Resourcization of Argillaceous Limestone with Mn3O4 Modification for Efficient Adsorption of Lead, Copper, and Nickel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Modification of Argillaceous Limestone
2.3. Batch Adsorption Experiments
2.4. Characterization Method
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Mn3O4 Modified Argillaceous Limestone
3.2. Adsorption Behavior
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherm
3.2.3. Effects of Environmental Factors
3.2.4. Adsorption Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghasemidehkordi, B.; Malekirad, A.A.; Nazem, H.; Fazilati, M.; Salavati, H.; Shariatifar, N.; Rezaei, M.; Fakhri, Y.; Mousavi, K.A. Concentration of Lead and Mercury in Collected Vegetables and Herbs from Markazi Province, Iran: A Non-Carcinogenic Risk Assessment. Food Chem. Toxicol. 2018, 113, 204–210. [Google Scholar] [CrossRef]
- Agnihotri, A.; Seth, C.S. Does Jasmonic Acid Regulate Photosynthesis, Clastogenecity, and Phytochelatins in Brassica juncea L. in Response to Pb-Subcellular Distribution? Chemosphere 2020, 243, 125361. [Google Scholar] [CrossRef]
- Renu, K.; Chakraborty, R.; Myakala, H.; Koti, R.; Famurewa, A.C.; Madhyastha, H.; Vellingiri, B.; George, A.; Valsala, G.A. Molecular Mechanism of Heavy Metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)-Induced Hepatotoxicity-A Review. Chemosphere 2021, 271, 129735. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Chen, H.; Lin, D.; Xu, H.; Wang, J.; Zhang, J.; Hu, Z.; Deng, J.; Gao, J.; Li, H.; et al. A Field Study of Nano-Fes Loaded Lignin Hydrogel Application for Cd Reduction, Nutrient Enhancement, and Microbiological Shift in a Polluted Paddy Soil. Chem. Eng. J. 2023, 451, 138647. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Wang, J.; Xu, H.; Liu, Y.; Zhang, Z.; Li, Y.; Zhang, Y. Adsorption of Cadmium and Lead Ions by Phosphoric Acid-Modified Biochar Generated from Chicken Feather: Selective Adsorption and Influence of Dissolved Organic Matter. Bioresour. Technol. 2019, 292, 121948. [Google Scholar] [CrossRef] [PubMed]
- Lingamdinne, L.P.; Godlaveeti, S.K.; Angaru, G.K.R.; Chang, Y.Y.; Nagireddy, R.R.; Somala, A.R.; Koduru, J.R. Highly Efficient Surface Sequestration of Pb2+ and Cr3+ from Water Using a Mn3O4 Anchored Reduced Graphene Oxide: Selective Removal of Pb2+ from Real Water. Chemosphere 2022, 299, 134457. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay Mineral Adsorbents for Heavy Metal Removal from Wastewater: A Review. Environ. Chem. Lett. 2018, 17, 629–654. [Google Scholar] [CrossRef]
- Du, H.; Chen, W.; Cai, P.; Rong, X.; Feng, X.; Huang, Q. Competitive Adsorption of Pb and Cd on Bacteria–Montmorillonite Composite. Environ. Pollut. 2016, 218, 168–175. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.; Zhang, Q.; Yuan, W.; Wu, Y. Ion Exchange to Immobilize Cd(II) at Neutral pH into Silicate Matrix Prepared by Co-Grinding Kaolinite with Calcium Compounds. Chemosphere 2022, 301, 134677. [Google Scholar] [CrossRef]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Wen, T.; Zhao, Y.; Zhang, T.; Xiong, B.; Hu, H.; Zhang, Q.; Song, S. Selective Recovery of Heavy Metals from Wastewater by Mechanically Activated Calcium Carbonate: Inspiration from Nature. Chemosphere 2020, 246, 125842. [Google Scholar] [CrossRef] [PubMed]
- Noiriel, C.; Made, B.; Gouze, P. Impact of Coating Development on the Hydraulic and Transport Properties in Argillaceous Limestone Fracture. Water. Resour. Res. 2007, 43, W09406. [Google Scholar] [CrossRef]
- Torres-Luna, J.A.; Carriazo, J.G. Porous Aluminosilicic Solids Obtained by Thermal-Acid Modification of a Commercial Kaolinite-Type Natural Clay. Solid State Sci. 2019, 88, 29–35. [Google Scholar] [CrossRef]
- Zagrarni, M.F.; Negra, M.H.; Hanini, A. Cenomanian–Turonian Facies and Sequence Stratigraphy, Bahloul Formation, Tunisia. Sediment. Geol. 2008, 204, 18–35. [Google Scholar] [CrossRef]
- Lee, M.-E.; Park, J.H.; Chung, J.W.; Lee, C.-Y.; Kang, S. Removal of Pb and Cu Ions from Aqueous Solution by Mn3O4-coated Activated Carbon. J. Ind. Eng. Chem. 2015, 21, 470–475. [Google Scholar] [CrossRef]
- Xiong, T.; Yuan, X.; Cao, X.; Wang, H.; Liu, Y. Mechanistic Insights into Heavy Metals Affinity in Magnetic MnO2@Fe3O4/Poly(M-Phenylenediamine) Core-shell Adsorbent. Ecotoxicol. Environ. Saf. 2020, 192, 110326. [Google Scholar] [CrossRef]
- Zou, J.P.; Liu, H.L.; Luo, J.; Xing, Q.J.; Du, H.M.; Jiang, X.H.; Luo, X.B.; Luo, S.L.; Sui, S.L. Three-Dimensional Reduced Graphene Oxide Coupled with Mn3O4 for Highly Efficient Removal of Sb(III) and Sb(V) from Water. ACS Appl. Mater. Interfaces 2016, 8, 18140–18149. [Google Scholar] [CrossRef]
- Khraisheh, M.; Aldegs, Y.; McMinn, W. Remediation of Wastewater Containing Heavy Metals Using Raw and Modified Diatomite. Chem. Eng. J. 2004, 99, 177–184. [Google Scholar] [CrossRef]
- Sarı, A.; Şahinoğlu, G.; Tüzen, M. Antimony (III) Adsorption from Aqueous Solution Using Raw Perlite and Mn-Modified Perlite: Equilibrium, Thermodynamic, and Kinetic Studies. Ind. Eng. Chem. Res. 2012, 51, 6877–6886. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Industrial Wastes as Low-Cost Potential Adsorbents for the Treatment of Wastewater. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef]
- Zhang, Z.; He, S.; Zhang, Y.; Zhang, K.; Wang, J.; Jing, R.; Yang, X.; Hu, Z.; Lin, X.; Li, Y. Spectroscopic Investigation of Cu2+, Pb2+ and Cd2+ Adsorption Behaviors by Chitosan-Coated Argillaceous Limestone: Competition and Mechanisms. Environ. Pollut. 2019, 254, 112938. [Google Scholar] [CrossRef]
- Xue, S.; Xiao, Y.; Wang, G.; Fan, J.; Wan, K.; He, Q.; Gao, M.; Miao, Z. Adsorption of Heavy Metals in Water by Modifying Fe3O4 Nanoparticles with Oxidized Humic Acid. Colloids Surf. A 2021, 616, 126333. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Weng, L.; Wang, J.; He, J.; Liu, Y.; Zhang, K.; Wu, Q.; Zhang, Y.; Zhang, Z. Competitive Adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified Argillaceous Limestone: Influence of pH, Ionic Strength and Natural Organic Matters. Sci. Total Environ. 2018, 637–638, 69–78. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002.
- Garg, R.; Garg, R.; Khan, M.A.; Garg, V.K. Utilization of Biosynthesized Silica-Supported Iron Oxide Nanocomposites for the Adsorptive Removal of Heavy Metal Ions from Aqueous Solutions. Environ. Sci. Pollut. Res. 2023, 30, 81319–81332. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Mo, Q.; Yang, X.; Wang, J.; Lin, X.; Shang, D.; Li, Y.; Zhang, Y. Removal of Cadmium and Tetracycline by Lignin Hydrogels Loaded with Nano-Fes: Nanoparticle Size Control and Content Calculation. J. Hazard. Mater. 2021, 416, 126262. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, J.; Xu, H.; Zhang, Y.; Hu, T.; Chen, W.; Hu, H.; Wu, J.; Li, Y.; Jiang, G. A Magnetic Macro-Porous Biochar Sphere as Vehicle for the Activation and Removal of Heavy Metals from Contaminated Agricultural Soil. Chem. Eng. J. 2020, 390, 124638. [Google Scholar] [CrossRef]
- He, K.; Chen, Y.; Tang, Z.; Hu, Y. Removal of Heavy Metal Ions from Aqueous Solution by Zeolite Synthesized from Fly Ash. Environ. Sci. Pollut. Res. 2016, 23, 2778–2788. [Google Scholar] [CrossRef] [PubMed]
- Tohdee, K.; Kaewsichan, L.; Asadullah. Enhancement of Adsorption Efficiency of Heavy Metal Cu(II) and Zn(II) onto Cationic Surfactant Modified Bentonite. J. Environ. Chem. Eng. 2018, 6, 2821–2828. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, M.; Wang, F.; Ma, J. Experimental and Theoretical Study on the Adsorption Mechanism of Amino Trimethylphosphate (ATMP) Functionalized Hydroxyapatite on Pb (II) and Cd (II). Colloids Surf. A 2021, 626, 127029. [Google Scholar] [CrossRef]
- Ge, J.; Tang, N.; Guo, J.; Yu, M.; Zhang, Y.; Li, X.; Liang, J. Mussel-Inspired Magnetic Adsorbent MnO2/PDA@Fe3O4 for Removing Heavy Metal Ions Contaminants in Single and Mixed Systems. Environ. Sci. Pollut. Res. 2023, 30, 40846–40859. [Google Scholar] [CrossRef]
- Tran, T.V.; Nguyen, D.T.C.; Kumar, P.S.; Din, A.T.M.; Qazaq, A.S.; Vo, D.N. Green Synthesis of Mn3O4 Nanoparticles Using Costus woodsonii Flowers Extract for Effective Removal of Malachite Green Dye. Environ. Res. 2022, 214 Pt 2, 113925. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, G.; Huang, X.; Cao, X.; Ye, A.; Deng, Y.; Zhang, J.; Lin, C.; Zhang, R. Study on the Physicochemical Properties Changes of Field Aging Biochar and Its Effects on the Immobilization Mechanism for Cd2+ and Pb2+. Ecotoxicol. Environ. Saf. 2022, 230, 113107. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, S.; Kong, X.; Liang, Y.; Li, Z.; Wu, S.; Chang, C.; Luo, S.; Cui, Z. In Situ Synthesis of a Novel Mn3O4/G-C3N4 P-N Heterostructure Photocatalyst for Water Splitting. J. Colloid Interface Sci. 2021, 586, 778–784. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Gao, M.; Zhou, Y.; Zhou, Y. Efficient Photocatalytic Remediation of Typical Antibiotics in Water via Mn3O4 Decorated Carbon Nitride Nanotube. Chemosphere 2023, 311, 136925. [Google Scholar] [CrossRef]
- Chen, C.; Xie, M.; Kong, L.; Lu, W.; Feng, Z.; Zhan, J. Mn3O4 Nanodots Loaded g-C3N4 Nanosheets for Catalytic Membrane Degradation of Organic Contaminants. J. Hazard. Mater. 2020, 390, 122146. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Zou, W.; Zhang, Z.; Shi, J.; Yang, J. Removal of Copper(II) and Lead(II) from Aqueous Solution by Manganese Oxide Coated Sand I: Characterization and Kinetic Study. J. Hazard. Mater. 2006, 137, 384–395. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Liang, S.; Guo, X.; Tian, Q. Adsorption of Pb2+, Cu2+and Ni2+ from Aqueous Solutions by Novel Garlic Peel Adsorbent. Desalination Water Treat. 2013, 51, 7166–7171. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, Q.; Sim, A.; Yu, J.; Duan, Y.; Poon, S.; Liu, B.; Han, Q.; Urban, J.J.; Sedlak, D.; et al. Super Selective Removal of Lead from Water by Two-dimensional MoS2 Nanosheets and Layer-Stacked Membranes. Environ. Sci. Technol. 2020, 54, 12602–12611. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Stromvall, A.M.; Steenari, B.M. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum Peat from Solutions with Low Metal Concentrations. J. Hazard. Mater. 2008, 152, 885–891. [Google Scholar] [CrossRef]
- Wang, T.; Liu, W.; Xiong, L.; Xu, N.; Ni, J. Influence of pH, Ionic Strength and Humic Acid on Competitive Adsorption of Pb(II), Cd(II) and Cr(III) onto Titanate Nanotubes. Chem. Eng. J. 2013, 215–216, 366–374. [Google Scholar] [CrossRef]
- Ibrahim, H.S.; Jamil, T.S.; Hegazy, E.Z. Application of Zeolite Prepared from Egyptian Kaolin for the Removal of Heavy Metals: II. Isotherm Models. J. Hazard. Mater. 2010, 182, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Omer, A.M.; Hu, Z.; Yang, L.-Y.; Ji, C.; Ouyang, X. Fabrication of Magnetic Bentonite/Carboxymethyl Chitosan/Sodium Alginate Hydrogel Beads for Cu (II) Adsorption. Int. J. Biol. Macromol. 2019, 135, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bai, P.; Yan, Y.; Yan, W.; Shi, W.; Xu, R. Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from Aqueous Solution by Synthetic Clinoptilolite. Microporous Mesoporous Mater. 2019, 273, 203–211. [Google Scholar] [CrossRef]
- Anna, B.; Kleopas, M.; Constantine, S.; Anestis, F.; Maria, B. Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto Natural Bentonite: Study in Mono- and Multi-Metal Systems. Environ. Earth Sci. 2014, 73, 5435–5444. [Google Scholar] [CrossRef]
- Ma, L.; Chen, Q.; Zhu, J.; Xi, Y.; He, H.; Zhu, R.; Tao, Q.; Ayoko, G.A. Adsorption of Phenol and Cu(II) onto cationic and Zwitterionic Surfactant Modified Montmorillonite in Single and Binary Systems. Chem. Eng. J. 2016, 283, 880–888. [Google Scholar] [CrossRef]
- Tsai, W.C.; Ibarra, B.S.; Kan, C.C.; Futalan, C.M.; Dalida, M.L.P.; Wan, M.W. Removal of Copper, Nickel, Lead, and Zinc Using Chitosan-Coated Montmorillonite Beads in Single- and Multi-Metal System. Desalination Water Treat. 2015, 57, 9799–9812. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Loganathan, P.; Nguyen, T.V.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Simultaneous Adsorption of Cd, Cr, Cu, Pb, and Zn by an Iron-Coated Australian Zeolite in Batch and Fixed-bed Column Studies. Chem. Eng. J. 2015, 270, 393–404. [Google Scholar] [CrossRef]
- Zhu, J.; Cozzolino, V.; Pigna, M.; Huang, Q.; Caporale, A.G.; Violante, A. Sorption of Cu, Pb and Cr on Na-montmorillonite: Competition and Effect of Major Elements. Chemosphere 2011, 84, 484–489. [Google Scholar] [CrossRef]
- Sheikhhosseini, A.; Shirvani, M.; Shariatmadari, H. Competitive Sorption of Nickel, Cadmium, Zinc and Copper on Palygorskite and Sepiolite Silicate Clay Minerals. Geoderma 2013, 192, 249–253. [Google Scholar] [CrossRef]
- Moreno-Sader, K.; García-Padilla, A.; Realpe, A.; Acevedo-Morantes, M.; Soares, J.B.P. Removal of Heavy Metal Water Pollutants (Co2+ and Ni2+) Using Polyacrylamide/Sodium Montmorillonite (PAM/Na-MMT) Nanocomposites. ACS Omega 2019, 4, 10834–10844. [Google Scholar] [CrossRef]
- Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Comparative Adsorption of Ni(II) and Cd(II) Ions on Epichlorohydrin Crosslinked Chitosan-Clay Composite Beads in Aqueous Solution. Chem. Eng. J. 2012, 197, 379–386. [Google Scholar] [CrossRef]
- Šuránek, M.; Melichová, Z.; Kureková, V.; Kljajević, L.; Nenadović, S. Removal of Nickel from Aqueous Solutions by Natural Bentonites from Slovakia. Materials 2021, 14, 282. [Google Scholar] [CrossRef] [PubMed]
- Mehranjani, Z.A.; Hayati-Ashtiani, M.; Rezaei, M. Isotherm and Selectivity Study of Ni(II) Removal Using Natural and Acid-activated Nanobentonites. Water Sci. Technol. 2021, 84, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, S. Adsorption of Copper and Nickel on Na-Bentonite. Process Saf. Environ. Prot. 2010, 88, 62–66. [Google Scholar] [CrossRef]
- Xue, N.; Wang, L.; Pei, M.; He, Y.; Du, Y.; Guo, W. Preparation and Characterization of Sodium Polyacrylate-Grafted Bentonite and Its Performance Removing Pb2+ from Aqueous Solutions. RSC Adv. 2016, 6, 98945–98951. [Google Scholar] [CrossRef]
- Liu, H.; Lu, X.; Li, M.; Zhang, L.; Pan, C.; Zhang, R.; Li, J.; Xiang, W. Structural Incorporation of Manganese into Goethite and Its Enhancement of Pb(II) Adsorption. Environ. Sci. Technol. 2018, 52, 4719–4727. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.; Yu, Z.; Zeng, G.; Luo, Y.; Jiang, L.; Yang, Z.; Qian, Y.; Wu, H. Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustain. Chem. Eng. 2017, 5, 5049–5058. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Z.; Lu, S.; Shi, X. An Amidoxime-Functionalized Polypropylene Fiber: Competitive Removal of Cu(II), Pb(II) and Zn(II) from Aqueous Solutions and Subsequent Sequestration in Cement Mortar. J. Clean. Prod. 2020, 274, 123049. [Google Scholar] [CrossRef]
- Chen, W.; Xie, H.; Jiang, N.; Guo, X.; Liu, Z. Synthesis of Magnetic Sodium Lignosulfonate Hydrogel (Fe3O4@LS) and its Adsorption Behavior for Cd2+ in Wastewater. Int. J. Biol. Macromol. 2023, 245, 125498. [Google Scholar] [CrossRef]
- Wan, K.; Xiao, Y.; Fan, J.; Miao, Z.; Wang, G.; Xue, S. Preparation of High-Capacity Macroporous Adsorbent Using Lignite-derived Humic Acid and Its Multifunctional Binding Chemistry for Heavy Metals in Wastewater. J. Clean. Prod. 2022, 363, 132498. [Google Scholar] [CrossRef]
- Glatstein, D.A.; Francisca, F.M. Influence of pH and Ionic Strength on Cd, Cu and Pb Removal from Water by Adsorption in Na-Bentonite. Appl. Clay Sci. 2015, 118, 61–67. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Li, Y.; Liu, J.; Yan, Z. Adsorption Characteristics of Pb(II), Cd(II) and Cu(II) on Carbon Nanotube-Hydroxyapatite. Environ. Technol. 2021, 42, 1560–1581. [Google Scholar] [CrossRef]
- Gu, X.; Evans, L.J.; Barabash, S.J. Modeling the Adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto Montmorillonite. Geochim. Cosmochim. Acta 2010, 74, 5718–5728. [Google Scholar] [CrossRef]
- Huangfu, X.; Ma, C.; Huang, R.; He, Q.; Liu, C.; Zhou, J.; Jiang, J.; Ma, J.; Zhu, Y.; Huang, M. Deposition Kinetics of Colloidal Manganese Dioxide onto Representative Surfaces in Aquatic Environments: The Role of Humic Acid and Biomacromolecules. Environ. Sci. Technol. 2019, 53, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Yang, Y.; Huang, C.; Huang, M.; Chen, J.; Rao, T.; Ran, X. Removal of the Heavy Metal Ion Nickel (II) via An Adsorption Method Using Flower Globular Magnesium Hydroxide. J. Hazard. Mater. 2019, 373, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Yu, Z.; Tan, X.; Fang, M.; Wang, X.; Wang, J.; Xing, J.; Ai, Y.; Wang, X. Systematic Studies on the Binding of Metal Ions in Aggregates of Humic Acid: Aggregation Kinetics, Spectroscopic Analyses and MD Simulations. Environ. Pollut. 2019, 246, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Terdkiatburana, T.; Tadé, M.O. Adsorption of Cu(II), Pb(II) and Humic Acid on Natural Zeolite Tuff in Single and Binary Systems. Sep. Purif. Technol. 2008, 62, 64–70. [Google Scholar] [CrossRef]
- Brown, P.A.; Gill, S.A.; Allen, S.J. Metal Removal from Wastewater Using Peat. Water Res. 2000, 34, 3907–3916. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Guo, X.; Zou, C.; Tan, X. Investigating Adsorption Performance of Heavy Metals onto Humic Acid from Sludge Using Fourier-Transform Infrared Combined with Two-Dimensional Correlation Spectroscopy. Environ. Sci. Pollut. Res. 2019, 26, 9842–9850. [Google Scholar] [CrossRef]
- Chaturvedi, P.K.; Seth, C.S.; Misra, V. Selectivity Sequences and Sorption Capacities of Phosphatic Clay and Humus Rich Soil Towards the Heavy Metals Present in Zinc Mine Tailing. J. Hazard. Mater. 2007, 147, 698–705. [Google Scholar] [CrossRef]
- Terdkiatburana, T.; Wang, S.; Tadé, M.O. Competition and Complexation of Heavy Metal Ions and Humic Acid on Zeolitic MCM-22 and Activated Carbon. Chem. Eng. J. 2008, 139, 437–444. [Google Scholar] [CrossRef]
- Amarray, A.; Ghachtouli, S.; Leroy, J.; Bonnaillie, P.; Khaless, K.; Dahbi, M.; Azzi, M. Mesoporous Nanomaterials Based on Manganese with Different Interlayer Alkali Cations: An Efficient Approach for the Removal of Pb(II) and Cd(II) from Aqueous Medium. J. Water Process Eng. 2021, 40, 101944. [Google Scholar] [CrossRef]
- Guo, J.; Fan, X.; Li, Y.; Yu, S.; Ren, X. Mechanism of Selective Gold Adsorption on Ion-Imprinted Chitosan Resin Modified by Thiourea. J. Hazard. Mater. 2021, 415, 125617. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Deng, J.; Li, X.; Wei, X.; Shao, Y.; Zhao, Y. Layered Double Hydroxides Loaded Sludge Biochar Composite for Adsorptive Removal of Benzotriazole and Pb(II) from Aqueous Solution. Chemosphere 2022, 287, 131966. [Google Scholar] [CrossRef]
- Hou, T.; Yan, L.; Li, J.; Yang, Y.; Shan, L.; Meng, X.; Li, X.; Zhao, Y. Adsorption Performance and Mechanistic Study of Heavy Metals by Facile Synthesized Magnetic Layered Double Oxide/Carbon Composite from Spent Adsorbent. Chem. Eng. J. 2020, 384, 123331. [Google Scholar] [CrossRef]
- Luo, H.; Liu, Y.; Lu, H.; Fang, Q.; Rong, H. Efficient Adsorption of Tetracycline from Aqueous Solutions by Modified Alginate Beads after the Removal of Cu(II) Ions. ACS Omega 2021, 6, 6240–6251. [Google Scholar] [CrossRef]
- Long, R.; Yu, Z.; Shan, M.; Feng, X.; Zhu, X.; Li, X.; Wang, P. The Easy-recoverable 3D Ni/Fe-LDH-SA Gel Ball Encapsulated by Sodium Alginate is Used to Remove Ni2+ and Cu2+ in Water Samples. Colloids Surf. A 2022, 634, 127942. [Google Scholar] [CrossRef]
- Xia, S.; Deng, L.; Liu, X.; Yang, L.; Yang, X.; Shi, Z.; Pei, Y. Fabrication of Magnetic Nickel Incorporated Carbon Nanofibers for Superfast Adsorption of Sulfadiazine: Performance and Mechanisms Exploration. J. Hazard. Mater. 2022, 423, 127219. [Google Scholar] [CrossRef]
- Hao, J.; Meng, X.; Fang, S.; Cao, H.; Lv, W.; Zheng, X.; Liu, C.; Chen, M.; Sun, Z. MnO2-functionalized Amorphous Carbon Sorbents from Spent Lithium-Ion Batteries for Highly Efficient Removal of Cadmium from Aqueous Solutions. Ind. Eng. Chem. Res. 2020, 59, 10210–10220. [Google Scholar] [CrossRef]
Adsorbates | Experimental Qe (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
Qe | k1 | R2 | Qe | k2 | R2 | ||
(mg/g) | (min−1) | (mg/g) | (g/(mg min)) | ||||
Pb | 42.48 | 40.91 | 0.090 | 0.743 | 42.48 | 0.00092 | 0.928 |
Cu | 17.31 | 17.17 | 0.043 | 0.895 | 17.32 | 0.00519 | 0.989 |
Ni | 6.272 | 5.800 | 0.023 | 0.926 | 6.338 | 0.00449 | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Li, Y.; He, S.; Hu, T.; Li, H.; Wang, J.; Zhang, Z.; Zhang, Y. Resourcization of Argillaceous Limestone with Mn3O4 Modification for Efficient Adsorption of Lead, Copper, and Nickel. Toxics 2024, 12, 72. https://doi.org/10.3390/toxics12010072
Li D, Li Y, He S, Hu T, Li H, Wang J, Zhang Z, Zhang Y. Resourcization of Argillaceous Limestone with Mn3O4 Modification for Efficient Adsorption of Lead, Copper, and Nickel. Toxics. 2024; 12(1):72. https://doi.org/10.3390/toxics12010072
Chicago/Turabian StyleLi, Deyun, Yongtao Li, Shuran He, Tian Hu, Hanhao Li, Jinjin Wang, Zhen Zhang, and Yulong Zhang. 2024. "Resourcization of Argillaceous Limestone with Mn3O4 Modification for Efficient Adsorption of Lead, Copper, and Nickel" Toxics 12, no. 1: 72. https://doi.org/10.3390/toxics12010072
APA StyleLi, D., Li, Y., He, S., Hu, T., Li, H., Wang, J., Zhang, Z., & Zhang, Y. (2024). Resourcization of Argillaceous Limestone with Mn3O4 Modification for Efficient Adsorption of Lead, Copper, and Nickel. Toxics, 12(1), 72. https://doi.org/10.3390/toxics12010072