Chromium Selectively Accumulates in the Rat Hippocampus after 90 Days of Exposure to Cr(VI) in Drinking Water and Induces Age- and Sex-Dependent Metal Dyshomeostasis
Abstract
:1. Introduction
2. Methods
2.1. Animals and Drinking Water Exposure
2.2. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Analysis
2.3. Statistical Analyses
3. Results
3.1. Cr Brain Accumulation Is Region-, Sex-, and Age-Specific
3.2. Cr(VI) Induced Hippocampal Metal Dyshomeostasis with Major Age and Sex Differences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simoni, M.; Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Viegi, G. Adverse Effects of Outdoors Pollution in the Elderly. J. Thorac. Dis. 2015, 7, 34–45. [Google Scholar] [PubMed]
- Rahman, M.A.; Rahman, M.S.; Uddi, M.J.; Mamum-Or-Rashid, A.N.; Pang, M.G.; Rhim, H. Emerging Risk of Environmental Factors: Insight Mechanisms of Alzheimer’s Disease. Environ. Sci. Poll. Res. 2020, 27, 44659–44672. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Vielee, S.T.; Wise, J.P., Jr. Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci. 2023, 13, 500. [Google Scholar] [CrossRef] [PubMed]
- Ortega, D.R.; González Esquivel, D.F.; Ayala, T.B.; Pineda, B.; Manzo, S.G.; Quino, J.M.; Maro, P.C.; Pérez de la Cruz, V. Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. Toxics 2021, 9, 23. [Google Scholar] [CrossRef]
- Tomayo y Ortiz, M.; Téllez-Rojo, M.M.; Trejo-Valdivia, B.; Schnaas, L.; Osorio-Valencia, E.; Coull, B.; Bellinger, D.; Wright, R.J.; Wright, R.O. Maternal Stress Modifies the Effect of Exposure to Lead During Pregnancy and 24-Month Old Children’s Neurodevelopment. Environ. Int. 2017, 98, 191–197. [Google Scholar] [CrossRef]
- Baghurst, P.A.; McMichael, A.J.; Wigg, N.R.; Vimpani, G.V.; Robertson, E.F.; Roberts, R.J.; Tong, S.L. Environmental Exposure to Lead and Children’s Intelligence at the Age of Seven Years—The Port Pirie Cohort Study. N. Engl. J. Med. 1992, 327, 1279–1284. [Google Scholar] [CrossRef]
- Grashow, R.; Sparrow, D.; Hu, H.; Weisskopf, M.G. Cumulative Lead Exposure is Associated with Reduced Olfactory Recognition Performance in Elderly Men: The Normative Aging Study. NeuroToxicology 2015, 49, 158–164. [Google Scholar] [CrossRef]
- Glass, T.A.; Bandeen-Roche, K.; McAtee, M.; Bolla, K.; Todd, A.C.; Schwartz, B.S. Neighborhood Psychosocial Hazards and the Association of Cumulative Lead Doses with Cognitive Functions in Older Adults. Am. J. Epidemiol. 2009, 169, 683–692. [Google Scholar] [CrossRef]
- Guilarte, T.R.; Opler, M.; Pletnikov, M. Is Lead Exposure in Early Life an Environmental Risk Factor for Schizophrenia? Neurobiological Connections and Testable Hypotheses. NeuroToxicology 2012, 33, 560–574. [Google Scholar] [CrossRef]
- Neil, A.P.; Guilarte, T.R. Mechanisms of Lead and Manganese Neurotoxicity. Toxicol. Res. 2013, 2, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Dobson, A.W.; Erikson, K.M.; Aschner, M. Manganese Neurotoxicity. Ann. N. Y. Acad. Sci. 2006, 1012, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Finley, E.J.; Gavin, C.E.; Aschner, M.; Gunter, T.E. Manganese Neurotoxicity and the Role of Reactive Oxygen Species. Free Redic. 2013, 62, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Roles, H.A.; Bowler, R.M.; Kim, Y.; Henn, B.C.; Mergler, D.; Hoet, P.; Gocheva, V.V.; Bellinger, D.C.; Wright, R.O.; Harris, M.G.; et al. Manganese Exposure and Cognitive Deficits: A Growing Concern for Manganese Toxicity. NeuroToxicology 2012, 33, 872–880. [Google Scholar] [CrossRef]
- Branco, V.; Aschner, M.; Carvalho, C. Chapter Seven—Neurotoxicity of Mercury: Ann Old Issue with Contemporary Significance. In Advances in Neurotoxicology, 7th ed.; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- SkyQuest. Available online: https://www.skyquestt.com/report/chromite-ore-market (accessed on 26 July 2024).
- OilPrice.com. Available online: https://oilprice.com/Energy/Energy-General/Cost-Effective-Chromium-The-Next-Big-Thing-In-Green-Energy.html (accessed on 26 July 2024).
- KXAN. Available online: https://www.kxan.com/business/press-releases/ein-presswire/705100392/chromium-the-white-gold-of-the-future-shines-bright-in-hazir-mujas-vision-amid-surging-demand-across-industries/ (accessed on 26 July 2024).
- ATSDR. Agency for Toxic Substances and Disease Registry (ATSDR) Substance Priority List. Agency for Toxic Substances and Disease Registry. Available online: https://www.atsdr.cdc.gov/index.html (accessed on 31 May 2024).
- Ali Chandio, T.; Nasiruddin Khan, M.; Taj Muhammad, M.; Yalcinkaya, O.; Turan, E.; Furkan Kayis, A. Health Risk Assessment of Chromium Contamination in the Nearby Population of Mining Plants, Situated at Balochistan, Pakistan. Environ. Sci. Poll. Res. 2021, 28, 16458–16469. [Google Scholar] [CrossRef]
- Ali Fallahzadeh, R.; Khosravi, R.; Dehdashti, B.; Ghahramani, E.; Omidi, F.; Adli, A.; Miri, M. Spatial Distribution Variation and Probabilistic Risk Assessment of Exposure to Chromium in Ground Water Supplies; A Case Study in the East of Iran. Food Chem. Toxicol. 2018, 115, 260–266. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Hu, H.; Zhao, K.; Li, H.; Yan, S.; Xiu, W.; Coyte, R.; Vengosh, A. High Hexavalent Chromium Concentration in Groundwater from a Deep Aquifer in the Baiyangdian Basin of the North China Plain. Environ. Sci. Technol. 2020, 54, 10068–10077. [Google Scholar] [CrossRef]
- Coyte, R.M.; McKinley, K.L.; Jiang, S.; Karr, J.; Dwyer, G.S.; Keyworth, A.J.; Davis, C.C.; Kondash, A.J.; Vengosh, A. Occurrence and Distribution of Hexavalent Chromium in Groundwater from North Carolina, USA. Sci. Total Environ. 2020, 711, 135135. [Google Scholar] [CrossRef]
- Vengosh, A.; Coyte, R.; Karr, J.; Harkness, J.S.; Kondash, A.J.; Ruhl, L.S.; Merola, R.B.; Dywer, G.S. Origin of Hexavalent Chromium in Drinking Water Wells from the Piedmont Aquifers of North Carolina. Environ. Sci. Technol. Lett. 2016, 3, 409–414. [Google Scholar] [CrossRef]
- Texas Department of State Health Services. Evaluation of Chromium in Private Wells. In Letter Health Consultation; Texas Department of State Health Services: Midland County, TX, USA, 2009. [Google Scholar]
- Zhang, J.; Li, X. Investigation and Research on Chromium Pollution in Jinzhou. Chinese Prev. Med. 1987, 21, 262–264. [Google Scholar]
- Stout, M.D.; Herbert, R.A.; Kissling, G.E.; Collins, B.J.; Travlos, G.S.; Witt, K.L.; Melnick, R.L.; Abdo, K.M.; Malarkey, D.E.; Hooth, M.J. Hexavalent Chromium is Carcinogenic to F344/N Rats and B6C3F1 Mice After Chronic Oral Exposure. Environ. Health Perspect. 2009, 117, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.P., Jr.; Young, J.L.; Cai, J.; Cai, L. Current Understanding of Hexavalent Chromium [Cr(VI)] Neurotoxicity and New Perspectives. Environ. Int. 2022, 158, 106877. [Google Scholar] [CrossRef] [PubMed]
- Strumylaite, L.; Kregzdyte, R.; Kucikiene, O.; Baranauskiene, D.; Simakauskiene, V.; Naginiene, R.; Damuleviciene, G.; Lesauskaite, V.; Zemaitiene, R. Alzheimer’s Disease Association with Metals and Metalloids Concentration in Blood and Urine. Int. J. Environ. Res. Public Health 2022, 19, 7309. [Google Scholar] [CrossRef] [PubMed]
- Jory, J.; McGinnis, W.R. Red-Cell Trace Minerals in Children with Autism. Am. J. Biochem. Biotechnol. 2007, 3, 60–63. [Google Scholar] [CrossRef]
- Caparros-Gonzalez, R.A.; Giménez-Asensio, M.J.; González-Alzaga, B.; Aguilar-Garduño, C.; Lorca-Marín, J.A.; Alguacil, J.; Gómez-Becerra, I.; Gómez-Ariza, J.L.; García-Barrera, T.; Hernandez, A.F.; et al. Childhood Chromium Exposure and Neuropsychological Development in Children Living in Two Polluted Areas in Southern Spain. Environ. Pollut. 2019, 252, 1550–1560. [Google Scholar] [CrossRef]
- Watanabe, S.; Fukuchi, Y. Occupational Impairment of the Olfactory Sense of Chromate Producing Workers. Sangyo Igaku 1981, 23, 606–611. [Google Scholar] [CrossRef]
- Kitamura, F.; Yokoyama, K.; Araki, S.; Nishikitani, M.; Choi, J.W.; Yum, Y.T.; Park, H.C.; Park, S.H.; Sato, H. Increase of Olfactory Threshold in Plating Factory Workers Exposed to Chromium in Korea. Ind. Health 2003, 41, 279–285. [Google Scholar] [CrossRef]
- Sánchez-Díaz, G.; Escobar, F.; Badland, H.; Arias-Merino, G.; Posada de la Paz, M.; Alonso-Ferreira, V. Geographic Analysis of Motor Neuron Disease Mortality and Heavy Metals Released to Rivers in Spain. Int. J. Environ. Res. Public Health 2018, 15, 2522. [Google Scholar] [CrossRef]
- Vielee, S.T.; Isibor, J.; Buchanan, W.J.; Roof, S.H.; Patel, M.; Meaza, I.; Williams, A.; Toyoda, J.H.; Lu, H.; Wise, S.S.; et al. Female Rat Behavior Effects from Low Levels of Hexavalent Chromium (Cr[VI]) in Drinking Water Evaluated with a Toxic Aging Coin Approach. Appl. Sci. 2024, 14, 6206. [Google Scholar] [CrossRef]
- Vielee, S.T.; Isibor, J.; Buchanan, W.J.; Roof, S.H.; Patel, M.; Meaza, I.I.; Williams, A.; Toyoda, J.H.; Lu, H.; Wise, S.S.; et al. Employing a Toxic Aging Coin to Assess Hexavalent Chromium (Cr[VI]) Neurotoxic Effects on Behavior: Heads for Age Differences. Toxicol. Appl. Pharmacol. 2024, 489, 117007. [Google Scholar] [CrossRef]
- Soudani, N.; Troudi, A.; Amara, I.B.; Bouaziz, H.; Boudawara, T.; Zeghal, N. Ameliorating Effect of Selenium on Chromium (VI)-Induced Oxidative Damage in the Brain of Adult Rats. J. Physiol. Biochem. 2012, 68, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Estrela, F.N.; Rabelo, L.M.; Vaz, B.G.; de Oliveira Costa, D.R.; Pereira, I.; de Lima Rodrigues, A.S.; Malafaia, G. Short-Term Memory Deficits in Adults Female Mice Exposed to Tannery Effluent and Possible Mechanism of Action. Chemosphere 2017, 184, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, R.; Mansour, D.; Salama, A.; Hassan, A.; Saleh, D. Exposure to Intranasal Chromium Triggers Dose and Time-Dependent Behavioral and Neurotoxicological Defect in Rats. Ecotoxicol. Environ. Saf. 2021, 216, 112220. [Google Scholar] [CrossRef] [PubMed]
- Travacio, M.; Polo, J.M.; Llesuy, S. Chromium (VI) Induces Oxidative Stress in the Mouse Brain. Toxicology 2000, 150, 137–146. [Google Scholar] [CrossRef]
- Quinteros, F.A.; Poliandri, A.H.B.; Machievelli, L.I.; Cabilla, J.P.; Duvilanski, B.H. In Vivo and In Vitro Effects of Chromium VI on Anterior Pituitary Hormone Release and Cell Viability. Toxicol. Appl. Pharmacol. 2007, 218, 79–87. [Google Scholar] [CrossRef]
- Nudler, S.I.; Quinteros, F.A.; Miler, E.A.; Cabilla, J.P.; Ronchetti, S.A.; Duvilanski, B.H. Chromium VI Administration Induces Oxidative Stress in Hypothalamus and Anterior Pituitary Gland from Male Rats. Toxicol. Lett. 2009, 185, 187–192. [Google Scholar] [CrossRef]
- Ding, J.; Sun, B.; Gao, Y.; Zheng, J.; Liu, C.; Huang, J.; Jia, N.; Pei, X.; Jiang, X.; Hu, S.; et al. Evidence for Chromium Crosses the Blood Brain Barrier from the Hypothalamus in Chromium Mice Model. Ecotoxicol. Environ. Saf. 2024, 273, 116179. [Google Scholar] [CrossRef]
- Madsen, E.; Gitlin, J.D. Copper and Iron Disorders of the Brain. Annu. Rev. Neurosci. 2007, 30, 317–337. [Google Scholar] [CrossRef]
- Singh, N.; Haldar, S.; Tripathi, A.K.; Horback, K.; Wong, K.; Wong, J.; Sharma, D.; Beserra, A.; Suda, S.; Anbalagan, C.; et al. Brain Iron Homeostasis: From Molecular Mechanisms to Clinical Significance and Therapeutic Opportunities. Antioxid. Redox Signal 2014, 20, 1324–1363. [Google Scholar] [CrossRef]
- Hossein Sadrzadeh, S.M.; Saffari, Y. Iron and Brain Disorders. Pathol. Patterns Revs. 2004, 121, S64–S70. [Google Scholar] [CrossRef]
- Haywood, S. Brain-Barrier Regulation, Metal (Cu, Fe) Dyshomeostasis, and Neurodegenerative Disorders in Man and Animals. Inorganics 2019, 7, 108. [Google Scholar] [CrossRef]
- Döker, S.; Mounicou, S.; Doğan, M.; Lobinski, R. Probing the Metal-Homeostasis Effects of the Administration of Chromium (VI) to Mice by ICP MS and Size-Exclusion Chromatography-ICP MS. Metallomics 2010, 2, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.P. The Intersection Between Toxicology and Aging Research: A Toxic Aging Coin Perspective. Front. Aging 2022, 3, 1014675. [Google Scholar] [CrossRef] [PubMed]
- Martin, G. Interactions of Aging and Environmental Agents: The Gerontological Perspective. Prog. Clin. Biol. Res. 1987, 228, 25–80. [Google Scholar] [PubMed]
- Sorrentino, J.A.; Krishnamurthy, J.; Tilley, S.; Alb, J.G., Jr.; Burd, C.E.; Sharpless, N.E. p16INK4a Reporter Mice Reveal Age-Promoting Effects of Environmental Toxicants. J. Clin. Investig. 2014, 124, 169–173. [Google Scholar] [CrossRef]
- Salama, A.; Hegazy, R.; Hassan, A. Intranasal Chromium Induces Acute Brain and lung Injuries in Rats: Assessment of Different Potential Hazardous Effects of Environmental and Occupational Exposure to Chromium and Introduction of a Novel Pharmacological and Toxicological Animal Model. PLoS ONE. 2016, 11, e0168688. [Google Scholar] [CrossRef]
- Mathur, A.K.; Chandra, S.V.; Tandon, S.K. Comparative Toxicity of Trivalent and Hexavalent Chromium to Rabbits II. Morphological Changes in Some Organs. Toxicology 1977, 8, 53–61. [Google Scholar] [CrossRef]
- Ueno, S.; Kashimoto, T.; Susa, N.; Furukawa, Y.; Ishii, M.; Yokoi, K.; Yasuno, M.; Sasaki, Y.F.; Ueda, J.; Nishimura, Y.; et al. Detection of Dichromate (VI)-Induced DNA Strand Breaks and Formation of Paramagnetic Chromium in Multiple Mouse Organs. Toxicol. Appl. Pharmacol. 2001, 170, 56–62. [Google Scholar] [CrossRef]
- Suljević, D.; Sulejmanović, J.; Fočak, M.; Halilović, E.; Pupalović, D.; Hasić, A.; Alijagic, A. Assessing Hexavalent Chromium Tissue-Specific Accumulation Patterns and Induced Physiological Responses to Probe Chromium Toxicity in Coturnix japonica Quail. Chemosphere 2021, 226, 129005. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, P.; Wan, H.; Wang, Y.; Hao, P.; Liu, Y.; Liu, J. Selenium-Chromium (VI) Interaction Regulates the Contents and Correlations of Trace Elements in Chicken Brain and Serum. Biol. Trace Elem. Res. 2017, 181, 154–163. [Google Scholar] [CrossRef]
- Myrhe, O.; Utkilen, H.; Duale, N.; Brunborg, G.; Hofer, T. Metal Dyshomeostasis and Inflammation in Alzheimer’s Disease and Parkinson’s Diseases: Possible Impact of Environmental Exposures. Oxid. Med. Cell. Longev. 2013, 2013, 726954. [Google Scholar]
- Cory-Sletcha, D.A.; Sobolewski, M.; Oberdörster, G. Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. Atmosphere 2020, 11, 1098. [Google Scholar] [CrossRef]
- Manto, M. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration. Toxics 2014, 2, 327–345. [Google Scholar] [CrossRef]
- Andrási, E.; Farkas, É.; Scheibler, H.; Réffy, A.; Bezúr, L. Al, Zn, Cu, Mn, and Fe Levels in Brain in Alzheimer’s Disease. Arch. Gerontol. Geriatr. 1995, 21, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Treiber, C. Metals on the Brain. Sci. Aging Knowl. Environ. 2005, 2005, pe27. [Google Scholar] [CrossRef]
- Markesbery, W.R.; Ehmann, W.D.; Alauddin, M.; Hassain, T.I.M. Brain Trace Element Concentrations in Aging. Neurobiol. Aging 1984, 5, 19–28. [Google Scholar] [CrossRef]
- Moreau, C.; Duce, J.A.; Rascol, O.; Devedjian, J.C.; Berg, D.; Dexter, D.; Cabantchik, Z.; Bush, A.I.; Devos, D. Iron as a Therapeutic Target for Parkinson’s Disease. Mov. Disord. 2018, 33, 568–574. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Yamada, S. Metal Homeostasis Disturbances in Neurodegenerative Disorders, with Special Emphasis on Creutzfeldt-Jakob Disease—Potential Pathogenic Mechanism and Therapeutic Implications. Pharmacol. Ther. 2020, 207, 107455. [Google Scholar] [CrossRef]
- Agrawal, S.; Fox, J.; Thyagarajan, B.; Fox, J.H. Brain Mitochondrial Iron Accumulates in Huntington’s Disease, Mediates Mitochondrial Dysfunction, and Can be Removed Pharmacologically. Free. Rad. Bio. Med. 2018, 120, 317–329. [Google Scholar] [CrossRef]
- Varikasuvu, S.R.; Prasad, S.; Kothapalli, J.; Manne, M. Brain Selenium in Alzheimer’s Disease (BRAIN SEAD Study): A Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2018, 189, 361–369. [Google Scholar] [CrossRef]
- Aschner, M. Manganese: Brain Transport and Emerging Research Needs. Environ. Health Perspect. 2000, 108, 429–432. [Google Scholar] [PubMed]
- Koh, J.Y. Zinc and Disease of the Brain. Mol. Neurobiol. 2001, 24, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Z.; Xue, K.; Wang, Z.; Guo, C.; Qian, Y.; Li, X.; Wei, Y. High Concentration of Blood Cobalt is Associated with the Impairment of Blood-Brain Barrier Permeability. Chemosphere 2021, 273, 129579. [Google Scholar] [CrossRef] [PubMed]
- De Flora, S.; Camoirano, A.; Micale, R.T.; La Maestra, S.; Savarino, V.; Zentilin, P.; Marabotto, E.; Suh, M.; Proctor, D.M. Reduction of hexavalent chromium by fasted fed human gastric fluid. I. Chemical reduction and mitigation of mutagenicity. Toxicol. Appl. Pharmacol. 2016, 306, 113–119. [Google Scholar] [CrossRef]
- Proctor, D.M.; Suh, M.; Aylward, L.L.; Kirman, C.R.; Harris, M.A.; Thompson, C.M.; Gürleyük, H.; Gerads, R.; Haws, L.C.; Hays, S.M. Hexavalent chromium reduction kinetics in rodent stomach contents. Chemosphere 2012, 89, 487–493. [Google Scholar] [CrossRef]
- Feldman, M.; Barnett, C. Fasting gastric pH and its relationship to true hypochlorhydria in humans. Dig. Dis. Sci. 1991, 36, 866–869. [Google Scholar] [CrossRef]
- Gotch, F.; Nadell, J.; Edelman, I.S. Gastrointestinal water and electrolytes. IV. The equilibration of deuterium oxide (D2O) in gastrointestinal contents and the proportion of total body water (TBW) in the gastrointestinal tract. J. Clin. Investig. 1957, 36, 289–296. [Google Scholar] [CrossRef]
- Bouras, E.P.; Delgado-Aros, S.; Camilleri, M.; Castillo, E.J.; Burton, D.D.; Thomforde, G.M.; Chial, H.J. SPECT imaging of the stomach: Comparison with barostat, and effects of sex, age, body mass index, and fundoplication. Single photon emission computed tomography. Gut 2002, 51, 781–786. [Google Scholar] [CrossRef]
- Afonso-Pereira, F.; Dou, L.; Trenfield, S.J.; Madla, C.M.; Murdan, S.; Sousa, J.; Veiga, F.; Basit, A.W. Sex differences in the gastrointestinal tract of rats and the implications for oral drug delivery. Eur. J. Pharm. Sci. 2018, 115, 339–344. [Google Scholar] [CrossRef]
- Dou, L.; Gavins, F.K.; Mai, Y.; Madla, C.M.; Taherali, F.; Orlu, M.; Murdan, S.; Basit, A.W. Effect of food and an animal’s sex on p-glycoprotein expression and luminal fluids in the gastrointestinal tract of wistar rats. Pharmaceutics 2020, 12, 296. [Google Scholar] [CrossRef]
- Feldman, M.; Cryer, B.; McArthur, K.E.; Huet, B.A.; Lee, E. Effects of aging and gastritis on gastric acid and pepsin secretion in humans: A prospective study. Gastroenterology 1996, 110, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Merchant, H.A.; Liu, F.; Gul, M.O.; Basit, A.W. Age-mediated changes in the gastrointestinal tract. Int. J. Pharm. 2016, 512, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Merchant, H.A.; Rabbie, S.C.; Varum, F.J.; Afonso-Pereira, F.; Basit, A.W. Influence of ageing on the gastrointestinal environment of the rat and its implications for drug delivery. Eur. J. Pharm. Sci. 2014, 62, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Mu, L.; Cao, J.; Mu, J.; Klerks, P.L.; Luo, Y.; Guo, Z.; Xie, L. Accumulation and Effects of Cr(VI) in Japanese Medaka (Oryzias latipes) during Chronic Dissolved and Dietary Exposures. Aquat. Toxicol. 2016, 176, 208–216. [Google Scholar] [CrossRef]
- Nehru, B.; Sidhu, P. Behavior and Neurotoxic Consequences of Lead on Rat Brain Followed by Recovery. Biol. Trace Elem. Res. 2001, 84, 113–121. [Google Scholar] [CrossRef]
- Dinamene, S.; Camila, B.M.; Tavares de Almeida, I.; Randall, L.D.; Luisa, M.M.; Vanda, A.; Ruben, R.; Edite, T.; Aschner, M.; Marreilha dos Santos, A.P. Evaluation of Neurobehavioral and Neuroinflammatory End-Points in the Post-Exposure Period in Rats Sub-Acutely Exposed to Manganese. Toxicology 2013, 314, 95–99. [Google Scholar] [CrossRef]
- Tomas-Roig, J.; Torrente, M.; Cabré, M.; Vilella, E.; Colomina, M.T. Long Lasting Behavioural Effects on Cuprizone Fed Mice after Neurotoxicant Withdrawal. Behav. Brain Res. 2019, 363, 38–44. [Google Scholar] [CrossRef]
Sex | Age | Cr(VI) Concentration [mg/L] | Average Metal Level [ng/g] (SEM) | ||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Cu | Se | Mg | Co | Mn | Zn | |||
Male | Young | 0 | 21,715 (1514) | 4760 (284.6) | 180.1 (22.51) | 292,146 (25,170) | 9.989 (1.300) | 679.3 (96.14) | 32,172 (4943) |
0.05 | 26,055 * (1495) | 5466 * (177.4) | 233.1 (10.03) | 352,197 (28,417) | 10.63 (1.137) | 710.0 (18.97) | 31,163 (630.8) | ||
0.1 | 22,952 (628.5) | 5276 (211.5) | 190.2 (7.771) | 323,197 (18,114) | 8.743 (0.4724) | 654.4 (35.45) | 30,032 (1201) | ||
Middle-Aged | 0 | 34,197 (3200) | 7823 (856.9) | 290.0 (31.86) | 363,367 (32,957) | 12.68 (1.253) | 828.7 (79.61) | 57,419 (6454) | |
0.05 | 30,202 (3967) | 6750 (944.1) | 230.2 (26.58) | 303,851 * (39,843) | 10.98 (1.812) | 709.3 (102.6) | 48,197 * (7121) | ||
0.1 | 16,727 * (2648) | 3797 (422.5) | 131.3 * (19.20) | 174,813 (24,294) | 5.879 * (0.8321) | 407.3 * (48.68) | 25,818 (3696) | ||
Geriatric | 0 | 38,021 (2064) | 12,575 (788.8) | 311.9 (18.50) | 383,070 (15,868) | 15.16 (0.8963) | 930.7 (52.42) | 55,825 (2204) | |
0.05 | 42,380 (2909) | 11,845 (1,013) | 252.1 (23.19) | 384,404 (8595) | 16.08 (1.046) | 945.6 (27.73) | 70,044 (8375) | ||
0.1 | 29,203 (3462) | 8241 * (1254) | 216.7 * (23.99) | 280,733 * (35,762) | 10.71 * (1.226) | 640.0 * (76.23) | 47,323 (4989) | ||
Female | Young | 0 | 29,232 (1050) | 6364 (350) | 196.8 (7.007) | 366,401 (22,277) | 11.86 (1.866) | 5904 (3294) | 29,338 (1030) |
0.05 | 28,590 * (2782) | 5789 (183.5) | 199.7 (11.78) | 348,173 (18,855) | 10.84 (0.8427) | 2908 (2034) | 28,868 (924.9) | ||
0.1 | 25,613 (1009) | 5796 (243.8) | 186.6 (12.43) | 297,391 * (10,835) | 15.16 (3.675) | 904.8 (117.7) | 26,531 (957.1) | ||
Middle-Aged | 0 | 27,454 (4005) | 6848 (1132) | 193.9 (31.76) | 263,149 (40,214) | 9.186 (1.749) | 659.4 (102.2) | 39,367 (7662) | |
0.05 | 31,179 (4310) | 7187 (1002) | 241.9 (23.25) | 300,150 (42,064) | 9.608 (1.240) | 785.8 (107.4) | 44,550 (6675) | ||
0.1 | 37,900 (3839) | 9592 (1032) | 295.5 (37.63) | 386,239 * (40,187) | 12.75 (1.148) | 955.9 (99.93) | 56,266 (6015) | ||
Geriatric | 0 | 21,500 (4491) | 5950 (797.9) | 148.7 (24.74) | 182,862 (25,163) | 9.692 (1.436) | 527.2 (83.90) | 25,947 (3037) | |
0.05 | 19,890 (2698) | 6452 (707.6) | 142.5 * (27.50) | 181,910 (22,586) | 11.45 (1.509) | 508.2 (65.72) | 28,143 (2979) | ||
0.1 | 38,625 * (1262) | 11,807 * (299.7) | 270.2 (13.24) | 361,095 * (9246) | 21.64 * (1.785) | 936.5 * (48.48) | 54,011 * (5084) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vielee, S.T.; Buchanan, W.J.; Roof, S.H.; Kahloon, R.; Evans, E.; Isibor, J.; Patel, M.; Meaza, I.; Lu, H.; Williams, A.R.; et al. Chromium Selectively Accumulates in the Rat Hippocampus after 90 Days of Exposure to Cr(VI) in Drinking Water and Induces Age- and Sex-Dependent Metal Dyshomeostasis. Toxics 2024, 12, 722. https://doi.org/10.3390/toxics12100722
Vielee ST, Buchanan WJ, Roof SH, Kahloon R, Evans E, Isibor J, Patel M, Meaza I, Lu H, Williams AR, et al. Chromium Selectively Accumulates in the Rat Hippocampus after 90 Days of Exposure to Cr(VI) in Drinking Water and Induces Age- and Sex-Dependent Metal Dyshomeostasis. Toxics. 2024; 12(10):722. https://doi.org/10.3390/toxics12100722
Chicago/Turabian StyleVielee, Samuel T., William J. Buchanan, Spencer H. Roof, Rehan Kahloon, Elizabeth Evans, Jessica Isibor, Maitri Patel, Idoia Meaza, Haiyan Lu, Aggie R. Williams, and et al. 2024. "Chromium Selectively Accumulates in the Rat Hippocampus after 90 Days of Exposure to Cr(VI) in Drinking Water and Induces Age- and Sex-Dependent Metal Dyshomeostasis" Toxics 12, no. 10: 722. https://doi.org/10.3390/toxics12100722
APA StyleVielee, S. T., Buchanan, W. J., Roof, S. H., Kahloon, R., Evans, E., Isibor, J., Patel, M., Meaza, I., Lu, H., Williams, A. R., Kouokam, J. C., Wise, S. S., Guo, L., Wise, R. M., Wise, J. L., Cai, L., Cai, J., & Wise, J. P., Jr. (2024). Chromium Selectively Accumulates in the Rat Hippocampus after 90 Days of Exposure to Cr(VI) in Drinking Water and Induces Age- and Sex-Dependent Metal Dyshomeostasis. Toxics, 12(10), 722. https://doi.org/10.3390/toxics12100722