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Abstract: Per- and poly-fluoroalkyl substances (PFAS) exhibit high persistence in the environment
and accumulate within the human body, warranting a thorough assessment of their toxicity. In
this study, we exposed mice (male C57BL/6J mice aged 8 weeks) to a composite of nine PFAS,
encompassing both long-chain PFAS (e.g., perfluorooctanoic acid and perfluorooctanesulfonic acid)
and short-chain PFAS (e.g., perfluorobutanoic acid and perfluorobutanesulfonic acid). The exposure
concentrations of PFAS were equivalent to the estimated daily human intake in the composition
reported (1 µg/L (sum of the nine compounds), representing the maximum reported exposure
concentration). Histological examination revealed hepatocyte vacuolization and irregular hepatocyte
cord arrangement, indicating that exposure to low levels of the PFAS mixture causes morphological
changes in liver tissues. Transcriptome analysis revealed that PFAS exposure mainly altered a group
of genes related to metabolism and chemical carcinogenesis. Machine learning analysis of the liver
metabolome showed a typical concentration-independent alteration upon PFAS exposure, with the
annotation of substances such as glutathione and 5-aminovaleric acid. This study demonstrates that
daily exposure to PFAS leads to morphological changes in liver tissues and alters the expression of
metabolism- and cancer-related genes as well as phospholipid metabolism.

Keywords: poly-fluoroalkyl substances; liver toxicity; multi-omics analysis; environmentally relevant
exposure

1. Introduction

Per- and poly-fluoroalkyl substances (PFAS) include thousands of chemical compounds
containing the perfluoroalkyl moiety CnF2n+1– [1]. Globally, more than 1,000,000 tons of PFAS,
including hydrofluorocarbons, are produced annually [2]. Their unique chemical properties,
such as heat and chemical resistance, water and oil repellency, emulsifying characteristics,
and light absorption, make them suitable for a broad range of applications. However,
some PFAS exhibit exceptional persistence in the environment and readily bioaccumulate
in the human body, raising concerns about their health implications and earning them
the moniker “Forever Chemicals” [3]. Consequently, PFAS contamination has garnered
global attention, with McDonald’s Corporation pledging to eliminate the use of PFAS
in food packaging within the next five years, starting in 2020, and Amazon Corporation
announcing a ban on the use of PFAS in food containers in December 2020 [4].
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Among the PFAS, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid
(PFOS) are of significant concern owing to their high bioaccumulation potential. The ge-
ometric mean human serum elimination half-life of PFOS is 4.8 years (95% confidence
interval [CI], 4.0–5.8), and that of PFOA is 3.5 years (95% CI, 3.0–4.1) [5]. Hence, the produc-
tion and use of these substances are regulated internationally. In 2009, PFOS was included
in Annex B of the Stockholm Convention on Persistent Organic Pollutants, resulting in
general restrictions regarding its production, use, import, and export. In 2019, PFOA
and its associated compounds were listed in Annex A, and perfluorohexane sulfonic acid
(PFHxS), a related chemical, was listed in Annex A in 2022 [6]. Safety thresholds have
been identified for major PFAS. However, the regulatory levels of PFOA and PFOS vary
widely among countries and organizations. The European Food Safety Authority (EFSA)
has set the derived no-effect level (DNEL) for PFOA and PFOS at 1.5 µg/kg/day and
0.15 µg/kg/day, respectively [7]. These limits have become more stringent in recent years,
with EFSA introducing a new total weekly tolerable intake of 4.4 ng/kg BW/week for
PFOA, PFOS, perfluorononanoic acid (PFNA), and PFHxS in 2020 [8]. Moreover, the EPA
set the lifetime health advisory level for PFOA and PFOS at 70 ng/L in 2016. The lifetime
health advisory level represents the concentration of a specific contaminant in drinking
water at which no adverse health effects are expected over a person’s lifetime of exposure.
However, it was decreased to 0.024 ng/L in June 2022 [9]. In Japan, the Ministry of Health,
Labour and Welfare (MHLW) listed PFOS and PFOA as water quality management targets
in April 2020 and set a preliminary target of 50 ng/L for the combined presence of both
compounds [10]. However, this is a provisional target, and a definite evaluation of the
suitability of these limits—based on sufficient scientific evidence—remains pending.

Although the complete mechanism of toxicity of PFAS has not been comprehensively
understood, its detrimental effects are characterized by hepatotoxicity, lipid metabolism
disruption, hypothyroidism, immunosuppression, reproductive toxicity, and carcinogenic-
ity [11]. Reportedly, one of the mechanisms of PFAS toxicity involves the activation of
nuclear receptors, such as peroxisome proliferator-activated receptor (PPAR) α, PPARγ,
PPARδ, constitutive androstane receptor, and pregnane X receptor (PXR) [12]. The activa-
tion of these receptors contributes to disease pathogenesis [13]. These nuclear receptors
are active in the liver, which is the primary target for toxicity. In mice, a dose-dependent
increase in liver weight, hepatocyte hypertrophy with vacuole formation, and increased
(or loss of) peroxisome proliferation were observed at high body burdens of long-chain
PFAS [14]. Studies using cultured cells have indicated a link between PFAS and cancer;
for example, PFOA, PFOS, and PFHxS induce cell proliferation and malignant transfor-
mation in human mammary epithelial cells [15,16]. Although short-chain PFAS, such as
perfluorobutanoic acid (PFBA) and perfluorobutanesulfonic acid (PFBS), have been used as
alternatives to long-chain PFAS, studies investigating the effects of PFBS exposure in drink-
ing water in mice have revealed that they alter the liver and intestinal metabolome [17,18].
However, most of these studies were based on exposure to relatively high concentrations
of single compounds.

The long half-lives of PFAS in the environment and in vivo suggest that people are
exposed to several PFAS at low concentrations over prolonged periods. However, limited
studies have simulated the real-world exposure conditions in animal models. One study
investigated the effects of a PFAS mixture, which mimics an environment contaminated
with PFAS found in ski wax, and found that it altered the dopamine levels in mice [19].
Another study reported that exposure to 2 ng/g PFOS results in stunted embryos of
bovine cumulus oocytes [20]. However, the toxic effects of PFAS at the concentrations that
humans ingest daily remain unknown. In the real world, it is likely that mixed exposure
occurs owing to the fact that multiple PFAS are found in the environment. As the sources
of exposure are diverse, including drinking water, food, and dust, estimating the exact
amount of exposure is challenging. Pérez et al. assessed the PFAS concentrations in food
in different regions of the world and estimated the daily human intake of PFAS based on
the region [21]. They reported that the concentration varied across regions, ranging from
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30 to 100 ng/kg/d, with the children around the Mediterranean Sea ingesting the highest
concentration of PFAS at 100 ng/kg/day.

In the present study, we aimed to investigate the toxic effects of low-concentration
mixtures of PFAS to which humans can be exposed. We set 100 ng/kg/day as the maximum
anticipated daily intake in humans and evaluated the toxic effects of nine linear PFAS,
including long-chain PFAS and short-chain PFAS, in mice orally for 5 weeks (Table 1).
We hypothesized that toxic effects could occur under exposure to mixed contaminants,
even if the concentration of individual components in the mixture is high or if it includes
short-chain PFAS.

Table 1. Composition of the nine poly-fluoroalkyl substances (PFAS) used in the study.

Compound Abbreviation %
Expected

Concentration
(ng/L)

Measured
Concentration

(ng/L)

Carbon Chain
Length Pubchem CID

Perfluorooctanoic acid PFOA 25 250 264 8 9554
Perfluorobutanoic acid PFBA 20 200 298 4 9777

Perfluorooctanesulfonic acid PFOS 15 150 113 8 74,483
Perfluorononanoic acid PFNA 10 100 115 9 67,821

Perfluorovaleric acid PFPeA 6 60 99 5 75,921
Perfluorohexanoic acid PFHxA 6 60 72 6 67,542

Perfluorobutanesulfonic acid PFBS 6 60 99 4 67,815
Perfluoroheptanoic acid PFHpA 6 60 35 7 67,818

Perfluorohexanesulfonic acid PFHxS 6 60 35 6 67,734
SUM 100 1000 1130

The expected concentration indicates the concentration of PFAS in the hydrogel to which the PFAS Low group
was exposed, and the measured concentration is the concentration of PFAS in the gel, as measured via mass
spectrometry.

2. Materials and Methods
2.1. Materials

Nine major linear-chain PFAS were tested in this study: PFOA, PFBA, PFOS, PFPeA,
PFNA, PFHxA, PFBS, PFHpA, and PFHxS. Their exposure concentrations and compositions
were in accordance with a previous study [21]. Table 1 presents the compositions of the
different compounds of PFAS. PFOA, PFOS, and PFHxS were purchased from Sigma-
Aldrich (St. Louis, MO, USA), whereas the other chemicals were obtained from Tokyo
Chemical Industry Co., Ltd. (Tokyo, Japan).

2.2. Animal Experiment

Seven-week-old male C57BL/6J mice (N = 15) were purchased from CLEA Japan Inc.
(Tokyo, Japan). They were housed under a 12/12 h light/dark cycle at 20–23 ◦C. Food
(CE-2; CLEA) and water gel (HydroGel, ClearH2O, Westbrook, ME, USA) were provided ad
libitum, and the mice were not subjected to fasting either before or during the experiments.
To reduce the risk of an unexpected droplet spread of PFAS-containing drinking water,
HydroGel was used as the vehicle/hydration source for the exposure test instead of pure
water. HydroGel is 98% water and is subject to rigorous quality control by the company,
including assessment of other constituents such as mineral content, ensuring reliability.
Health observations were performed thrice per week, and the cages, food, and HydroGel
were changed once per week. After one week of adaptation, the mice were randomly
divided into three groups, with five individuals in each group.

One group was treated with clean HydroGel (the control group), whereas the other
two were treated with HydroGel containing nine linear PFAS at total concentrations of
1 µg/L and 50 µg/L, respectively (PFAS-Low and PFAS-High groups, respectively). The
average body weight of mice at the beginning of the experiment was 30 g, and the average
daily drinking volume was 3 mL. Hence, the average daily intake of each mouse in the
PFAS-Low and PFAS-High groups was estimated at approximately 100 ng/kg/day and
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5000 ng/kg/day, respectively. After the 5-week exposure period, mice were euthanized
through the inhalation of an excess amount of isoflurane and laparotomized. The organs
were harvested from the posterior vena cava after complete blood sampling. All animal care
and experimental procedures were approved by the Animal Care Committee of Kitasato
University School of Veterinary Medicine (Approval No. 21-012) and were conducted in
accordance with the committee and national regulations.

2.3. Tissue Histology

Four organs, including liver, spleen, kidney, and heart, were obtained from each mouse
and immersed and fixed in a 10% neutral formalin phosphate-buffered solution for at least
1 month, then embedded in Pathoprep568 (Fujifilm Wako Pure Chemical Corporation,
Tokyo, Japan) following routine methods. The paraffin blocks were cut into thin sections
(4 µm) and stained with hematoxylin and eosin for morphological observation or with
periodic acid–Schiff (PAS) with or without amylase digestion for glycogen detection in liver
sections, according to the method of Kovac et al. [22].

2.4. Liver Transcriptome Analysis

A small piece of liver immersed in RNAlater™ solution (Sigma-Aldrich) was used
for RNA extraction. RNA was extracted using TRI reagent (Cosmo Bio Co., Ltd., Tokyo,
Japan) and the Monarch Total RNA Miniprep Kit (New England BioLabs Inc., Ipswich,
MA, USA) according to the manufacturer’s instructions. The RNA concentration in the
extract was quantified by measuring the absorbance at 260 nm using a BioSpectrometer
kinetic instrument (Eppendorf, Hamburg, Germany). Subsequent RNA sequence analysis
(RNA-seq) of the purified RNA was performed by GenScript Biotech Corp. (Piscataway,
NJ, USA). Briefly, RNA was randomly fragmented and reverse transcribed into cDNA,
and adapter sequences were attached to both ends of the fragments. The fragments were
amplified using polymerase chain reaction (PCR), and fragments with sizes of 200–400 base
pairs were selected and sequenced using a NovaSeq 6000 system (Illumina Inc., San Diego,
CA, USA). Changes in gene expression were analyzed using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway [23].

2.5. Real-Time Quantitative PCR

The gene expression levels of eight genes representing pathways that varied in the
transcriptome analysis were confirmed via quantitative PCR (qPCR), according to our
previous report [24]. Briefly, reverse transcription from mRNA was performed using
the LunaScript® RT SuperMix Kit (New England BioLabs), following standard protocols.
cDNA was amplified using Luna® Universal qPCR Master Mix and corresponding primers
for RT-qPCR. These primers were designed using the Primer Design Tool of the National
Center for Biotechnology Information. The primer sequences are shown in Table S1. The
PCR conditions included the following: initial denaturation, 95 ◦C for 60 s; 40 cycles of
denaturation, 95 ◦C for 15 s; and annealing and extension, 60 ◦C for 30 s. Real-time PCR
was performed for each sample using the StepOnePlus™ Real-Time PCR System (Thermo
Fisher Scientific). β-actin (Actb) was used as the internal control, and the fold change was
calculated using the 2−∆∆Ct method.

2.6. Metabolome Analysis of Liver

The metabolome was extracted by adding 400 µL of methanol containing internal
standards (25 µM N,N-diethyl-2-phenylacetamide and d-camphor-10-sulfonic acid) and
400 µL of ultrapure water to 100 mg of liver sample. Thereafter, the mixture was homoge-
nized using BioMasher® II equipped with PowerMasher® II (Nippi, Incorporated, Tokyo,
Japan). The homogenates were centrifuged at 14,000× rpm for 5 min after adding 100 µL of
methanol containing internal standards (100 µM of N,N-diethyl-2-phenylacetamide and d-
camphor-10-sulfonic acid). After centrifuging, the supernatant was transferred to Amicon®

Ultra-0.5 3 kDa filter columns (Merck Millipore, Burlington, MA, USA) and centrifuged
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at 14,000× rpm for 1 h. The filtrates were transferred to glass vials for ultra-performance
liquid chromatography-quantitative time-of-flight mass spectrometry (UPLC/QTOF-MS)
analysis. The analysis was performed on an ExionLC AD UPLC system interfaced with
an X500R LC-QToFMS system (SCIEX) using the Sequential Windowed Acquisition of
All Theoretical Fragment Ion Mass Spectra (SWATH) method. In SWATH, a duty cycle
included a single MS scan (accumulation time, 200 ms) followed by a series of product ion
scans (accumulation time, 40 ms each) of 30 isolation Q1 windows of modified mass units
from m/z 50 to 800. MS/MS spectra were acquired at 35 eV with a collision energy spread
of 15 eV. The positive and negative mode injection voltages were set to 5500 and −4500 V,
respectively. All samples were analyzed using UPLC with the Agilent InfinityLab Poroshell
120 HILIC-Z (2.7 µm, 50 × 2.1 mm) (Agilent Technologies, Santa Clara, CA, USA) in both
positive and negative ion modes for metabolome analysis. The mobile phase for positive
mode measurement consists of A: water with 0.1% formic acid, and B: acetonitrile with
0.1% formic acid. For the negative mode, the measurement consists of A: water with 10
mM ammonium bicarbonate, pH adjusted to 9 using 28% ammonia, and B: acetonitrile. For
both ion modes of metabolome analysis, the gradient program was as follows: 95% solvent
B, then at t = 6 min: 40% B, t = 9 min: 5% B, t = 9.01–11 min: 90% B, and t = 11.01–18 min:
95% B. A serum quality control (QC) sample for metabolome analysis was prepared by
pooling and mixing equal volumes of serum samples. QC and blank samples (ultrapure
water + internal standard) were injected at intervals of 6–7 sample injections to identify
sample carryover and to check for stability during the entire analytical sequence.

In this study, if the peak intensity in the sample was less than three times that of the
blank samples, the peak in the sample was considered not detected, and peaks with a de-
tection rate of less than 50% in the actual sample were removed from the data analysis. The
coefficient of variation values of below 30% of the metabolites among the analyzed results
of QC samples and annotation level 2 (probable structure: matched by high-resolution
MS and MS/MS library spectrum) proposed by Schymanski et al. [25] were used for data
analysis. Peak heights were normalized to the peak heights of the internal standards, locally
weighted least-square regression (locally estimated smoothing function), and cubic spline
with QC samples. The metabolome data were analyzed using Mass Spectrometry–Data-
Independent Analysis (MS-DIAL) software version 4.90 [26] and R statistical environment
v.4.2. Mass spectra were searched against the RIKEN library, MS-bank North America,
the NIST20 tandem mass spectrometry library, and the human metabolome database [27].
Candidates with total scores based on the isotope ratio and accurate mass MS/MS similarity
were annotated, and an annotation was made for the candidate with the highest score.
The annotation cutoff score was set at 80. If the annotated metabolome was apparently an
artificial chemical or plant-derived component, the one with the second-best annotation
score was adopted.

2.7. Molecular Docking

One of the possible mechanisms of PFAS toxicity is binding to the nuclear receptors
PPARα, PPARγ, and PPARδ [11,12]. Molecular docking simulations were performed to
evaluate the binding affinity between the nine PFAS and three PPARs. The 3D molecular
structures of the small molecules and known PPAR ligands were obtained from Pub-
Chem. PubChem CIDs are listed in Table 1. They were further preprocessed by adding
partial atomic charges to their structures, as determined by molecular mechanics mini-
mization calculated using the Gasteiger method [28]. The 3D structures of murine PPARα,
PPARδ, and PPARγ were constructed using the protein 3D structure modeling algorithm
Alphafold2 [29]. The protein structure was preprocessed by adding hydrogen atoms and
energy minimization using the CHARMM force field [30]. The binding pocket of each PPAR
was determined using the coordinates of the pocket with the largest volume identified with
the grid-based HECOMi finder [31]. Molecular docking was performed using AutoDock
Vina software to determine the best docking poses and docking scores [32]. The search
area was a 25 Å × 25 Å × 25 Å grid box, and each calculation was performed 5000 times.
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The 3D structures obtained were converted to 2D structures using LIGPLOT+ v.2.2.5 to
compare the respective amino acid binding modes [33].

2.8. Biomarkers of Liver Injury

Liver injury and lipid metabolism biomarkers were measured in plasma samples
collected after euthanasia at the end of PFAS exposure. Alkaline phosphatase (ALP) and
cholesterol levels were measured colorimetrically using LabAssay™ (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan), according to standard protocols. Aspartate
aminotransferase (AST) levels were measured colorimetrically using a method established
by Sigma-Aldrich (MAK055).

2.9. LCMS Measurement of PFAS

The concentration of PFAS in the HydroGel was measured using UPLC/QTOF-MS
(Table 1). The PFAS mixture (1 µg/L, total concentration) was diluted to 10 ng/L with
methanol containing 4 ppb 13CPFOA as an internal standard. The mobile phase conditions
for LC were as described by Reza et al. [34], and the details are as follows: Acclaim
RSLC C18 column (2.1 × 100 mm, 2.2 µm, Thermo Fisher Scientific) was used for sample
separation. The mobile phase is (A) H2O:MeOH (90:10) with 5 mM ammonium acetate
and (B) MeOH with 5 mM ammonium acetate. The gradient program was started with 1%
(0 min, 0.2 mL/min)–1% (1 min, 0.2 mL/min)–39% (3 min, 0.2 mL/min)–99.9% (14 min,
0.4 mL/min)–99.9% (16 min, 0.48 mL/min)–1% (16.1 min, 0.2 mL/min)–1% (21.1 min,
0.2 mL/min). The injection volume was adjusted to 5 µL. Analysis was performed on an
ExionLC AD UPLC system interfaced with an X500R LC-QToFMS system (SCIEX) using the
Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH)
method. In SWATH, a duty cycle included a single MS scan (accumulation time, 400 ms)
followed by a series of product ion scans (accumulation time, 90 ms each) of 15 isolation Q1
windows of modified mass units from m/z 25 to 1000. MS/MS spectra were acquired at
35 eV with a collision energy spread of 15 eV. The negative mode injection voltage was set
to −4500 V. PFAS was quantified using a 6-point calibration curve in the range of 0–5 ppb.
For PFPeA and sulfonates, their precursor ion peaks were used for quantification since
their product ion peaks were less sensitive.

2.10. Data Analysis

Statistical analyses were performed using JMP Pro 16 software (SAS Institute, Cary,
NC, USA). Tukey’s HSD test was used to compare measurements between all groups; a
p-value of <0.05 was considered statistically significant. For the omics analysis, the false
discovery rate (FDR) was adopted to adjust p-values, and the results were analyzed using
different packages in R v.4.2. A quantitative evaluation of histological specimens ensued
employing Python 3.9, amalgamating PyImageJ and OpenCV. Positive domains within
Periodic Acid–Schiff (PAS)-stained micrographs underwent meticulous scrutiny through
the delineation of luminance-abundant regions within inverted depictions, subsequently
quantifying the extracted area. The derivation of RGB values emanated from 50 randomly
ascertained coordinates situated within the confines of the cytoplasm. Leveraging these
RGB values as salient attributes, a Support Vector Machine (SVM) endowed with multi-
variate analytical proficiency was invoked to effectuate binary categorization between the
cohort subject to the PFAS exposure and the comparator control assembly. The instantiation
of model parameters entailed the establishment of C = 1 and γ = 100, with subsequent
5-fold cross-validation undertaken to ascertain the model’s resilience and its capacity for
generalized applicability. MetaboAnalyst R was used for the enrichment analysis of the
metabolome [35]. The data were normalized by dividing the mean of all samples within
each compound by the standard deviation. Enrichment analysis was performed based on
the KEGG pathway. Random forest, a machine learning classification method, was utilized
to characterize the metabolomics after PFAS exposure [36]. PFAS-Low and PFAS-High
groups were merged as PFAS-exposed groups, and a binary classification model was con-
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structed to investigate the differences between the control and PFAS-exposed groups based
on metabolomics. The implementation was based on the scikit-learn decision tree library
with 5-fold cross-validation. n_estimator was set to 1000, and max_depth was set to 3.

3. Results
3.1. Histological Examination

The most remarkable changes were observed in the liver, with irregular alignment of
the hepatic plates in all PFAS-exposed individuals. The cytoplasm tended to have granular
vacuolation and appeared pale (Figure 1). No other symptoms, such as inflammation or
apoptosis, were observed in any samples. Glycogen degeneration causes similar granular
degeneration. Further, the results of the PAS reaction with amylase digestion showed that
before the amylase digestion test, the control group was diffusely positive for the PAS
reaction and that the PFAS-Low group had a decreased degree of reaction; however, there
were no significant differences in the area values of PAS stain-positive regions between
groups (Figure S1A). After the amylase digestion test, all groups were completely negative
for the PAS reaction (Figure 1). The color tone of the cytoplasmic region was quantified in
the PAS-stained image after amylase digestion, when the cell boundaries are most clearly
defined (Figure S1B). The PFAS-exposed group was classified as having a lighter color
tone in the cytoplasm and was classified as having a different color tone from the control
group with 93.3% accuracy when classified via SVM. No distinct histological changes were
observed in the spleen, kidney, or heart (Figure S2). There were no significant changes in
body weight, clinical symptoms, or gross organ abnormalities prior to euthanasia.

3.2. Liver Transcriptome Analysis

Subsequent experiments were focused on the liver, in which significant histological
changes were observed following PFAS exposure. Figure 2A shows the number of genes
with more than two-fold changes in expression between each PFAS-Low and PFAS-High
groups as detected via RNA-seq. The number of genes that were significantly changed
from the control group by two-fold or more in common between PFAS-Low and PFAS-High
were 185 (increased) and 82 (decreased) genes. The top 10 most significantly altered genes
are listed in Tables S2 and S3. The clustering of these variations with Euclidean distance
showed a similar pattern of gene variation in the PFAS exposure groups compared to the
control group (Figure 2B). The fluctuating gene groups were classified by function based
on KEGG pathways, and enrichment analysis was performed to show the number of genes
fluctuated significantly (Figure 2C,D). Compared to the control group, 70 metabolism-
related and 30 cancer-related genes were significantly altered in the PFAS-Low group;
approximately 50 metabolism-related and 20 cancer-related genes were significantly altered
in the PFAS-High group, with metabolism-related genes accounting for the highest number
of alterations in the PFAS-Low and PFAS-High groups, followed by cancer-related genes.
The pathways that were commonly ranked high in the two PFAS treatment groups in the
enrichment analysis were the metabolic pathways, pathways in cancer, and cell cycles. The
two pathways also showed carcinogenesis-related pathways, such as small cell lung cancer
(appearing in PFAS-Low), gastric cancer, transcriptional misregulation in cancer, and the
p53 signaling pathway (appearing in PFAS-High), respectively.
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of livers stained with periodic acid–Schiff (PAS) stain with/without amylase digestion. Scale bars = 
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Figure 1. Histology of the liver determined via hematoxylin and eosin (HE) staining of samples
in the control, per- and polyfluoroalkyl substances (PFAS)-Low (100 ng/kg/day), and PFAS-High
(5000 ng/kg/day) groups. Diffuse vacuolation and hypertrophy of hepatocytes with eosinophilic
granules were observed in all mice in the PFAS-Low and -High groups (N = 5, each). Representative
images of livers stained with periodic acid–Schiff (PAS) stain with/without amylase digestion. Scale
bars = 100 µm.

3.3. qPCR

Based on enrichment analysis of the transcriptome, chemical carcinogenesis, choles-
terol metabolism, and fatty acid metabolism were selected as pathways with several genes
whose expression levels were significantly different in the liver due to PFAS exposure. Six
representative target genes of each pathway (cholinergic receptor nicotinic alpha 4 subunit;
Chrna4, cyclin D1; Ccnd1, proprotein convertase subtilisin kexin 9; Pcsk9, fatty acid synthase;
Fasn, cell division cycle 6; Cdc6, and c-myc; Myc) were quantified and validated in all the
individuals (Figure 3). Compared with the control group, the most upregulated gene was
Chrna4, with a 6-fold and 10-fold increase in expression in the PFAS-Low and PFAS-High
groups, respectively (Tukey’s HSD test). Significant increases were observed in Ccnd1, a
cell cycle regulator that contributes to tumorigenesis, and Fasn, a fatty acid synthase that
promotes obesity and tumorigenesis, in PFAS-exposed mice. Pcsk9, an aggravating factor
for blood cholesterol levels, was upregulated only in the PFAS-low group. Conversely,
Cdc6, an oncogenic gene that regulates DNA replication, was significantly upregulated in
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the PFAS-High group. The expression levels of Myc (c-Myc), an oncogenic gene, did not
differ significantly between the control and PFAS-exposed groups.
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Figure 2. Transcriptome analysis of the liver. (A) Shows the number of upregulated and downregu-
lated genes based on the comparison pair’s fold change (FC). (B) The high-expression similarities
were grouped together using each sample’s normalized value. (Distance metric = Euclidean distance;
Linkage method = Complete Linkage.) (C) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis between the PFAS-Low and control groups. (D) KEGG enrichment analysis
between the PFAS-High and control groups. ***; p < 0.001 detected by false discovery rate-adjusted
t-tests.
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Figure 3. Real-time quantitative polymerase chain reaction. Representative genes of pathways with
high variability in RNA sequencing were quantified (N = 5, each group). The y-axis shows the gene
expression value relative to the control using β-actin (Actb) as the calibration gene. The data are
represented as means ± SEM (n = 5). All data were measured in four replicates for each mouse.
Asterisks (*) represent significant differences compared with control using Tukey–Kramer’s HSD
test—*; p < 0.05, **; p < 0.01, and ***; p < 0.001.

3.4. Metabolomics

A total of 189 compounds were detected and quantified using metabolomic analysis.
Figure 4A shows the heat map of all samples and cluster analysis. The control and PFAS-
exposed groups were found to bifurcate at the beginning, and the metabolite variation
due to PFAS exposure was similar in the PFAS-Low and PFAS-High groups. Enrichment
analysis was performed for 122 of the 189 detected compounds listed in MetaboAnalyst R.
Comparison of the PFAS-High and control groups revealed that the ether lipid pathway was
the most significantly altered, followed by the glycerophospholipid pathway. A comparison
of the PFAS-Low and control groups showed different results, with the nucleotide glucose
metabolism pathway being the most significantly altered, followed by the glutathione
metabolism pathway (Figure 4B). The glycerophospholipid pathway is a synthetic pathway
for the major components of cell membranes, whereas the ether lipid pathway involves a
group of lipids derived from the glycerophospholipid pathway that has more physiological
activity. The nucleotide sugar pathway involves glycosyl and phosphoglycosyl donors for
the biosynthesis of carbohydrates and glycoconjugates in living organisms. However, none
of the compounds showed significant differences when their concentrations were compared
between the control group and PFAS-exposed groups (false discovery rate [FDR]-adjusted
p > 0.05).

Hence, to characterize the effects of PFAS exposure on the liver metabolome, a bi-
nary classification of PFAS-exposed and control groups based on the metabolome was
performed using random forests. The random forest classifier, consisting of the decision
tree shown in Figure 4C, discriminated between the PFAS-exposed and control groups
from the metabolome with 100% accuracy for the training set and 90% accuracy for the
test set. The importance of each feature (compound) in the classifier was calculated. Of
the 189 compounds, 114 had a feature importance of zero, indicating that they were not
used in the classifier. The 10 most important features are shown in Figure 4D. The results
annotated 5-aminovaleric acid as the most important compound. The abundance profiles
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of the top 10 substances are shown in Figure S3. Among the top 10 compounds, 6 com-
pounds (5-aminovaleric acid, 3-cholic acid, methyl phosphate, L-glutathione, allantoin, and
glycerophosphocholine) are registered in the KEGG pathway.
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of a decision tree in a random forest classifier. (D) Top 10 features of importance for the random forest
classifier (11 compounds were tied for 10th place).

3.5. Molecular Docking

The binding energy of each PFAS to the peroxisome proliferator-activated receptor
(PPAR), the receptor responsible for chemically responsive hepatocyte hypertrophy, was
evaluated using molecular docking. Known ligands for each PPAR were also docked for
comparison [37–39] (Figure 5, Table S4). PFOS (C8) exhibited the highest binding energy
for all PPARα, PPARγ, and PPARδ, followed by PFNA (C9) and PFOA (C8). Compounds
with carbon chain lengths above PFHxA (C6) showed higher docking scores with known
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ligands and docking scores equal to or higher than those of known ligands for PPARs. The
linear correlation between these PFAS carbon chain lengths and docking scores showed a
positive correlation with high linearity and R2 values of ≥0.80 (Figure 5B). Comparing the
binding positions of PFOA and the known ligands of PPARs, PFOA was docked into the
same binding pocket as the known ligands in all three PPARs (Figure 5B). The number of
amino acids in PPARs interacting with the ligands was lower for PFOA than for the known
ligands. However, the interacting amino acid species were similar. The binding positions
of the eight compounds other than PFOA are shown in Figure S4.
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Figure 5. (A) Theoretical binding pose obtained via molecular docking simulation for peroxisome
proliferator-activated receptor (PPAR) with perfluorooctanoic acid or their known ligands. The
protein is shown in ribbon representation with the binding residues shown in stick representation,
and orange dashed lines in the 3D diagram indicate ligand–protein interactions. These interactions
are visualized as 2D figures using LigPlot+. (B) Regression of docking scores and carbon chain length
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as colored lines. The docking scores are shown in Table S4.
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3.6. Biomarkers for Liver Injury

Although the levels of ALP, AST (common liver biomarkers), and cholesterol (a lipid
metabolism marker) were within the reference range in all three groups [40,41], ALP levels
were significantly higher in the PFAS-High group than in the PFAS-Low group (Figure 6).
In contrast, cholesterol levels were significantly lower in the PFAS-High group than in the
control group.
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(aspartate aminotransferase), and cholesterol in plasma (N = 5, each group). These concentrations
were measured using colorimetric methods. The data are graphically represented as box-and-whisker
plots, where the boxes represent each quartile along the median, + indicates the mean value, and the
whiskers extend to the maximum and minimum values. All data points were measured in duplicate.
* denotes significant differences detected using Tukey–Kramer’s HSD test (p < 0.05).

4. Discussion

PFAS have become ubiquitous in the human population, raising concerns regarding
their impact on human health. The concentrations of PFOA and PFOS in the human
plasma range from 1 to 30 ng/mL [42]. It is imperative to evaluate the effects of real-world,
low-concentration mixed exposures. In the present study, mice were orally exposed to
nine linear PFAS, including PFOA and PFOS, over a five-week period. Histological ex-
aminations revealed significant alterations in the liver tissues in both the PFAS-Low and
PFAS-High groups (Figures 1 and S2). The alterations were characterized by vacuolar
degeneration featuring eosinophilic granules and an anomalous arrangement of hepatic
sinusoids. Hepatocyte vacuolation was frequently observed in the hepatic lobule, particu-
larly near the hepatic portal vein, suggesting that PFAS is taken up via the gastrointestinal
tract and directly affects hepatocytes proximal to the portal vein. Considering the absence
of glycogen denaturation, as indicated by the negative results of PAS staining (Figure 1),
we inferred that chemically responsive hepatic hypertrophy was a gross abnormality. Chen
et al. (2022) postulated that inflammation and apoptosis of hepatocytes occurred in re-
sponse to PFOS exposure via drinking water at a concentration of 500 µg/L, with Elcombe
et al. (2012) positing that periportal hepatocellular vacuolation in rats could result from
PFOS intake of 20 or 100 ppm [18,43]. However, this study demonstrates that even much
lower mixed-exposure doses can cause analogous histological alterations.

Omics analysis was performed to evaluate molecular biological alterations in the
liver. Transcriptome analysis revealed similar patterns of genetic variation between the
PFAS-Low and PFAS-High groups (Figure 2B). The genes were categorized according to
their function based on the KEGG pathway. Genes related to metabolism and carcinogen-
esis were predominantly modified by PFAS exposure (Figure 2C,D). Quantitative PCR
was performed to validate the changes in expression levels within these pathways. The
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transcript with the highest mRNA expression included Chrna4, which was upregulated
by approximately 10-fold and 6-fold in the high-exposure group and low-exposure group,
respectively, compared to the untreated control group (Figure 3). Chrna4 is located up-
stream of Ccnd1, an oncogene in the KEGG chemical carcinogenesis pathway, suggesting
that Chrna4 contributes to chemical carcinogenesis. In addition, Fasn, which is regulated by
PPARs, was also significantly upregulated by PFAS exposure. Overexpression of Fasn and
enhanced lipid metabolism promote cancer cell growth and metastasis because cancer cells
utilize fatty acids for tumor growth and metastasis [44]. Hence, PFAS exposure enhanced
lipid metabolism and promoted tumorigenesis. Moreover, Ccnd1 and Cdc6 genes—which
regulate cell proliferation during the cell cycle—also exhibited increased expressions in
the exposure groups. Ccnd1 triggers the G1–S phase transition in the cell cycle by activat-
ing cyclin-dependent kinases (Cdk4 and Cdk6) and enhances the proliferation of cancer
cells [45]. Cdc6, a cell growth regulator, is expressed in the quiescent phase (G1 phase) in
normal cells but is expressed at all cell cycle stages in cancer cells and enhances cancer
cell proliferation. Our results suggest that even low concentrations of the PFAS mixture
increase the expression of these genes. The carcinogenic risk of low-concentration PFAS
exposure needs to be evaluated in longer-term chronic exposure studies. The majority of
genes with the highest expression variation in RNA sequencing were lnc-RNAs and did not
significantly impact the enrichment analysis (Tables S2 and S3). However, when these genes
were analyzed with Enrichr [46], the results indicated the involvement of the Regulation
of Gene Expression By Hypoxia-inducible Factor R-HSA-1234158 in Reactome 2022 and
the Proteins Involved In Gene Expression By Hypoxia-inducible Factor R-HSA-1234158 in
the Elsevier pathway. These findings suggest that PFAS exposure may induce hypoxia-like
changes in gene expression that were not characterized by KEGG-based analysis.

Metabolome analysis revealed similar patterns of metabolites altered with PFAS in
the PFAS-Low and PFAS-High groups (Figure 4A). However, enrichment analysis sug-
gested that different pathways were altered in these groups, with the glycerophospholipid
and ether lipid pathways particularly affected in the PFAS-Low group. The main factor
contributing to this alteration in the PFAS-Low group includes the approximately 0.6-fold
decrease in glycerophosphocholine (α-GPC) levels (Figure S5A). Hence, the initial decrease
in acetylcholine precursor α-GPC levels after PFAS exposure may have been compensated
by an increase in the expression of the acetylcholine receptor, Chrna4 (Figure 3). The
glutathione metabolic pathway, a defense mechanism against oxidative stress, was upreg-
ulated in the PFAS-High group. The nucleotide sugar pathway was upregulated in both
PFAS-exposed groups owing to an approximately two-fold increase in glucose 6-phosphate
levels (Figure S5B). G6P is the starting substrate of the pentose phosphate pathway, an
NADPH-producing pathway in the liver. This increase may have occurred in response
to NADPH requirements for glutathione. In contrast, an increase in the reduced and oxi-
dized glutathione levels (Figure S3) suggested that the oxidative stress response was not
disrupted and that the glutathione levels increased adaptively. It should be noted that not
all individual variations for each compound were statistically significant. While the enrich-
ment analysis showed different results among the exposure groups, binary classification
via machine learning, in addition to cluster analysis, discriminated PFAS exposure from the
metabolome with 90% accuracy, suggesting exposure-specific effects. The substance that
contributed the most to the classification, 5-aminovaleric acid, is known to act as a weak
GABA receptor agonist [47,48]. GABA release is regulated by nicotinic acetylcholine recep-
tors, and elevated liver concentrations of 5-aminovaleric acid from PFAS exposure may be
associated with increased gene expression of Chrna4. On the other hand, 5-aminovaleric
acid had the second-highest concordance in the metabolome annotation of this study, and
the compound with the best concordance was 2,5-dihydro-2,4-dimethyloxazole, a compo-
nent of nuts (Figure S6). 5-(Carbamoylamino)pentanoic acid, which had the second highest
contribution in the random forest model, was also initially annotated with the pharmaceu-
tical piracetam. Information on 5-(carbamoylamino)pentanoic acid is limited, but it is a
derivative of citrulline (2-amino-5-(carbamoylamino)pentanoic acid), which is involved in
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the urea cycle, having undergone deamination. As a limitation of this study, it should be
noted that the compounds were not precisely identified using analytical standards but were
annotated based on their MSMS spectra. However, since the random forest classification
did not use the physiological function of the compounds, they were still uniquely observed
in the PFAS-exposed groups. More detailed mass spectrometric identification of these
compounds is warranted. The decision tree machine learning method used to classify the
exposure groups effectively evaluated the toxicity effects in a p-value-independent manner
based on compounds with unknown biological functions. In contrast, the glycerophospho-
lipid pathway revealed via RNA-Seq analysis did not show any significant changes in gene
expression. These findings suggest that multi-omics analysis may be advantageous for
detecting pre-pathological changes.

Hepatic precancerous proliferative alterations are influenced by various etiological
factors, with the activation of nuclear receptors, PPARs, being one of the primary factors. In
mammals, three types of PPARs have been identified: PPARα, PPARγ, and PPARδ. These
receptors participate in cell differentiation, energy metabolism, and cancer cell growth [49].
In our study, we conducted docking simulations to evaluate the binding affinity between
nine PFAS and mouse PPARα, PPARγ, and PPARδ. The results revealed a robust correlation
between the length of the PFAS carbon chain and binding affinity for all three PPAR isotypes
in mice (Figure 5B). Notably, PFOS, PFNA, and PFOA exhibited binding poses similar to
those of fenofibrate, a known PPARα ligand, and exhibited even higher binding potency
than that of fenofibrate (Table S4). This suggests that PFAS can act as PPARα agonists.
Interestingly, even short-chain PFAS demonstrated bioactivity, as docking scores equal to
or above −7.0 generally indicate high pharmacological activity in nanomolar orders, which
is a significant factor in drug discovery screening [50]. A previous study reported that
PFOA, PFOS, and short-chain PFAS can activate PPARα and PPARγ in vitro [51]. Short-
chain PFAS have relatively low toxicity but may contribute to PPAR-dependent hepatic
hypertrophy. Although hepatocyte hypertrophy was observed in the present study, the
RNA-seq results did not show a substantial increase in the expression of PPAR-responsive
genes (e.g., a 2.0-fold increase in Cyp7a1 expression in the PFAS-High group). However, the
increased expression of cell proliferative genes, including Ccnd1, in the oncogenic pathway
indicates the presence of other receptor-binding-mediated cell proliferation signals. To
accurately assess the toxicity of PFAS, it is crucial to elucidate the key AOP events related
to hepatocyte hypertrophy.

Plasma ALP, AST, and cholesterol levels were measured as biomarkers of liver injury
(Figure 6). Although ALP levels increased significantly following exposure to high con-
centrations of PFAS, they remained within the normal range. AST and cholesterol levels
were within the normal range and decreased with increasing exposure. These findings
suggest that PFAS exposure did not cause a severe liver injury, although histological alter-
ations were evident in the liver. Hepatocytes transiently enlarge as an adaptive response
to chemical exposure, whether adverse or nonadverse [52]; therefore, histological changes
are considered adaptive hypertrophy. As carcinogenic genetic changes were observed
in this study, there is a risk of liver damage with prolonged exposure. Chronic toxic-
ity studies of mixed exposures are essential to elucidate this point. Species differences
should be considered when extrapolating the findings of the present study to humans.
A previous study showed that the sensitivity of PPARα to PFAS is higher in mice than
in humans and that PFAS at levels that cause significant carcinogenicity in rodents may
be insensitive or unresponsive in humans [53]. However, the half-lives of PFOA, PFOS,
and other PFAS are shorter in mice than in humans, and the same exposure may result in
higher residue concentrations in humans [11]. Therefore, it is essential to consider more
appropriate models for evaluating the health effects of PFAS on humans. Susceptibility
to PFAS may also vary by strain of mouse, with the finding that C57BL6 mice are more
prone to hypercholesterolemia on PFOA and high-fat diets than BALB/c mice [54]. In the
present study, plasma cholesterol levels tended to be rather low in the PFAS-exposed group,
but further validation is required. In addition, C57BL/6J and C57BL/6N differ in their
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response to non-alcoholic steatohepatitis (NASH), even within the same C57BL/6 strain.
In the tetrachloromethane-induced NASH model, BL/6J mice exhibited more severe liver
fibrosis, whereas in the high-fat diet-induced NASH model, BL/6N mice had more weight
gain and liver injury than BL/6J mice [55]. One limitation of this study is that it involved
mixed exposure; therefore, it is unknown whether there were individual or synergistic
effects of each substance. Assessment of the mixed exposure effects of chemical substances
is an international issue, and there is currently no established assessment method [56].
Further validation using both the experimental validation demonstrated in this study and
theoretical prediction models is expected.

5. Conclusions

The findings of this study highlighted that low concentrations of PFAS mixtures can
cause changes in gene expression (including cancer-related genes) and histology even after
a relatively short exposure period of 5 weeks. In the future, exposure studies must be
conducted over longer periods and at lower concentrations to reflect the environmental
exposure conditions.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/toxics12010052/s1, Figure S1. Colorimetric determination of
hepatocyte cytoplasm. Figure S2. Histological examination of the kidney, heart, and spleen via
hematoxylin and eosin staining. Figure S3. Box-and-whisker plot of the top 10 essential compounds
in the random forest classifier. Figure S4. Representative 2D diagram of binding poses between
peroxisome proliferator-activated receptors (α, δ, and γ) and poly-fluoroalkyl substances (PFOS,
PFHxS, and PFBS) obtained via molecular docking. Figure S5. Box-and-whisker plot of glycerophos-
phocholine and D-glucose 6-phosphate, which contributed to the enrichment analysis shown in
Figure 5B. Figure S6. MSMS spectra of representative metabolite. Table S1. Primer information. Table
S2. Top 10 genes upregulated after PFAS exposure detected via RNA-sequence. Table S3. Top 10
genes downregulated after PFAS exposure detected via RNA-sequence. Table S4. Docking scores.
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