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Abstract: Toxicity mechanisms of per- and polyfluoroalkyl substances (PFASs), a chemical class
present in diverse ecosystems, as well as many of their precursors, have been increasingly character-
ized in aquatic species. Perfluorooctanesulfonamide (PFOSA, C8H2F17NO2S) is a common precursor
of perfluorooctane sulfonic acid (PFOS), a long-chain PFAS. Here, we assessed sub-lethal endpoints
related to development, oxidative stress, transcript levels, and distance moved in zebrafish embryos
and larvae following continuous exposure to PFOSA beginning at 6 h post-fertilization (hpf). PFOSA
decreased survival in fish treated with 1 µg/L PFOSA; however, the effect was modest relative to
the controls (difference of 10%). Exposure up to 10 µg/L PFOSA did not affect hatch rate, nor did
it induce ROS in 7-day-old larvae fish. The activity of larval fish treated with 100 µg/L PFOSA
was reduced relative to the solvent control. Transcripts related to oxidative stress response and
apoptosis were measured and BCL2-associated X, apoptosis regulator (bax), cytochrome c, somatic
(cycs), catalase (cat), superoxide dismutase 2 (sod2) were induced with high concentrations of PFOSA.
Genes related to neurotoxicity were also measured and transcript levels of acetylcholinesterase (ache),
elav-like RNA binding protein 3 (elavl3), growth-associated protein 43 (gap43), synapsin II (syn2a),
and tubulin 3 (tubb3) were all increased in larval fish with higher PFOSA exposure. These data
improve our understanding of the potential sub-lethal toxicity of PFOSA in fish species.

Keywords: perfluorinated chemicals; aquatic toxicology; neurotoxicity; behavior

1. Introduction

Since the 1930s, per- and polyfluoroalkyl substances (PFASs) have been used in a vari-
ety of consumer and commercial goods, including textiles, surfactants, and food packaging
materials. These compounds comprise short or long carbon chains, where short-chain
PFAS are considered less harmful than long-chain PFAS [1]. According to the Danish
Environmental Protection Agency, because long-chain PFAS persist in the environment,
their production usage has been gradually phased out since the early 2000s [2]. Perfluo-
rooctanesulfonamide (PFOSA, C8H2F17NO2S) is a common precursor of perfluorooctane
sulfonic acid (PFOS), a long-chain PFAS [3], and it is a synthetic compound used to produce
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non-stick, waterproof, and stain-repellent coatings [4]. Most studies to date focus on the
presence and toxicity of other commonly used PFAS, such as PFOS or perfluorooctanoic
acid (PFOA) [5–7]. Currently, toxicity data regarding the precursor PFOSA are lacking.

There are a few studies that report on the environmental presence of PFOSA. Konwick
et al. (2008) found that PFOSA ranged from 162 to 283 ng/L in the Conasauga River,
Georgia, United States [8]. Additionally, other studies reported the following ranges for
PFOSA: 0.09–20,000 µg/kg in surface soil, 0.07–2500 µg/kg in subsurface soil, 15 µg/L in
surface water, and 12 µg/L in groundwater across various testing sites worldwide [9,10]. In
regards to PFOSA within fish tissues, Fair et al. (2019) measured different PFAS within edi-
ble fish species from South Carolina, United States [11]. In whole fish, the average relative
percent of PFOSA in mullet, spot, croaker, red drum, and seatrout was 2.04, 3.81, 3.64, 3.12,
and 4.66%, respectively, whereas, in fillets, the same species had an average relative percent
of 1.44, 2.03, 0.70, 2.18, 4.65, and 1.79%, respectively. PFOSA was also found to range
between 0.105 and 16.4 ng/mL in serum across various fish species, including crucian carp
(Carassius auratus), tilapia (Oreochromis niloticus), common carp (Cyprinus carpio), and leather
catfish (Clarias lazera) [12]. However, the mechanisms of uptake, metabolism, and toxicity
of PFOSA are relatively unknown for aquatic species. One study reports that the half-life of
PFOSA in rainbow trout (Oncorhynchus mykiss) is 6.0 ± 0.4 days following a 30-day dietary
exposure to 10 µg/g wet weight PFOSA and a 30-day depurination period [13]. Thus,
PFOSA is measurable in fish tissues and may pose a health risk to both aquatic/terrestrial
animals and humans.

According to studies, adverse morphological and physiological effects in aquatic
organisms are potential consequences associated with the environmental presence of long-
chain PFAS [14,15]. For example, studies show that PFOSA exerts cardiotoxicity in zebrafish
(Danio rerio). Exposure to 0.1–100 µg/L PFOSA has been reported to reduce cardiac
output, heart rate, stroke volume and reduce cardiac vasoconstriction-related genes [16].
PFOSA has also been reported to significantly increase sinus venosus and bulbus arteriosus
distances at 10 and 100 µg/L [16,17]. Other studies report that exposure to PFOSA can
induce hepatic and renal toxicity in zebrafish [18,19]; however, limited studies investigate
the neurotoxic potential of PFOSA in developing fish. Consequently, the objectives of this
study were to evaluate the neurotoxicity potential of PFOSA. To achieve this, we measured
developmental endpoints, reactive oxygen species (ROS), locomotor behavior, and genes
related to oxidative damage response, apoptosis, and neurotoxicity as indicators of central
nervous system damage. We hypothesized that neurotoxicity endpoints would reflect dose
response increased in PFOSA exposure, suggesting adverse effects on the nervous system.

2. Materials and Methods
2.1. Chemical Preparation

Perfluorooctanesulfonamide (PFOSA, (1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-
1-sulfonamide Perfluorooctane sulfonamide) (CAS Number: 754-91-6, purity > 95%) was
purchased from Fisher Scientific (Thermo Scientific Chemicals, Waltham, MA, USA, Cat#
AC459640010). PFOSA stock solutions were prepared in dimethyl sulfoxide (DMSO, dimethyl
sulfoxide, CAS 67-68-5, Sigma-Aldrich, Inc., St. Louis, MO, USA) and added to embryo
rearing media (ERM) containing the zebrafish embryos. The ERM recipe can be located in
Westerfield [20]. Exposure solutions were prepared daily to yield final nominal environmentally
relevant concentrations of 0.1, 1, 10, and 100 µg/L PFOSA with a final concentration <0.1% v/v
DMSO in experimental treatments.

2.2. Maintenance and Egg Production of Zebrafish

Zebrafish (AB x Tübingen, Danio rerio) husbandry has been described previously [21,22]
and rearing and staging of zebrafish embryos followed that described previously [23].
The Supplemental Methods section contain full details on zebrafish husbandry and water
quality. The University of Florida Institutional Animal Care and Use Committee approved
all experiments (UF_IACUC202300000140).
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2.3. PFOSA Exposure Regime

Fertilized and normally developing eggs were selected at ∼6 h post-fertilization (hpf)
and were assigned into experimental groups in random fashion [ERM, 0.1% DMSO, or one
dose of 0.1, 1, 10 or 100 µg/L PFOSA]. Four independent experiments were conducted.
There were 5 to 6 replicate glass beakers for each treatment group containing between 20
and 30 embryos and 10 mL of ERM per beaker. Once chemicals were added, the beakers
were placed inside an incubator at 27 ± 1 ◦C. Mortality, deformities, hatch times and images
using an EVOS™ FL Auto Imaging System (ThermoFisher Scientific, USA) were collected
daily. Deformity assessments included the presence of spinal lordosis and edema (yolk
sack/pericardial) was noted each day. Water was renewed each day with a 90% water
change using freshly made stocks of PFOSA.

2.4. Reactive Oxygen Species

Following fertilization in the morning, embryos at 6 h post fertilization were collected
and treated as per above for 7 days in the ERM with designated concentrations of PFOSA.
Fertilized embryos were assigned into sterile 25 mL glass beakers containing the designated
concentration of ERM, 0.1% DMSO and 0.1, 1 and 10 µg/L PFOSA (n = 5 beakers of 10 fish
each/treatment) in a 10 mL volume. The Supplemental Methods section contains full
details on the analysis of ROS levels in zebrafish larvae.

2.5. Visual Motor Response Test

The visual motor response test was conducted following our published methods [24].
Fish were exposed continuously for 7 days with PFOSA as described above and assessed for
locomotor activity behavior at a temperature of 27 ± 1 ◦C and a photoperiod of 14:10 h using
the DanioVision instrument (Noldus, Wageningen, The Netherlands). The Supplemental
Methods section contains full details on visual motor response tests.

2.6. Real-Time PCR

The Supplemental Methods section contains full details on real-time PCR assays.
Briefly, zebrafish larvae at 6 hpf were exposed to either ERM, 0.1% DMSO or 0.1, 1, or
10 µg/L PFOSA. Each beaker contained 10–15 embryos and exposure conditions were
maintained as mentioned above. Following the 7-day exposure period, larvae were pooled
within a beaker, subjected to liquid nitrogen, and placed at −80 ◦C for RNA extraction.
Sample sizes ranged from 4 to 6 beakers per group for gene expression analysis. The
primers used in this study were obtained from published literature [25–34] and all targets
measured in this study are listed in Supplemental Table S1. Two housekeeping genes
(ribosomal subunit 18, rps18, and beta actin, b-actin) were used to normalize expression
levels of all target genes. Normalized expression was calculated using CFX Manager™
software (v3.1) (baseline subtracted) and the Cq method.

2.7. Statistical Analysis

All data were compared to the solvent control (DMSO group). A log-rank test (Mantel–
Cox) was employed to evaluate survival data. Data for hatch times were evaluated using a
One-Way ANOVA at each time point. Levels of ROS and relative mRNA levels were first
log(10) transformed following a Shapiro–Wilk test for normality. Group mean differences
were then tested using a One-Way ANOVA (Dunnett’s multiple comparisons test). A simple
linear regression was also conducted on the gene expression data to determine whether
expression varied with concentration. Because there was no difference in expression
between the ERM and DMSO group, these two experimental groups were combined for
the regression as a “control” or baseline group. For the VMR, distance moved for larval
fish in each treatment across the three independent experiments were binned into a single
graph, but each individual run is shown in Supplemental Figure. The distance moved for
fish in the DMSO group was normalized to a value of 1, and all treatments were compared
relative to this group. A Kruskal–Wallis test followed by Dunn’s multiple comparisons test
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was employed to analyze discrete temporal units (light and dark periods) as the data were
not normally distributed. All data are presented as mean ± S.D. Significance of difference
was determined using a threshold of p < 0.05. Statistics and graphing were performed
using GraphPad V9.3 (La Jolla, CA, USA).

3. Results
3.1. Survival, Hatch Rate, and Deformity

After zebrafish were exposed to several concentrations of PFOSA for a period of
7 days, intriguingly only fish treated with 1 µg/L PFOSA exhibited significantly decreased
survival [chi square = 88.68, df = 5, p value < 0.0001] (Figure 1) relative to the DMSO control
group. Survival was approximately 10% lower for some eggs treated with PFOSA and
these responses were most notable in the first 48 h of exposure. The hatch rate increased in
fish treated with 0.1 and 10 µg/L PFOSA as all embryos were hatched at 2 dpf compared
to the other treatment groups (p < 0.05) (Figure 2). There were no significant deformities
observed; however, the few zebrafish that did have deformities (less than 3%) had caudal
tail malformations.
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3.2. Reactive Oxygen Species

We assessed the effects of PFOSA on ROS induction in larval zebrafish at 7 dpf. PFOSA
exposure did not significantly affect ROS levels (F (4, 19) = 0.14, p = 0.96) (Figure 3).
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3.3. Visual Motor Response Test

Three independent trials were conducted, and data for the relative distance travelled
(log transformed and relative to the DMSO control standardized to a value of 1) were
combined for each experiment. Zebrafish larvae exposed to 100 µg/L exhibited reduced
activity in Dark Period 2 only (number of groups = 6, Kruskal–Wallis statistic = 13.60; p
value = 0.018) (Figure 4, panel C). Individual VMR trials can be found in Supplementary
Figure, Supplemental Figure S1.

Toxics 2024, 12, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 4. The distance moved in each of the light and dark zones (10 min bins) of 7-day zebrafish 
larvae exposed to 0.1% DMSO, ERM or 0.1, 1, 10, or 100 µg/L PFOSA. Graphs are the combined 
output from three independent VMR runs. Columns depict mean (±S.D.) (Kruskal–Wallis test and 
Dunn’s multiple comparisons test; n = 8–12 fish/treatment/run). Asterisk indicates difference at ** p 
< 0.01. 

3.4. Expression Analysis of Transcripts 
The effects of PFOSA on mRNA steady state levels were measured in larval fish. 

Regression analysis revealed that the apoptosis-related transcript (bax) on oxidative stress-
related transcripts (cat, sod2) increased with increasing concentrations of PFOSA and the 
statistical information and R2 of the linear regressions are shown in Figure 5. Bax mRNA 
levels were elevated in zebrafish from the 1 µg/L PFOSA treatment compared to the 
DMSO control group (F (4, 21) = 4.160, p = 0.0123) (Figure 6A). 

 
Figure 5. Linear regression for relative expression of (A) bax, (B) cat, and (C) sod2 in 7-day old 
zebrafish. The DMSO and ERM group were combined (“Cntl”). Each circle indicates a biological 
replicate or beaker of pooled fish (n = 4 to 6). The solid line indicates the relationship between 
expression and the region between the two outermost dotted lines is the 95% confidence interval of 
the X intercept. 

Regarding neurotoxicity-related genes, transcript levels of elavl3 were significantly 
elevated in zebrafish treated with 1 and 10 µg/L PFOSA (F (4, 23) = 4.802, p = 0.0058) (Figure 
6B). No other transcript was significantly different when comparing group means to the 
mean of the DMSO control (p > 0.05); however, regression analysis revealed that many 
neurotoxicity transcripts showed a concentration independent response with PFOSA, and 
several transcripts were increased with higher exposure concentrations (Figure 7). The 
statistical information and R2 of the simple linear regressions are provided in the figures. 

Figure 4. The distance moved in each of the light and dark zones (10 min bins) of 7-day zebrafish
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Dunn’s multiple comparisons test; n = 8–12 fish/treatment/run). Asterisk indicates difference at
** p < 0.01.
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3.4. Expression Analysis of Transcripts

The effects of PFOSA on mRNA steady state levels were measured in larval fish.
Regression analysis revealed that the apoptosis-related transcript (bax) on oxidative stress-
related transcripts (cat, sod2) increased with increasing concentrations of PFOSA and the
statistical information and R2 of the linear regressions are shown in Figure 5. Bax mRNA
levels were elevated in zebrafish from the 1 µg/L PFOSA treatment compared to the DMSO
control group (F (4, 21) = 4.160, p = 0.0123) (Figure 6A).
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Regarding neurotoxicity-related genes, transcript levels of elavl3 were significantly
elevated in zebrafish treated with 1 and 10 µg/L PFOSA (F (4, 23) = 4.802, p = 0.0058)
(Figure 6B). No other transcript was significantly different when comparing group means
to the mean of the DMSO control (p > 0.05); however, regression analysis revealed that
many neurotoxicity transcripts showed a concentration independent response with PFOSA,
and several transcripts were increased with higher exposure concentrations (Figure 7). The
statistical information and R2 of the simple linear regressions are provided in the figures.
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4. Discussion

We observed that PFOSA affected the survival of zebrafish treated with some concen-
trations of PFOSA 1 µg/L (10% decline at this concentration relative to the DMSO control).
Dasgupta et al. (2020) exposed zebrafish embryos to 0.78–50 µM (389–24,900 µg/L) PFOSA
for up to 72 hpf and 100% mortality was observed in all treated embryos by 72 hpf [18].
Regarding abnormalities, we observed only a few deformities (less than 2–3 percent) across
all treatment groups; several studies examining toxicity effects of PFOSA report significant
deformities, which are likely due to much higher treatment concentrations. It was also
reported that all treated embryos exhibiting concentration- and duration-dependent ab-
normalities, as well as developmental delays, at 24 hpf. For instance, embryos exposed to
PFOSA starting at 0.75 hpf exhibited stronger concentration-dependent delays in epiboly
compared to embryos exposed at 4 or 5 hpf. Truong et al. (2022) exposed dechorionated
zebrafish embryos to 0.015–100 µM (7.4–49,900 µg/L) of various PFAS, including PFOSA
from 6 to 120 hpf [35]. PFAS were ranked on potency based on morphological effects (i.e.,
pericardial and yolk sac edema, brain and eye malformation) in which PFOSA was ranked
second highest. Various studies also report cardiac abnormalities, including heart elonga-
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tion and reduced cardiac output, heart rate, and stroke volume, in zebrafish exposed to
concentrations in the range of 0.01–100 µg/L [16,17]. In our case with survival, 1 µg/L may
have been too low a concentration to sufficiently activate defense mechanisms to PFOSA
exposure, leading to lower overall survival in developing fish while higher concentrations
of PFOSA may elicit a stronger defense response to mitigate toxicity, leading to higher
survival. Such dose-dependent responses have been observed for other chemical exposures
in zebrafish [36,37]. This hypothesis is supported by the increase in anti-oxidant defense
enzymes with higher concentrations of PFOSA. Nevertheless, survival remained relatively
high (80–90%) for fish exposed up to 100 µg/L PFOSA, suggesting that the chemical,
spanning environmental concentrations, is not overtly toxic up to 100 µg/L.

The amount of ROS is often indicative of the amount of oxidative stress in cells, and
an excess of ROS can contribute to damage at the molecular level. Limited studies in the
literature examine the impact PFOSA has on organisms. In our study, we did not observe
any increase in ROS in zebrafish treated with PFOSA; however, there was a concentration-
dependent increase in both cat and sod2 expression. Mitochondrial dysfunction has been
thought to contribute to the progression of neurodegenerative disorders and the presence
of ROS is one clear indicator of dysfunction as antioxidant systems are implemented to
counteract oxidative stress. This supports our oxidative stress-related gene responses
(PFOSA-induced increase in cat and sod2 mRNA levels), which could have mitigated any
change in ROS levels in the larval zebrafish. Similar results have also been observed in
rodent models where oxidative stress-related genes, like cat, were significantly increased
to counteract damage by PFOA-induced lipid peroxidation in mouse brain and liver
tissues [38]. ROS can also trigger apoptosis to mediate inflammation. Though PFOSA was
found to only significantly upregulate two apoptosis-related genes (bax and cycs) in our
study, another study reports increased apoptotic cells in the brain and upregulated bcl-2,
caspase3, and p53 zebrafish exposed to PFOS [39]. Bax is a pro-apoptotic factor in the Bcl-2
family, signaling mitochondria and cell death, while cytochrome c is an intrinsic apoptotic
signal activating downstream caspase enzymes. Other studies investigating PFOSA report
mixed results for antioxidant gene expression and proteins. Olufsen and Arukwe (2015)
exposed Atlantic salmon (Salmo salar) hepatocytes to 25 or 50 µM (12,400–24,900 µg/L)
PFOSA for 24 or 48 h and analyzed catalase, glutathione peroxidase, glucocorticoid receptor,
and glutathione S-transferase mRNA levels, which were not significantly impacted [40].
Another study also exposed Atlantic salmon hepatocytes to 2, 20, or 50 µM (998, 9900,
or 24,900 µg/L) PFOSA for 12 or 24 h [3]. No significant changes to gpx mRNA levels
were found, but cat mRNA levels were significantly increased by 20 and 50 µM PFOSA
following 24 h of exposure, suggesting that antioxidant defense mechanisms were activated.
Differences among studies may occur due to the type of model used to investigate PFOSA
toxicity (e.g., cells versus larvae). Taken together, there is evidence that PFOSA initiates
an antioxidant defense and any elevation in ROS may lead to higher levels of apoptosis in
larval zebrafish.

We hypothesized that PFOSA would induce neurotoxicity in the form of behavioral
changes and altered expression of genes related to neurotoxicity. Indeed, we observed
hypoactivity at 100 µg/L, which corresponded to the highest expression levels of several
neurotoxicity biomarkers. These responses indicate some form of neurological impair-
ment [41]. Chemical neurotoxins cause damage to, or death of, cells in the nervous system,
disrupting neuronal pathways linked to neurodegenerative illnesses and other neurode-
velopmental issues (i.e., Parkinson’s disease and schizophrenia). For instance, zebrafish
exposed to PFOS had transcriptome changes linked to disturbance of the neuromuscular
system [42] and zebrafish exposed to perfluorononanoic acid (PFNA) showed evidence
of altered neuroinflammatory pathways [43]. To our knowledge, this is the first study
to examine the neurotoxicity mechanism in zebrafish exposed to PFOSA. We observed
hypoactivity effects on locomotor activity in larval zebrafish, suggesting neurotoxicity or
motor deficits with PFOSA exposure. Fish treated with 100 µg/L PFOSA showed reduced
activity in Dark Period 2 of the combined VMR. Truong et al. (2022) exposed dechorionated
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zebrafish embryos to 0.015–100 µM PFOSA from 6 to 120 hpf and found that PFOSA in-
duced both a refractory and an excitatory phase of hyperactivity [35]. Consistent with our
observation, after exposing zebrafish embryos to 1 or 10 µg/L PFOSA for 120 h, Liu et al.
(2022) observed reductions in the total distance moved, average swimming velocity, and
maximum acceleration in fish treated with 1 µg/L PFOSA [17]. Our results also revealed
that PFOSA alters the expression of neurotoxicity-related genes, as notable effects were
observed in elavl3, and positive associations were detected between PFOSA concentration
and expression levels (e.g., ache, elavl3, gap43, syn2a, and tubb3). Elavl3 is expressed in
different nervous system structures and is known to regulate neurogenesis [44]. Addition-
ally, ache is involved in cholinergic functioning and syn2a is involved in dopamine and
serotonin release. PFAS exposure has previously been shown to alter these transcripts;
PFOS, the metabolic product of PFOSA, was reported to decrease ache expression [45] and
perfluorododecanoate (PFDoA) decreased mRNA levels of elavl3, gap43, and syn2a [46].
Here, we report an elevation in the expression of elavl3 and many other neurotoxic-related
transcripts with PFOSA exposure, and this may reflect a compensatory response to im-
paired neurogenesis and neurotransmitter release. Conversely, different types of PFAS
may elicit unique responses in the CNS in relation to gene expression patterns. Regardless,
there is evidence from the molecular response that PFOSA alters genes related to neuronal
integrity and structure, suggesting the potential for neurotoxicity in developing larval fish.
Thus, early developmental exposures to PFOSA may have long-lasting detrimental effects
on the adult brain and this should be further investigated.

5. Conclusions

In summary, very few studies have been carried out on PFOSA and there is little
information on PFOSA’s environmental presence and accumulation in aquatic species.
PFOSA did not significantly impact the prevalence of malformations or reactive oxygen
species generated in larval fish; however, PFOSA did affect locomotor activity and
transcripts related to oxidative damage response, apoptosis, and neurotoxicity. Further
mechanistic studies in zebrafish are warranted to further address PFOSA neurotoxicity in
the CNS. This study contributes to our knowledge regarding the relative toxicity of PFAS
on fish to assist future risk assessment methodologies of these concerning, persistent
environmental pollutants.
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