortem assessment and evolutionary role of the bio-medicolegal sciences. Int. J. Leg. Med. 2017, 131, 1085–1101. [Google Scholar] [CrossRef]
- Krumbiegel, F.; Hastedt, M.; Westendorf, L.; Niebel, A.; Methling, M.; Parr, M.K.; Tsokos, M. The use of nails as an alternative matrix for the long-term detection of previous drug intake: Validation of sensitive UHPLC-MS/MS methods for the quantification of 76 substances and comparison of analytical results for drugs in nail and hair samples. Forensic Sci. Med. Pathol. 2016, 12, 416–434. [Google Scholar] [CrossRef]
- Cobo-Golpe, M.; de-Castro-Ríos, A.; Cruz, A.; Páramo, M.; López-Rivadulla, M.; Lendoiro, E. Determination of antipsychotic drugs in nails and hair by liquid chromatography tandem mass spectrometry and evaluation of their incorporation into keratinized matrices. J. Pharm. Biomed. Anal. 2020, 189, 113443. [Google Scholar] [CrossRef]
Study | Year | Participants | Method | Interventions | Correction of the Measurement Units |
---|---|---|---|---|---|
Anderson and Fritz [50] | 2000 | 7 | Experimental case series | Postmortem toxicology | no |
Hopenwasser et al. [51] | 2004 | 8 | Experimental case series | Postmortem toxicology | no |
Parker and McIntyre [18] | 2005 | 21 | Experimental case series | Postmortem toxicology | no |
Vignali et al. [45] | 2020 | 13 | Experimental case series | Postmortem toxicology | yes |
Breivik et al. [44] | 2020 | 14 | Experimental case series | Postmortem toxicology | no |
Study | Year | Pearson Correlation Coefficient (r) | R2 (Goodness of Fit) | p-Value | Matrix |
---|---|---|---|---|---|
Anderson and Fritz [50] | 2000 | 0.21 | 0.04 | 0.22 | Bile |
Anderson and Fritz [50] | 2000 | 0.51 | 0.26 | 0.02 | Gastric content |
Hopenwasser et al. [51] | 2004 | 0.99 | 0.97 | 0.19 | Bile |
Hopenwasser et al. [51] | 2004 | −0.33 | 0.11 | 0.23 | Gastric content |
Parker and McIntyre [18] | 2005 | −0.15 | 0.02 | 0.04 | Gastric content |
Vignali et al. [45] | 2020 | 0.52 | 0.28 | 0.0005 | Bile |
Study | Year | Pearson Correlation Coefficient (r) | R2 (Goodness of Fit) | p-Value |
---|---|---|---|---|
Anderson and Fritz [50] | 2000 | 0.82 | 0.68 | 0.23 |
Hopenwasser et al. [51] | 2004 | −0.28 | 0.08 | 0.94 |
Parker and McIntyre [18] | 2005 | 0.37 | 0.14 | 0.04 |
Breivik et al. [44] | 2020 | 0.82 | 0.66 | 0.27 |
Vignali et al. [45] | 2020 | −0.26 | 0.07 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šoša, I. Quetiapine-Related Deaths: In Search of a Surrogate Endpoint. Toxics 2024, 12, 37. https://doi.org/10.3390/toxics12010037
Šoša I. Quetiapine-Related Deaths: In Search of a Surrogate Endpoint. Toxics. 2024; 12(1):37. https://doi.org/10.3390/toxics12010037
Chicago/Turabian StyleŠoša, Ivan. 2024. "Quetiapine-Related Deaths: In Search of a Surrogate Endpoint" Toxics 12, no. 1: 37. https://doi.org/10.3390/toxics12010037
APA StyleŠoša, I. (2024). Quetiapine-Related Deaths: In Search of a Surrogate Endpoint. Toxics, 12(1), 37. https://doi.org/10.3390/toxics12010037