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Abstract: With the rapid development of industrialization, the problem of heavy metal wastewater
treatment has become increasingly serious, posing a serious threat to the environment and human
health. Biochar shows great potential for application in the field of wastewater treatment; how-
ever, biochars prepared from different biomass sources and experimental conditions have different
physicochemical properties, resulting in differences in their adsorption capacity for uranium, which
limits their wide application in wastewater treatment. Therefore, there is an urgent need to deeply
explore and optimize the key parameter settings of biochar to significantly improve its adsorption
capacity. This paper combines the nonlinear mapping capability of SCN and the ensemble learning
advantage of the Adaboost algorithm based on existing experimental data on wastewater treatment.
The accuracy of the model is evaluated by metrics such as coefficient of determination (R2) and
error rate. It was found that the Adaboost–SCN model showed significant advantages in terms of
prediction accuracy, precision, model stability and generalization ability compared to the SCN model
alone. In order to further improve the performance of the model, this paper combined Adaboost–SCN
with maximum information coefficient (MIC), random forest (RF) and energy valley optimizer (EVO)
feature selection methods to construct three models, namely, MIC-Adaboost–SCN, RF-Adaboost–SCN
and EVO-Adaboost–SCN. The results show that the prediction model with added feature selection is
significantly better than the Adaboost–SCN model without feature selection in each evaluation index,
and EVO has the most significant effect on feature selection. Finally, the correlation between biochar
adsorption properties and production parameters was discussed through the inversion study of key
parameters, and optimal parameter intervals were proposed to improve the adsorption properties.
Providing strong support for the wide application of biochar in the field of wastewater treatment
helps to solve the urgent environmental problem of heavy metal wastewater treatment.

Keywords: wastewater treatment; uranium adsorption; biochar; ensemble learning; parameter inversion

1. Introduction

With the growing global demand for clean energy, the importance of nuclear power as
a low-carbon and highly efficient form of energy is becoming increasingly important [1].
However, the development of nuclear power is faced with the challenge of nuclear waste
disposal, especially uranium-containing wastewater, and stringent and effective measures
need to be taken to ensure safe disposal [2]. On the one hand, the chemical and radiological
hazards of uranium are significant due to its long half-life and high toxicity [3], posing a
threat to human health and natural ecology that cannot be ignored. On the other hand, as
an indispensable component of nuclear fuel, uranium resources are precious and reserves
are limited, making the mining and recycling of uranium more important [4]. Currently,
many technologies are used to treat uranium-containing wastewater, such as membrane
separation [5], solvent extraction [6], chemical precipitation [7], ion exchange [8] and
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adsorption [9]. Regarding economic and practical advantages, adsorption technology has
gradually attracted people’s attention to treating uranium-containing wastewater due to its
convenient operation, low operating cost, high efficiency and environmental protection [10].

Adsorbent materials such as minerals, which are widely used today, generally face
the problems of low renewability, difficult biodegradation and the possibility of secondary
pollution [11]. Biochar, as a high carbon content and porous adsorption medium, has shown
great potential for application in the field of wastewater purification and environmental
pollution remediation due to its unique structural properties, wide accessibility, ecological
friendliness, recyclability and cost-effectiveness [12]. Biochar is rich in negatively charged
functional groups that bind to heavy metal ions in contaminated water to form complexes,
and these complexes can fix the heavy metal ions on the surface of the biochar, thus
providing a new and effective method for the treatment of heavy metal contaminated
water [13]. However, different biomass sources and experimental conditions can produce
biochar with different physicochemical properties, leading to different adsorption capacities
for U (VI) [14]. Many biochars perform poorly in adsorption efficiency, limiting their wide
application in wastewater treatment. Given this, there is an urgent need to explore in-depth
and optimize the setting of key parameters of biochar to significantly enhance its adsorption
capacity.

Chen et al. [15] studied the adsorption of U (VI) on hydrothermal biochar, and the
maximum adsorption capacity was 388.81 mg/g at 298 K. They found that adsorption
capacity highly depends on solution pH, surface functional groups and contact time.
Yakout [16] investigated the adsorption of U (VI) on rice straw biochar and showed that the
adsorption is governed by the biochar’s structural features and surface functional groups,
which may be affected by the pH of the solution. Yang et al. [17] combined hydrothermal
and pyrolysis processes to prepare magnesium-containing lotus pod-derived biochar (MgO-
HBC), which enhanced the adsorption of uranium by increasing the surface area, thermal
stability and active sites of the biochar. Conventional experimental studies of uranium
adsorption are often costly in terms of human, material and financial resources due to their
complexity and safety risks.

With the continuous development of artificial intelligence, some scholars, based on
the currently large amount of experimental data accumulated, propose to study how to
improve the adsorption capacity of biochar to heavy metal uranium through machine
learning (ML) and explore the correlation between the key parameters of biochar and
adsorption performance, in order to reduce the use of uranium and avoid the harm of
uranium radiation to the human body in actual experiments. Guo et al. [18] established
an artificial neural network ANN model with a total of eight input parameters, including
initial metal concentration C0 (µg/L) and solution pH, to predict the adsorption capacity
of heavy metals, with a high correlation coefficient (R) of 0.926~0.994. Zhu et al. [19]
used artificial neural networks (ANN) and random forests (RFs) to model the adsorption
efficiency of heavy metals on biochar. The prediction accuracy of RF is better than that of
the ANN model. In order to further improve the efficiency and effect of machine learning,
Wang et al. [20] proposed the stochastic configuration network (SCN). Compared with deep
neural networks (DNN) and convolutional neural networks (CNN), SCN not only ensures
high prediction accuracy, but also significantly reduces computing costs, is more suitable
for processing large-scale data sets and can quickly output prediction results. In addition,
SCN’s strong generalization performance ensures good adaptability and stability of data
under different experimental conditions.

Limited by the very long time of machine learning using optimization algorithms,
many scholars have used integrated learning with more stable performance for prediction.
Liu et al. [21] proposed four different hybrid methods, including GD-ALR-BP, GDM-ALR-
BP, CG-BP-FR and BFGS, for wind speed prediction based on the Adaboost algorithm and
multilayer perceptron neural networks. Yan et al. [22] proposed an integrated model based
on the rolling decomposition method and deep learning algorithms for predicting NH3-N
concentration in wastewater. However, wastewater treatment of heavy metals involves
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a complex environment, and numerous factors affect biochar’s adsorption capacity on
uranium, such as the specific surface area (SA, m2/g) of the biochar, the mass percentage
of total carbon and the temperature. These factors not only increase the difficulty of
modeling, but also features with poor correlation will affect machine learning. In order
to make the recognition effect of machine learning more satisfactory, researchers have
proposed the feature selection method. Guo et al. [23] proposed a hybrid method of
random forest regression and maximum information coefficient (RFR-MIC), and it was
found that the prediction model with the addition of feature selection had higher prediction
accuracy. Therefore, in this paper, in constructing the model, the three methods of maximum
information coefficient (MIC), random forest (RF) and energy valley optimizer (EVO) are
selected for feature selection, thus helping the machine learning model to be trained quickly,
and also improving the accuracy of the model and reducing overfitting [24].

In view of the high cost, long period and uncertainty of traditional biochar parameter
determination methods, the inversion method was innovatively introduced and applied
in this paper [25]. This method not only reduces the research cost and time consumption
significantly, but also obtains the optimal parameter value efficiently and accurately by
the way of backward calculation. Mu et al. [26] proposed a reverse analysis method based
on field test data, which can predict the three-dimensional displacement of soil caused
by support excavation. Therefore, the inversion method is given priority in this paper to
solve for the optimal parameter values of biochar. The limitation of traditional methods is
overcome effectively, and a new way is opened up for the rapid and accurate determination
of biochar parameters.

In order to deal with the increasingly serious water pollution problem, the prediction
model of uranium adsorption by biochar is more stable and the training speed is faster.
This paper adopts the nonlinear mapping capability of SCN and the ensemble learning ad-
vantage of the Adaboost algorithm. The maximum information coefficient (MIC), random
forest (RF) and energy valley optimizer (EVO) feature selection methods are combined to
construct five kinds of prediction models of uranium adsorption capacity: SCN, Adaboost–
SCN, MIC-Adaboost–SCN, RF-Adaboost–SCN, EVO-Adaboost–SCN. Based on a large
amount of experimental data, this study predicted the adsorption capacity of different
biochar materials for uranium and inverted the key parameters to provide a reference for
biochar efficient treatment of uranium pollution.

2. Materials and Methods
2.1. Data Collection and Preprocessing

This paper collected 546 groups of experimental data on uranium adsorption by
biochar from references [27–34]. The physical and chemical properties of biochar and
experimental conditions were used as input parameters for the model. The physical
properties of biochar include specific surface area (SA, m2/g), average pore size (D, nm)
and total pore volume (V, cm3/g). Chemical properties include the mass percentage of total
carbon (C, %), the molar ratio of oxygen to carbon (O/C) and the molar ratio of oxygen to
nitrogen [(O + N)/C]. The experimental conditions include pH, temperature (T, K), initial
concentration of uranium (C0, mg/L) and solid–liquid ratio (SLR, g/L). The adsorption
capacity of uranium on biochar (AC, mg/g) is taken as the output parameter [35].

It is shown in Table 1 that 546 sets of experimental data cover a variety of experimental
conditions and the physical and chemical properties of biochar, and the numerical ranges
and units of different features are quite different, which will cause the model to attribute
too much weight to some features during training while ignoring other important features
with small numerical values, thus affecting the accuracy of the model. In order to solve
this problem, the min–max normalization method was adopted to convert data with
different features into the specified range [0, 1] through linear transformation of the original
data, in order to eliminate the dimensional differences between different features and
make all features equal in model training [36]. The specific formula is shown as (1). The
normalization reduces the influence of data range difference on gradient calculation and
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enables the model to converge to the optimal solution faster during training. This not
only saves training time, but also reduces the consumption of computing resources. The
normalized data make it easier for the model to learn the relative importance between the
features, thus improving the prediction accuracy and stability of the model.

X∗ =
Xi − Xmin

Xmax − Xmin
(1)

Table 1. Partial data set on uranium adsorption by biochar.

C O/C (O +
N)/C SA V D C0 pH T SLR Adsorption

Capacity

1 54.55 0.297 0.61 275.30 0.212 3.14 11.99 5 293 0.10 96.32
2 37.60 1.080 1.18 363.19 0.259 8.65 118.02 4.5 298 0.25 332.57
3 77.14 0.048 0.1 446.31 0.235 9.49 100.01 6 298 0.25 66.46
4 50.55 0.068 5.37 363.19 0.259 8.65 15.34 6 298 0.20 73.54

. . .
546 54.55 0.175 0.18 1298.00 0.919 8.65 47.60 7 298 0.40 171.39

In Formula (1), Xi is the raw data, such as the physical and chemical properties and
experimental conditions of biochar to be normalized; X* is the normalized value; Xmax is
the maximum value of the original data. Xmin is the minimum value of the original data.

2.2. Ensemble Learning Theory
2.2.1. SCN

The SCN is widely used as a random network to process data regression and classi-
fication [37]. SCN is a random weight neural network, similar to a feedforward neural
network, including input, hidden and output layers. The structure of SCN network is
shown in Figure 1. X1, X2, · · · Xn is the input sample, Y1, Y2, . . ., Ym is the output variable,
the input weight w and bias b are generated by the input layer and sent to the hidden layer,
and the hidden layer sends the output weight β to the output layer.
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During the whole construction process, the number of nodes in the input layer and
the number of nodes in the output layer correspond to the dimensions of the training input
and output features, respectively. In contrast, the number of nodes in the hidden layer
gradually increases with the construction process [38]. The input weights and biases of
hidden layer nodes are affected by λ and r. After adding hidden layer nodes, a candidate
layer is constructed to determine the weight and bias of the new node. The initialization
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of the weight and bias of the candidate layer nodes depends on the scale factor λ, and
the calculation of inequality constraints in the supervision mechanism depends on the
regularization parameter r. The optimal weights and deviations of the candidate layer nodes
are selected using the special monitoring mechanism to calculate inequality constraints
and then assigned to the new nodes. Finally, the weight of the output layer is calculated
using the least squares method according to the output node output and output vector of
the hidden layer.

SCN and other neural networks differ in their unique training modes. It abandons
the traditional iterative method of updating network parameters. It adopts the mode of
increasing hidden layer nodes under constraints, which makes the network size flexible
and controllable and greatly reduces the consumption of computational resources.

2.2.2. Adaboost Ensemble Framework

Adaboost is a typical boosting algorithm, an ensemble learning algorithm. The flow
chart of the Adaboost–SCN algorithm is shown in Figure 2. Its operating principle is similar
to the human learning process, and each learning will further adjust its weight for some
relatively high error samples. The strong learner synthesized by the Adaboost method
retains the advantages of a single weak learner and weakens its disadvantages [39].
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The algorithm first assigns an initial weight matrix wt to the sample set and trains the
first sub-learner ht(x), then calculates the weight of the sub-learner and the new weight ma-
trix of the sample set according to the training error and starts a new round of training [40].
As can be seen from the flow chart in Figure 2, in the iterative step, the strong learner
generated in the previous iteration will be used in the next iteration, thus generating a new
strong learner. The formula is as follows:

Ht(x) = Ht−1(x) + αtht(x) (2)

In Formula (2), Ht(x) is the strong learner obtained by the t iteration, HT−1 (x) is the
strong learner obtained by the t − 1 iteration, Ht(x) is the sub-learner, t is the number of
iterations and αt is the weight matrix of the sub-learner. When the maximum number of
iterations T is reached, the strong learner is synthesized according to the coefficient of the
weak learner, as shown in Formula (3).

H(x) =
T

∑
t=1

αtht(x) (3)

In Formula (3), H(x) is a strong learner obtained by a linear combination of sub-learners,
and T is the maximum number of iterations.
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2.3. Feature Selection Method

Feature selection is an important problem in feature engineering. Its goal is to select
the features that are important to the model, in order to reduce the number of features,
improve the accuracy of the model and reduce the running time. According to different
selection strategies, it can be divided into filter, embedded and wrapper [41].

2.3.1. Filter—Maximum Information Coefficient (MIC)

The maximum information coefficient (MIC) belongs to the filtering method, which is
an algorithm for correlation analysis based on mutual information. It adopts the method of
grid division, which has better universality, fairness and symmetry [42]. MIC is used to
measure the degree of correlation between two variables; the MIC value ranges from [0, 1];
when the MIC value between two variables is larger, the correlation is stronger, and vice
versa, the smaller the MIC value is, the smaller the correlation of the two variables is. The
basic principle of MIC uses the concept of mutual information, and the formula of mutual
information and MIC is shown in Equation (4).

I(x; y) =
∫

p(x, y)log2
p(x, y)

p(x)p(y)
dxdy (4)

In Formula (4), x and y are two vectors, p(x,y) is the joint probability density of
vectors x and y, and p(x) and p(y) are the marginal probability densities of vectors x and y,
respectively. A two-dimensional rectangular coordinate system is established, the scatter
plot composed of vectors x and y is divided into a certain number of grids, and the scatter
distribution of each grid is checked to obtain the joint probability [43]. The MIC calculation
formula is shown in Equation (5) as follows:

MIC(x; y) = max
a×b<B(N)

I(x; y)
log2min(a, b)

(5)

where N is the number of samples and B(N) is the function of samples, indicating that the
total number of small units a × b of the grid is less than B(N), and B(N) is generally set as
approximately the power of 0.6 of the total amount of data N, that is, B(N) = N0.6.

2.3.2. Embedded—Random Forest (RF)

The embedded method simultaneously performs feature selection while training
machine learning algorithms. The feature selection process is embedded into the model
construction process, and some model features are used for automatic feature selection.
In the field of feature elimination, random forest (RF), as a method that fuses different
decision trees based on integration technology, can effectively process high-dimensional
feature input samples with redundant data, evaluate the importance of each feature of the
data in classification problems and realize importance ranking [44].

Random forests can calculate the importance of features and rank them. There are
three common methods for estimating importance: frequency of statistical features such as
segmentation feature, gini index and OOB data calculation error value. We selected OOB
data to calculate the error value and sort the features. The steps are as follows: First, n sets
of OOB data are used to calculate the error value of each decision tree, denoted as ErrOOB1,
ErrOOB2, . . . ErrOOBn. Then, noise interference was randomly added to feature i of all OOB
samples, and we ensured that other features remain unchanged, and the error values were
recalculated, denoted as Erri1, Erri2, . . . Errin. The formula for calculating the importance of
features is as follows:

Importx =
1
n

n

∑
m=1

(Errim − ErrOOBm) (6)
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2.3.3. Wrapper—Energy Valley Optimizer (EVO)

The wrapper method is a feature selection method that combines a feature selection
process with a machine learning algorithm. It evaluates the effectiveness of different feature
subsets by training and testing a specific machine learning algorithm to select the optimal
feature subset. The wrapper method relies on the learning model’s classification accuracy
or prediction accuracy as an evaluation criterion for feature selection.

The energy valley optimizer (EVO) is a novel meta-heuristic algorithm inspired by
physical principles regarding stability and different particle decay patterns [45]. In the
universe, most particles are thought to be unstable, with each particle moving toward
the bottom of the energy valley to increase its level of stability [46]. The position of the
particle is between 0 and 1. If the feature value represented by the particle is less than
0.5, it means that the feature is selected. If the value is greater than 0.5, the feature is not
selected. The position updates for the energy valley optimizer are as follows. The first step
is initialization, assuming that the search space is the specified part, and assuming that the
candidate solution (Xi) is a particle with different stability levels in the search space. In the
second step, each particle is evaluated by an objective function to determine the particle’s
enrichment boundary (EB) and neutron enrichment level (NEL), which are used to account
for differences between neutron-rich and neutron-poor particles. The specific formula is
expressed as follows:

EB =
∑n

i=1 NELi

n
, i = 1, 2, . . . , n (7)

where NELi is the neutron enrichment level of particle i, and EB is the enrichment boundary
of particles in the universe.

The third step is to evaluate the stability level of the particle according to the objective
function, the specific formula is expressed as follows:

SLi =
NELi − BS
WS − BS

, i = 1, 2, . . . , n (8)

where SLi is the stability level of the ith particle, BS and WS are the most and least stable
particles in the universe, respectively, and the minimum and maximum of the objective
function determine their stability levels.

According to the stability of the particles, three decay processes (α, β, γ) are used
corresponding to three position renewal processes. In the main search cycle of the EVO, if
the neutron enrichment level of a particle is above the enrichment boundary (NELi > EB),
it is assumed that the particle has a higher neutron to proton ratio. Therefore, it is correct
to adopt three decay processes (α, β, γ). To simulate the stability boundary (SB) in the
universe, a random number is generated within the shown interval [0, 1]. α and γ decays
are considered to have occurred if the stability level of the particle is above the stability
limit (SLi > SB), since both decays can occur in heavier particles with higher stability levels.

Take the α decay process, for example. According to the physical principle of decay,
the rays emitted by α favor the enhancement of the stability of the reaction products. This
process serves as one of the EVO position updating mechanisms, thus generating new
candidate solutions. Specifically, two random integers are generated: Alpha Index I and
Alpha Index II. d is the dimension of the problem under consideration, and Alpha Index I
represents the number of emitted rays with the value range [1, d]. Alpha Index II defines
the Alpha ray as emitted within the range [1, Alpha Index I]. The emitted ray is the decision
variable in the solution candidate and is replaced by either the alpha ray in the particle
or the candidate ray (XBS) with the best stable level. The specific formula is expressed as
follows:

XNew1
i = Xi

(
XBS

(
Xj

i

))
,
{

i = 1, 2, . . . , n.
j = Alpha Index II.

(9)

In Formula (7), XNew1
i is the newly generated particle in the universe, Xi is the current

position vector of the ith particle (candidate solution) in the universe, XBS is the position
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vector of the particle with the best stable level and Xj
i is the jth decision variable or emission

ray.

2.4. Prediction Model of Uranium Adsorption by Biochar

In this research, five kinds of uranium adsorption capacity prediction models were
established by MATLAB: SCN, Adaboost–SCN, MIC-Adaboost–SCN, RF-Adaboost–SCN
and EVO-Adaboost–SCN. The implementation process of EVO-Adaboost–SCN is shown in
Figure 3. Of the 546 sets of experimental data on uranium adsorption by biochar collected,
70% represent the training set of the model and 30% are the test set.
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The specific settings of the model are as follows: the maximum number of hidden
nodes is 40, the maximum number of candidate nodes is 100, the error limit is 0.01, the
error threshold is 0.02 and six weak learners are set, that is, six weak learners score the
strong learning period. Secondly, three feature selection methods, MIC, RF and EVO,
were combined with the Adaboost–SCN model to construct the MIC-Adaboost–SCN, RF-
Adaboost–SCN and EVO-Adaboost–SCN models. The performance of different models was
compared, and inversion research was carried out based on the optimal model. Inversion
was carried out with the maximum output value as the target, the number of iterations
was set to 100, the interval of iteration was based on the upper and lower boundaries of
the original data, the population size was 30 and the optimal key parameter settings were
obtained through inversion.

2.5. Validation of Model Accuracy and Reliability

We determined the accuracy of the model based on the BP neural network by determin-
ing the coefficient (R2) and error rate. Error rates include mean absolute error (MAE), mean
square error (MSE), root mean square difference (RMSE) and mean absolute percentage
error (MAPE) [47].

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (10)

MAE =
1
N

N

∑
i=1

|yi − ŷi| (11)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (12)

RMSE =

√√√√ 1
N

N

∑
i=1

|yi − ŷi| (13)
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MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (14)

In the above formula, y1, y2, . . ., yn are the true values of uranium adsorbed by
biochar; y is the average of all true values; ŷ1, ŷ2, . . . ˆ, yn are the predicted values of uranium
adsorption by biochar; and yi − ŷi is the residual of the i sample, representing the difference
between the predicted value of biochar adsorbed uranium and the true value, which can
better reflect the actual situation of the predicted value error.

3. Results and Discussion
3.1. Comparative Analysis of Prediction Models with or without Integrated Framework

Compared with the single SCN model, Adaboost–SCN showed significant advantages
in prediction accuracy, accuracy, model stability and generalization ability.

As shown in Table 2, the MAE of Adaboost–SCN is 8.7600, which is lower compared
to the 10.1287 of SCN, indicating that the Adaboost-integrated model has a smaller average
absolute difference between predicted and actual values and a higher prediction accuracy.
The MSE, RMSE and MAPE of Adaboost–SCN are lower than their counterparts in SCN.
This further demonstrates the superiority of the integrated model in reducing the prediction
error. The R2 value of Adaboost–SCN is 0.9768, which is higher than the 0.9673 of SCN,
indicating that the integrated model has a better fit between the predicted and actual values.

Table 2. Comparison of evaluation indexes of prediction model with or without integrated framework.

MAE MSE RMSE MAPE R2

SCN 10.1287 234.7781 15.3225 0.3067 0.9673
Adaboost–SCN 8.7600 154.8404 12.4435 0.2878 0.9768

While individual SCN models may have been optimized to avoid overfitting, Ad-
aboost’s integration mechanism further diminishes the risk of overfitting a single model by
fusing multiple weaker learners together to construct a single powerful learner, endow-
ing the overall model with greater perturbation resistance and robustness. Although a
certain increase in computational cost accompanies these advantages, Adaboost’s integra-
tion approach is undoubtedly an efficient and worthwhile solution for pursuing superior
predictive performance.

3.2. Comparative Analysis of Prediction Models with or without Feature Selection

The three models constructed by the three feature selection methods selected in this
paper, MIC, RF and EVO, were compared with the evaluation indicators of the models
without feature selection, and the comparison results are shown in Table 2.

According to the values in Table 3, the prediction model with added feature selection
is significantly better than the model without feature selection in each evaluation index.
The average absolute error (MAE) is taken as the core fitness function for specific analysis.
Features are introduced from high to low according to their importance assessment results.
Figure 4 shows the variations in mean absolute error (MAE) as input features increase.

Table 3. Comparison of evaluation indexes of a prediction model with or without an integrated
framework.

MAE MSE RMSE MAPE R2

SCN 10.1287 234.7781 15.3225 0.3067 0.9673
Adaboost–SCN 8.7600 154.8404 12.4435 0.2878 0.9768

MIC-Adaboost–SCN 8.3158 122.5791 11.0715 0.3160 0.9811
RF-Adaboost–SCN 9.0878 170.4979 13.0575 0.2946 0.9746

EVO-Adaboost–SCN 7.6100 100.8660 10.0432 0.2620 0.9849
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As the number of input features increases, the MAE of MIC and RF gradually decreases.
An increase in the number of input features can enrich the dimensionality and information
content of the data, thus helping the model to capture more details about the predicted
target. On the contrary, when there are fewer input features, the information content of the
data is limited, which may lead to less comprehensive information on which the model
bases its prediction and thus increase the uncertainty of the prediction. In addition, a small
number of features may also make the model overly dependent on a particular feature,
resulting in biased prediction results.

When the number of input features reaches 8, the MIC algorithm’s performance
becomes optimal. The RF algorithm shows the best performance when the number of
features is increased to 10. However, neither MIC nor RF is as effective as the EVO
algorithm in feature selection. This comparison highlights the superiority of the EVO
algorithm in feature selection, which can more effectively screen out the feature combination
that contributes the most to model prediction, thus further reducing MAE and improving
prediction accuracy.

The fitting results of the four model test sets after training are shown in Figure 5b
and Table 3. As shown in Figure 5b and Table 3, EVO-Adaboost–SCN has more obvious
advantages than the other models. The EVO-Adaboost–SCN model has the best perfor-
mance on the RMSE index, indicating that the difference between the predicted value
and the actual value is the smallest, and the prediction accuracy is the highest. This is
mainly due to the advantages of evolutionary algorithm in feature selection, which can
more effectively screen out the features that have a positive impact on the model predic-
tion performance. The R2 of the EVO-Adaboost–SCN model is 0.9849, which is not only
better than the Adaboost–SCN model without feature selection, but also better than the
MIC-Adaboost–SCN and RF-Adaboost–SCN models. This indicates that the energy valley
optimization algorithm (EVO) in the EVO-Adaboost–SCN model is likely to help the model
find better solutions in the training process through its optimization ability, thus improving
the fitting effect and performance of the model on the test set. This advantage is reflected
in the model’s ability to capture patterns in the data more accurately, handle unseen data
more consistently and generalize more.

For the optimal EVO-Adaboost–SCN model, a robustness analysis was performed
to evaluate its stability and performance in the face of input data variations, noise and
outliers. Firstly, the sensitivity analysis of the model was carried out, and the change of
key input parameters within the range of ±10% was set to simulate the normal fluctuation
range that may be encountered in actual operation. The analysis results show that the
EVO-Adaboost–SCN model can maintain relatively stable prediction accuracy under these
parameter changes. In addition, the Monte Carlo simulation method was used in this study
to generate different input data sets through multiple random sampling and run the model
to make predictions to evaluate the stability of the model under uncertain conditions. The
simulation results show that the distribution of prediction results of the model is relatively
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concentrated, which further proves its robustness and provides strong support for the
reliability and effectiveness of the model in practical applications.
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3.3. The Difference in Feature Selection

We used the MIC, RF and EVO methods for feature selection. Figures 6a and 6b show
the feature selection results of MIC and RF, respectively.
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The MIC is calculated based on the mutual information between variables, especially
considering the nonlinear relationships between variables. The higher the maximum
information coefficient, that is, the larger the area of the circle in the square, the stronger
the correlation between the feature and the target variable. As can be seen from the results
of Figure 6a, C0 and V have the strongest correlation with the target variable. In contrast,
the correlation between C and T is weak. The maximum information coefficient of SA and
V is 1, because V is proportional to SA. The ranking shown in Figure 6b is based on the
importance of features in the random forest model, and RF also considers C0 and V as
the two most important features. However, there are some differences between RF and
MIC in ranking the remaining features, such as RF ranking pH before SA in MIC ranking,
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which indicates that different methods may focus on other data characteristics and model
mechanisms when evaluating the importance of features.

Table 4 shows the feature selection results of the three methods. The results of MIC and
RF are sorted according to the importance of features, while EVO only selects important
features, and their order has nothing to do with the importance. According to Table 4,
it can be seen that EVO filters the duplicate SA and V features and retains one of them.
According to the selection of three features, C0 and V are relatively important. On the one
hand, an increase in the initial concentration of uranium (C0) means that more uranium
ions are available for adsorption, thus increasing the adsorption capacity. When the initial
concentration of uranium (C0) is too large, the adsorption begins to slow down. On the
other hand, a larger total pore volume (V) means more adsorption space and can provide
more locations to accommodate uranium ions, allowing biochar to adsorb uranium more
efficiently.

Table 4. The results of three feature selection methods.

1 2 3 4 5 6 7 8 9 10

MIC C0 V SA SLR D O/C (O + N)/C pH C T
RF C0 V pH (O + N)/C T O/C C SA D SLR

EVO C O/C (O + N)/C V C0 pH SLR

3.4. Key Parameter Inversion Results

Since the EVO-Adaboost–SCN model has the highest accuracy, this model was chosen
for inversion research in this paper. The average absolute error (MAE) was used as the
prediction performance index, the output value of the model was set as the main object of
this inversion, and efforts were made to find the combination of input parameters that can
produce the maximum output value. Since the result of each inversion is not repeatable,
this study underwent 30 inversions, and Figure 7 shows the inversion results of one of
them.
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After 30 inversions, the optimal intervals of the key parameter settings were found.
Specifically, C is [18.2, 22.43], O/C for [1.63, 2.14], (O + N)/C (1.48, 3), V is [0.29, 0.91], C0
is [19.8, 35.95], pH is [3.1, 8.2] and SLR is [0.1, 0.32]. The output value is up to 687.3. The
results of inversion research are not only affected by the upper and lower boundaries of the
iteration interval, but also by a variety of complex factors such as practical experimental
conditions, time conditions, environmental conditions and specific application scenarios.
These factors work together, so the inversion results may differ under different conditions.
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Despite the preliminary results of this study on a new approach to wastewater treat-
ment, there are limitations that could affect a full assessment. Assumptions made during
the modeling process, while based on current scientific understanding and practical experi-
ence, may not fully consider all potential complicating factors. For example, the dynamic
nature of wastewater composition with time limits the accuracy of prediction. Secondly,
the constraints of available data are also a significant limitation of this study. Data sets
may have deficiencies in coverage, temporal resolution and integrity, which can affect the
model’s ability to learn comprehensive features, and data biases or outliers can interfere
with model performance. In addition, the application of the results is limited by the size
of the facility, operating conditions and other factors, and the applicability needs to be
carefully evaluated. A comprehensive review and improvement of these limitations will
promote the development of wastewater treatment and provide more accurate solutions.

3.5. Comparative Analysis of Model Performance

In a previous study, Qu et al. [48] explored the optimization effect of four different
algorithms on BP neural networks, each of which improved the performance of the model to
some extent, and Fick’s Law algorithm (FLA) had better search capability and convergence
speed. Da et al. [35] applied four machine learning (ML) methods to make predictions and
found that the model obtained with two hidden layer perceptron artificial neural networks
performed best. Chen et al. [49] used six typical machine learning (ML) models to accurately
predict the adsorption capacity of biochar and found that the CatBoost model showed the
highest test R2 value and the lowest RMSE value, significantly superior to all other models.
In contrast, the EVO algorithm adopted in this paper shows better efficiency and accuracy
in searching for optimal parameters because of its unique evolutionary mechanism and
powerful global search ability. In addition, the integrated model adopted in this paper
not only integrates the advantages of a single model, but also effectively overcomes the
possible limitations of a single BP model in complex prediction tasks.

In order to verify the superiority of the EVO-Adaboost–SCN model, the performance
of this model was compared with that of a previously published model for predicting
the adsorption of biochar materials. Specifically, linear regression (LR), support vector
regression (SVR) and random forest (RF) models were included, and the comparison results
are shown in Table 5.

Table 5. Comparative analysis of model performance.

RMSE R2

EVO-Adaboost–SCN 10.0432 0.9849
SVR [35] 14.17 0.92
LR [35] 32.36 0.37
RF [49] 44.995 0.86

According to Table 5, the EVO-Adaboost–SCN model performed exceptionally well,
with an R2 of 0.9849, an almost perfect fit to the data, and an RMSE as low as 10.0432. The
SVR model R2 is 0.92, with good predictive power but high RMSE (14.17). This may be due
to the limitations of SVR model in dealing with complex data or nonlinear relationships,
or its hyperparameters are not optimally adjusted. Although RF model is known for its
strong generalization ability, the RMSE in this evaluation is high and the R2 is only 0.86,
which may indicate that the RF model may have overfitting phenomenon, that is, the
model performs well on the training data, but has poor generalization ability on the new
data. The LR model performed the worst with an R2 of 0.37 and an RMSE of 32.36. This
illustrates the limitations of linear regression models in dealing with this prediction task,
as the task involves complex non-linear relationships or interactions that linear regression
models cannot capture effectively. In summary, the EVO-Adaboost–SCN model has unique
advantages and potential application prospects in the field of heavy metal adsorption
prediction.
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4. Conclusions

In this study, the Adaboost–SCN model was constructed using the idea of ensemble
learning, and based on this model, combined with the feature selection method, three
uranium adsorption prediction models for biochar were constructed: MIC-Adaboost–SCN,
RF-Adaboost–SCN and EVO-Adaboost–SCN. These models not only make full use of the
powerful integration capability of the Adaboost algorithm, but also accurately capture
the key factors affecting the adsorption performance of biochar by the MIC, RF and EVO
feature selection methods, in order to achieve a more accurate prediction of the uranium
adsorption process.

1. The Adaboost–SCN model constructed in this paper is significantly superior to the sin-
gle SCN model in terms of error rate, which fully validates the excellent performance
of ensemble learning in reducing prediction errors and improving prediction accuracy.
In order to accelerate the model training process and improve the prediction ability,
three efficient feature selection methods were selected in this study: the maximum
information coefficient (MIC), random forest (RF) and energy valley optimizer (EVO),
which effectively helped the Adaboost–SCN model focus on key features. In particu-
lar, the Adaboost–SCN model combined with the EVO algorithm shows remarkable
performance with an R2 value of 0.9849, which indicates that the predicted data are in
good agreement with the experimental data;

2. The three feature selection methods, MIC, RF and EVO, have different results due
to the differences in data characteristics and model mechanisms when evaluating
the importance of features. Despite these differences, they all consider C0 and V
relatively important features. In the process of uranium adsorption, with the increase
in the initial concentration of uranium (C0), the number of uranium ions available for
adsorption by biochar in the solution increased significantly, and the larger total pore
volume (V) provided more abundant adsorption space for biochar, thus promoting
the adsorption of uranium ions by biochar;

3. Through the inversion of key parameters, the correlation between biochar adsorption
properties and production parameters was discussed, and the intervals of the optimal
parameters were determined. These findings provide strong support for optimizing
the biochar preparation process to improve its adsorption properties.
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