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Abstract: Innovative tools suitable for chemical risk assessment are being developed in numerous
domains, such as non-target chemical analysis, omics, and computational approaches. These methods
will also be critical components in an efficient early warning system (EWS) for the identification of
potentially hazardous chemicals. Much knowledge is missing for current use chemicals and thus
computational methodologies complemented with fast screening techniques will be critical. This
paper reviews current computational tools, emphasizing those that are accessible and suitable for the
screening of new and emerging risk chemicals (NERCs). The initial step in a computational EWS
is an automatic and systematic search for NERCs in literature and database sources including grey
literature, patents, experimental data, and various inventories. This step aims at reaching curated
molecular structure data along with existing exposure and hazard data. Next, a parallel assessment of
exposure and effects will be performed, which will input information into the weighting of an overall
hazard score and, finally, the identification of a potential NERC. Several challenges are identified
and discussed, such as the integration and scoring of several types of hazard data, ranging from
chemical fate and distribution to subtle impacts in specific species and tissues. To conclude, there are
many computational systems, and these can be used as a basis for an integrated computational EWS
workflow that identifies NERCs automatically.
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1. Introduction

The chemicals market is global and has an essential role in many aspects of modern
life including housing, agriculture and food production, healthcare, and manufacturing of
materials and consumer goods. This has led to significant advancements in human welfare,
but it also has environmental and human health implications. While some effects have been
thoroughly studied by scientists, others are still unknown. The introduction of chemicals
on the market and following risks of exposure and effects emphasize how crucial it is to
take early measures to recognize and evaluate risks before they are spread. This has also
led to initiatives in the European Union (EU) and elsewhere forming a framework for safe
and sustainable by design (SSbD) to guide early innovation processes [1].

Given the complex interactions between chemicals and biological systems, protecting
the ecological balance and public health requires more than responding to known threats.
An early warning system (EWS) is a mean for the prompt detection of new and emerg-
ing risk chemicals (NERCs). It would constitute a systematic tool to identify potentially
hazardous chemicals, i.e., chemicals that may pose a risk of causing environmental or
human health effects. The system should also enable the identification of chemicals posing
a risk of exposure through as yet non-explored emission sources, or because of changed
or increased use. It should enable the identification of newly introduced chemicals but
also of known chemicals with, e.g., new use patterns or newly discovered hazard prop-
erties. In this context, a European EWS framework has recently been proposed by the
European Commission as a key component of the Chemicals Strategy for Sustainability
(environment.ec.europa.eu).

An EWS is an integrated system for monitoring and collecting data, and analyzing,
interpreting, and communicating data, which can be used to make decisions early enough to
protect humans and the environment [2]. An early warning is, for example, critical to ensure
efficient management in the healthcare sector, for tracking, predicting, and quickly reacting
to disease outbreaks and health emergencies [3–5]. Additionally, these systems have been
used to anticipate and prevent disasters that range from chemical spills [6] to natural
disasters [7], allowing for containment measures or rapid evacuation. EWSs have also been
utilized in environmental conservation to detect signal changes in ecological parameters,
allowing for prompt actions for safeguarding natural resources [8]. The evolution of EWSs
across these distinct domains demonstrates their adaptability and critical role in dealing
with and preventing hazards and disruptions.

Chemical EWSs can take on various degrees of complexity from a transparent human
expert-driven approach where signals of NERCs are identified by individual experts using
different data sources, to chemistry- or biology-driven experimental approaches towards
computational methods. Chemistry-driven methods to identify NERCs cover advanced
analytical techniques and are often based on mass spectrometry, including target, suspect
screening (SS) and non-target screening (NTS) approaches. These methods can deliver
detection, and in some cases, quantification of chemicals in a variety of matrices, such
as food, abiotic and biotic environmental samples, materials and consumer goods, and
human tissue samples. Several biology-driven experimental techniques, such as effect-
directed analysis (EDA) and effect-based monitoring (EBM), aim at detecting chemical
hazards promptly. These techniques are designed to evaluate biological signals induced
by individual or complex mixtures of chemicals in environmental samples, such as soil,
water, and air [9]. The sensitivity and wide detection range of these bioassays make them
suitable for screening known and unknown substances. To identify potentially hazardous
chemicals, EDA integrates a biological effects assessment with SS and NTS applying
advanced chemical analysis [10]. Sample extracts are fractionated and tested to find the
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most bioactive fractions, and these are analyzed aiming to identify chemicals causing the
observed effects. A few EWSs are in operation including national initiatives, such as the
expert-based system under the Swedish Toxicological Council (kemi.se) and the German
water-based system focused on NTS data and EBM led by the German Environment Agency
(umweltbundesamt.de). In addition, the NORMAN network for identifying hazardous
chemicals in the environment [11] has an EWS initiative focusing on use of SS/NTS [12].

Experimental methods in EWSs have several drawbacks including a dependence on
skilled staff, representative sampling, and costly equipment. A computer-driven EWS is
an alternative, providing faster and scalable solutions at a reasonable cost. These systems
can also be adaptable, considering big datasets, conditions that change over time and
analyze chemicals lacking analytical standards, and even those not yet on the market.
Another key driver of using predictive hazard modeling is the possibility to reduce ethically
questionable animal testing. This follows the 3Rs principle to reduce, refine, and replace
animal testing [13] which have enabled forecasting important endpoints, such as endocrine
disruption, skin sensitization, and mutagenicity.

Computational tools are also critical for developing a next-generation risk assessment
(NGRA) and new approach methodologies (NAMs) [14,15]. Several kinds of computa-
tional tools exist, including natural language processing (NLP) methodologies, which
could serve as a significant component by efficiently identifying and structuring relevant
data [16,17]. Additionally, quantitative and qualitative models, including quantitative
structure–activity relationship models (QSARs) [18], can be applied to derive both haz-
ard and exposure data [19,20]. Furthermore, incorporating bioinformatics methodologies
and systems biology expands the scope of biological data for EWS applications [14,21].
An EWS also benefits from unsupervised methods including clustering and rule-based
approaches [22,23]. These techniques enable the identification of commonalities between
known and unknown potentially hazardous chemicals. Finally, a reliable EWS should con-
sider the entire “source-to-dose” continuum. This includes robust exposure assessments,
environmental multimedia modeling, and the use of physiologically based kinetic (PBK)
models to anticipate the internal dose [20,24]. It is important to remember that compu-
tational methods rely on experimental data and may have limited applicability domains
depending on the methodology and training data.

A computer-driven chemical EWS requires data as a trigger that could stem from, e.g.,
large databases, repositories of scientific literature, patent databases, or monitoring and
screening campaigns. These data sources may offer a multitude of insights into chemical
properties, usage trends, and various hazard measures. Chemicals with data that signal a
potential hazard or fate property of concern, increased use or abundance in products or
environments, necessitate further analysis. Computational and predictive methods offer an
opening to assess the risk of exposure and effects, and those data could be combined and
synthesized providing signal strength for the notification of a potential NERC.

In this paper, we present the current state of knowledge regarding computational
methodologies applicable for an EWS tool, providing an understanding of the opportunities
and challenges in the development and implementation of a computational EWS. We also
outline the strengths along with the weaknesses of pre-existing computational modules for
use in an EWS and describe general-purpose and easily implementable computational tools
suitable for an automated EWS workflow. Additionally, we highlight potential challenges in
developing an efficient automated computational EWS using the most recent technologies
including artificial intelligence (AI).

2. Structure Curation and Data Sources
2.1. Structure Curation

An EWS requires accurate and readable information linking a chemical structure
to physicochemical properties and hazard data. Although Chemical Abstract Service
(CAS) numbers serve as distinctive identifiers, they cannot describe the chemical struc-
ture, as the same compound may be associated with multiple CAS numbers. Structural
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information can be extracted from CAS numbers using the US-EPA Chemistry Dash-
board for Python (cirpy.readthedocs.io) or the Chemical Identifier Resolver (CIR) (cac-
tus.nci.nih.gov/chemical/structure) in KNIME [25]. The Simplified Molecular Input Line
Entry System (SMILES) is frequently used to represent the chemical structure of a com-
pound, but it lacks 3D information, and it may increase the risk of duplication. In contrast,
InChIKeys offer precise information on the chemical structure and can only be presented in
a specific format, making them useful for identifying duplicates. Overall curation is critical,
and structure format must be tailored for applied computational hazard models.

2.2. Data Sources

Scanning existing and emerging databases or other open sources is a starting point of a
computational EWS relying on robust and well curated data. These could cover databases of
experimental data to inventories of chemical properties, usage, and environmental and hu-
man health impacts. Recently, over 900 databases were reviewed and classified into 13 differ-
ent types, including information on physicochemical properties, toxicological information,
omics data, product and material usage and characteristics, patents, environmental and hu-
man monitoring data, and adsorption, distribution, metabolism, and excretion (ADME) [16].
Large chemical registry databases are instrumental in determining new compounds in-
cluding, e.g., ECHA (echa.europa.eu), PubChem (pubchem.ncbi.nlm.nih.gov), ChEMBL
(ebi.ac.uk/chembl), ChemSpider (chemspider.com), and CAS SciFinder (cas.org). Another
invaluable resource is the EPA CompTox Dashboard (comptox.epa.gov/dashboard), which
has over 1.2 million entries with information on chemical structures, experimental features,
and toxic effects. Databases such as the US EPA’s IRIS (epa.gov/iris) and the ECOTOX
database (cfpub.epa.gov/ecotox) offer species-specific toxicity information along with refer-
ence values for environmental toxicity. Emerging databases include those compiling omics
data, such as ArrayExpress (ebi.ac.uk/biostudies/arrayexpress) and BiGG (bigg.ucsd.edu).
The ACToR database (actor.epa.gov) consolidates data on environmentally significant
chemicals from over 400 different databases and datasets. The CEBS database (manti-
core.niehs.nih.gov/cebssearch) compiles animal experimental data from the U.S. National
Toxicology Program (NTP), offering both general biological information and toxicological
data. The Comparative Toxicogenomics Database (CTD) (ctdbase.org) integrates data on as-
sociations between chemicals, gene products, phenotypes, diseases, and environmental ex-
posures. It provides insights into interactions, such as chemical–gene, chemical–phenotype,
chemical–disease, gene–disease, and chemical–exposure relationships.

Patent inventories could also be important including Derwent World Patents In-
dex (DWPI) (clarivate.com), SureChEMBL Beta (surechembl.org), European Patent Office
(epo.org), USPTO (uspto.gov)), and certain national registry databases [26]. Patents can
be an opening for early identification of NERCs even before they are commercialized by
anticipating possible sources and exposure pathways. To provide a comprehensive under-
standing of substance monitoring, the European Union’s Human Biomonitoring (HBM)
Dashboard (hbm4eu.eu), the IPChem Portal (ipchem.jrc.ec.europa.eu), and the NORMAN
Network (norman-network.com) provide examples of large databases on a variety of com-
pounds across matrices, including food, consumer goods, environmental samples, and
human tissues.

Chemical scientific literature and grey literature, including stakeholder reports and
social media, emerge as additional vital sources of information. NLP can be used to extract
information from such sources, and tools like ExaCT [27], EPPI Reviewer [28], and Robot
Reviewer (robotreviewer.net) are designed to automatically extract data from scientific
literature. Another example is AOP-helpFinder (aop-helpfinder), which is designed to
identify chemical–biological event and event–event relationships in scientific articles, no-
tably within databases like PubMed [29]. In addition to curated chemical databases, high
resolution mass spectrometry (HRMS) analysis generates large datasets that capture a wide
range of chemicals in samples, according to the analytical procedures and instruments
used. Digital advancements such as the Application Programming Interface (API) on a
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Digital Sample Freezing Platform (dsfp.norman-data.eu) for HRMS data enable automated
retrieval of exposure data as well as semi-quantification of chemical concentration levels.

3. Exposure Models

To identify NERCs, it is important to comprehend how emerging chemicals are being
spread and distributed in key environmental media, and how they may reach humans
and target tissues in humans. This will form data on the exposure potential of chemicals
and the most significant pathways. Numerous computational tools are available for dif-
ferent matrices and pathways to determine the external or internal exposure of emerging
contaminants.

3.1. External Exposure Models
3.1.1. Human External Exposure Models

For an EWS, high-throughput exposure models could be appropriate for the assess-
ment of human exposure as they are generic and capable of covering a variety of exposure
routes, and due to their ease of integration into an EWS workflow [30]. For exposure
through indoor environments, the SHEDS-HT model provides a chemical screening capa-
bility with few parameters required and including different exposure routes [20]. Another
actively maintained indoor exposure model, RAIDAR-ICE, has been modified for use in Ex-
cel and is suitable for screening. It includes a PBK model for different exposure routes [24].
Likewise, several exposure scenarios are included in the EUSES tool (echa.europa.eu), such
as SimpleBox for environmental multi-media fate modeling and ConsExpo for consumer
exposure. Although some models have been developed to predict occupational exposure
for a specific exposure pathway, their applicability to screen multiple compounds in batch
is still limited [19].

Using individual consumption data from the EFSA Comprehensive European Food
Consumption Database, EFSA developed the Dietary EXposure (DietEX) tool to calculate
dietary exposure to substances present in food (efsa.europa.eu). The tool estimates the mean
and the 95th percentile exposure for various age classes and specific population groups in
several EU countries. Similarly, the Rapid Assessment of Contaminant Exposure (RACE)
tool compares the results to the health-based guidance value or other pertinent toxicological
reference values and provides exposure estimates (mean, median, and 95th percentile)
of various population groups to chemical contaminants that originate from single food
items. The key difference between the two tools is that RACE can only estimate exposure
to a single food item at a time, whereas DietEX can estimate exposure to multiple foods.
Moreover, DietEX does not share RACE’s scope limitation of only including chemicals that
have previously undergone EFSA assessment. However, RACE assesses and categorizes
the related risks, whereas DietEX is only intended for exposure estimation.

3.1.2. Environmental Fate Models

Fate models evaluate the environmental distribution of a compound by calculating
the distribution among specific compartments including water, soil, air, and sediment. This
information can then be utilized to estimate the predicted environmental concentration
(PEC). Fate models can take on global, regional, and local scales, and have been developed
for describing atmospheric or multi-media transport, including software platforms such
as INTEGRA [31], SoilPCA [32], EpiSuite, BETR North America [33], NEM [34], Simple-
Box [35], CoZMo-POP [36], USEtox [37], Merlin-Expo tool [17], and the PiFs model [38].
Fate modeling requires data on the characteristics of the environment and chemical proper-
ties including persistence. EpiSuite (epa.gov) can be used to derive persistence measures,
although this lacks information on the applicability domain and does not differentiate
between persistence in different environmental matrices. The VEGA platform (vegahub.eu)
provides a range of both quantitative and qualitative models of persistence for soil, wa-
ter, air, and sediment. Predictions from VEGA include an estimate of reliability based
on the model’s applicability domain that could be used in scoring exposure and hazard
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reliability and impact. The chemical fate is to a large extent determined by intrinsic physico-
chemical properties including water solubility, vapor pressure, and partitioning coefficient
between organic matter and water [39]. EpiSuite and VEGA offer predictive models for
these properties.

3.2. Internal Exposure Models

Models that predict internal concentrations in organisms are useful tools for obtaining
more detailed insights into chemical risks. They can provide estimations of internal concen-
trations or even doses at the target of toxicity. These measures can be calculated using a
variety of methods, covering predictive models for bioconcentration or bioaccumulation,
and organism-specific compartmental models.

3.2.1. Bioconcentration and Bioaccumulation Models

In aquatic organisms, bioaccumulation is usually reported in metrics such as bio-
concentration factors (BCFs), bioaccumulation factors (BAFs), or biomagnification factors
(BMFs). However, for some terrestrial organisms, e.g., earthworms, biota-to-soil accumu-
lation factors are reported [40]. These factors are usually calculated using empirical data
or models that consider both the organism characteristics and the compounds’ physico-
chemical properties. There are few empirical models for predicting BCFs in species other
than fish due to a lack of experimental data for model building [41]. Additionally, chemical
applicability is also limited, with present models focusing primarily on non-ionic organic
compounds. The BCFBAF model in EpiSuite estimates these properties by either applying a
linear regression model utilizing the logarithm of the octanol–water partitioning coefficient
(Kow) to empirical data or combining Kow with predicted metabolic half-lives in fish as in the
Arnot–Gobas method [42]. The VEGA platform includes four BCF models: CAESAR, Mey-
lan, Arnot-Gobas, and KNN-Read-across, and provides a reliability score and the six most
similar substances within the training data (vegahub.eu). Both the EpiSuite and the VEGA
BCF models have been used in EWS and NERC prioritization, allowing a relatively rapid
calculation of data for many chemicals [43]. Empirical bioconcentration and bioaccumula-
tion models may be insufficient for predicting internal exposure to emerging compounds
because they do not consider the species-specific physiology or ADME properties, and,
in addition, they only provide an estimate of the whole-body concentration rather than
specific target organs of toxicity.

3.2.2. Compartmental Models

Internal concentrations in organisms can be predicted using basic one-compartment
models treating the organism as a single compartment with a consistent chemical distribu-
tion throughout the organism. They facilitate an opening for fast screening, one example
being the high throughput toxicokinetic (HTTK) package by US-EPA featuring both a
one-compartment and a three-compartment model for hundreds of different compounds to
simulate internal exposure in humans, rats, mice, rabbits, and dogs (httk). Furthermore,
Wiecek et al. present a generic human one-compartment model and PBK model with the
goal of carrying out forward dose measurement for a human health risk assessment of
chemicals in food [44]. The primary challenge relates to the availability of data for metabolic
parameters that require in vitro measurement. Hendriks et al. presented a compartmental
model that uses Kow and a few species-specific parameters to simulate the build-up of
chemicals for various trophic levels [45].

3.2.3. Physiologically Based Kinetic Models

PBK models provide a useful computational tool for estimating internal concentrations,
the dose at target, and understanding the ADME of chemicals. Additionally, quantitative
in vitro-to-in vivo extrapolation using PBK models could be used to reconstruct exposure
and generate non-animal-based data for risk assessments [46,47]. A recent overview of
PBK models revealed significant knowledge gaps in their chemical applicability domain
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and concluded that most are created for low molecular weight compounds, which typically
follow Lipinski’s rule of five [48]. Several governmental agencies have set the objective
for the next-generation PBK models to develop these without the use of in vivo data [49].
A large portion of the parameterization can be accomplished using in vitro and in silico
data. A range of compound-specific and generic models, such as INTEGRA [31], MENTOR-
3P [50], and the MERLIN-Expo tool [51], are available. Generic PBK models are available,
e.g., for fish species [52] and farm animals [53].

Tebby et al. concluded that models relying on pre-existing databases or basic QSAR
models for parametrization are practical and applicable for screening and lower-tier calcula-
tions [54]. PBK models have also been combined with effect-based safety limits to determine
which subgroups and what percentage of the population are subjected to exposure levels
above safety limits [49,55,56]. One such model is the lifetime PBK model, which was created
to examine the effects of PFAS compounds on humans [57]. Another option is using the
HTTK package to simulate population kinetics with pre-defined physiological parameter
distributions [55,56]. Overall, PBK modeling could be used for screening; however, the
models require extensive parametrization and are mostly compound-specific rather than
generic. Therefore, further development is needed for their use in EWS. One of the major
challenges with the parameterization of PBK models is the need for compound-specific
biotransformation data.

3.2.4. Biotransformation Models

Most in silico biotransformation models are designed for pharmaceuticals, making
them less well suited for application on industrial chemicals. In addition, large individual
and interspecies variability in metabolic enzymes make it challenging to develop models
for predicting biotransformation parameters, such as intrinsic clearance rates. Primary
biotransformation half-lives and rate constants in fish can be predicted using the half-life
model included in the VEGA platform [58]. However, models for other species are lacking,
indicating a significant data gap and the need to develop new tools. The OECD QSAR
toolbox [59], CTS (qed.epa.gov/cts), BioTransformer [60], and EAWAG-BBD/PPS [61]
are examples of open-source software aimed at predicting transformation products [62].
An example of available commercial software is Meteor Nexus [63]. The software CTS,
EAWAG-BBD/PPS, and Meteor Nexus offer likelihoods of formation of a given transfor-
mation product, whereas the other models only predict formed products. Degradation
in the environment can also be evaluated using two VEGA models that predict ready
biodegradability. Additionally, the JANUS tool automatically generates environmental
degradation products (using over 200 degradation pathways) and predicts degradation
products (vegahub.eu).

4. Effect Models

Comprehending a chemical’s ability to cause effects in organisms and its mechanism of
action are key components in assessing the hazards of chemicals. However, understanding
which effects may pose a hazard and lead to adverse outcomes requires a contextual
framework such as the one provided by adverse outcome pathways (AOPs) [64]. AOPs
are a means to systematize and organize pathways leading to adverse effects initiated by
a molecular initiating event (MIE) triggered by a stressor (e.g., chemical), and continuing
through one or several key events (KE). AOPs are today constructed for many health
effects (aopwiki.org) and efforts are being made to build quantitative AOPs (qAOPs) and
adverse outcome networks, and to include the concept in risk assessment processes [14,15].
Computational effect models in the form of QSARs are therefore oftentimes developed
to predict MIEs and KEs. In addition, the rapid development of bioinformatics tools for
the analysis of omics data will enable using such data in systems biology approaches to
understand chemical-induced perturbations leading to systemic effects.
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4.1. Quantitative Structure-Activity/Property Relationship Models

QSARs and quantitative structure property relationships (QSPRs) have been used
to quickly screen substances and provide both biological activity and chemical property
values for a wide range of endpoints and substances [65]. Inventories exist where models
have been collected (life-concertreach.eu) and certain tools can predict various properties
by integrating multiple models. Several of these tools, such as QsarDB (qsardb.org),
VEGA (vegahub.eu), EPISuite (epi-suite), QSAR TOOLBOX (qsartoolbox.org), and OPERA
(ntp.niehs.nih.gov), are free to use. In addition, the Danish (Q)SAR Database provides
predictions from a large range of models (qsar.food.dtu.dk). JANUS (vegahub.eu) is
primarily designed for prioritization and it is accessible through the VEGAHUB platform,
providing both predicted property values and experimental data for a range of substances
processed in batch. The models implemented in JANUS refer to REACH requirements
and thresholds, covering critical endpoints such as carcinogenicity, mutagenicity and
reprotoxicity (CMR), persistence, bioaccumulation, and toxicity (PBT), and endocrine
disruption. In the VEGA tool there are currently 112 distinct models predicting almost
50 properties covering environmental fate and distribution, toxicokinetics, human toxicity,
and ecotoxicity.

The validity of applied models is critical both for deriving sound data but also for
regulatory acceptance [66,67]. In the development of QSAR models it is important to wisely
select training and test data sets, and to report model parameters, settings, and outcomes
in a transparent way, e.g., using the QSAR model reporting format [68]. The OECD
validation principles were derived to increase the use and acceptance of QSAR models
urging modelers to include information not only on algorithm, endpoint information, and
performance statistics of models but also on a defined domain of applicability [67]. To
ensure the accuracy and applicability of its predictions, the third OECD principle states
that a QSAR model should only make predictions inside the chemical space on which it has
been trained and verified. Today several models offer this evaluation automatically. The
evaluation of the applicability domain can be qualitative (inside or outside) or quantitative,
i.e., with a continuous value. The use of quantitative values offers advantages including
(1) allowing comparisons of results from several models, and (2) integrating results from
multiple models assigning specific weights based on the applicability domain value.

4.2. Complementary Computational Tools

Big data is generated by emerging omics technologies and bioinformatics network
sciences, which enables the evaluation of interactions between chemical exposure, gene
expressions, pathways, and adverse outcomes. The biological mechanisms underlying
toxicity endpoints and/or toxicity biomarkers can be inferred from differentially expressed
genes. One of the primary sources of integrated toxicogenomics data, which enables
scientists to assess effects of toxicants based on gene expression, is ToxicoDb [69]. The
ability to pinpoint precise molecular pathways and mechanisms that a chemical may
affect is one benefit of leveraging omics data [70]. However, data produced using omics
technologies may be intricate and challenging to understand, necessitating the use of
sophisticated analytical bioinformatics tools and field expertise. They can help understand
the uncertainty, temporal trends, and possible health risks related to chemical exposure.
Another option would be to apply systems biology models that are designed to replicate
the intricate relationships that exist between various biological systems and processes [71].
These mathematical models combine metabolic control analysis, flux balance analysis,
and elementary model analysis and could be used to comprehend network-associated
toxicity pathways.

Molecular dynamics (MD) simulations aim to analyze a chemical’s interaction with tar-
get receptors, i.e., MIEs. These calculations, while powerful, are computationally expensive
and require a deep understanding and three-dimensional structures of both the receptors
and the target compounds [72,73]. However, their utility goes beyond mere analysis by
providing detailed insights into the molecular behavior and helping with the mechanistic
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interpretation of the endpoint under study. In addition to molecular dynamics simulations,
molecular docking serves as a complementary approach in EWSs for risk assessment [74].
Molecular docking focuses on predicting the binding affinity and orientation of small
molecules within the binding site of a target receptor. This method is less computationally
expensive and can be applied to large libraries of compounds, making it an attractive
alternative, especially in high-throughput screening scenarios. While molecular docking
may not provide the same level of detailed insight into molecular interactions, its ability to
handle large datasets quickly and efficiently makes it a valuable tool in risk assessment,
especially in situations requiring rapid screening.

5. Data Integration

Data generated in the exposure and effect modules will be integrated into an EWS
framework aimed at identifying and flagging potential NERCs. It is critical that this
process is based on high-quality data ultimately following the FAIR (findable, accessible,
interoperable and re-usable) principles [75] if using data inventories, or based on well-
curated chemical structures and sound models if data are estimated. However, the quality
of compiled estimated and experimental data will differ, and they might also contain
inaccurate data as, for example, big data from multiple databases could be heterogenous. It
will thus be crucial to examine data quality and spot any possible anomalies. To analyze the
various data types, expert judgment will be required for, e.g., setting weighting factors and
selecting parameters. Simultaneously, a high degree of automation should be implemented
in the process to allow for a quick and unbiased identification of NERCs from big data.
Reliability weights and scores associated with the applicability domain of models, if
provided, is one opening to evaluate both QSAR and read-across generated data. Overall,
decision trees, scoring schemes, and grouping or clustering of chemicals or endpoints are
examples of potential strategies to identify NERCs. In Figure 1, a decision tree is shown to
demonstrate how new signals can be analyzed to categorize chemicals of potential concern.
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Figure 1. An example decision tree that classifies substances into three main groups—I. Possible
NERC, II. Uncertain NERC, and III. Likely no NERC—using EWS data integration.

Various data integration approaches have been developed to identify NERCs or pri-
oritize chemicals, one example being the EWS (NormaNEWS) by the NORMAN network
using, among others, NTS data. In this system, semi-quantitative data on environmen-
tal occurrence are obtained for suspected compounds by searching in digitally archived
high-resolution mass spectrometry data (dsfp.norman-data.eu). A pilot of an EWS by the
Swedish Chemicals Agency applied cut-off values for several anticipated hazard attributes,
including considering the applicability domain [47]. The Swedish Chemicals Agency has
also developed a strategy that combines patent information with effect predictions for
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different endocrine receptors to predict chemicals of potential human concern [76]. Another
attempt to find NERCs is the annual screening by ECHA of registration dossiers covering
both hazard profiles and exposure estimates (echa.europa.eu). The Danish EPA uses combi-
nations of QSAR models for both self- and hazard-classification of chemicals (Danish EPA).
Models of various kinds have also been used to identify chemicals as persistent, bioaccu-
mulative, mobile, and toxic [77–79]. These approaches are, for example, used to derive lists
of potentially hazardous emerging chemicals for suspect screening activities [80,81].

Another example of using and integrating data from multiple models is the scoring
system developed by Hartmann et al., reaching a final score from 0 to 1 by assigning varying
weights to various endpoints and structural alerts [82]. An alternative scoring system, open
for use, is JANUS, which provides both single hazard property (e.g., persistence) scores
and combined scores (e.g., substances of very high concern) (vegahub.eu). Applying heat
mapping is a simple way to aggregate and score data from various sources (Figure 2). This
method makes data ranking and visualization simple. It does, however, require defined
parameter thresholds. To support decision-making, multiple criteria decision analysis
(MCDA) encompasses a range of approaches that can handle multiple types of data at
once, including quantitative, semi-quantitative, and qualitative data. Zheng et al. em-
ployed multiple hazard estimates to compare alternative brominated flame retardants [58].
Subsequently, their transformation products were also compared using MCDA. Like heat
mapping, thresholds must still be set, but with MCDA, multiple data types are evaluated
at once.
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Figure 2. An example of a scoring matrix with a few predicted hazard properties and proposed model
platforms used to detect NERCs within the EWS, with red suggesting an alarming property, orange
suggesting a hazardous property is likely, and green indicating “safe”. The purple line separates
exposure and effect models.

By grouping or clustering chemicals based on EWS data and chemical descriptors
reflecting their structural and chemical characteristics, potentially hazardous chemicals
with patterns resembling those of known pollutants can be identified using read-across
approaches [83]. This can be facilitated using unsupervised machine learning techniques.
Certain chemicals have a wealth of data and well-documented risks, so they could serve
as positive controls or references when identifying NERCs with comparable descriptor
patterns. Principal component analysis, hierarchical clustering, and k-nearest neighbor are
examples of useful methods for this purpose [22].
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6. Summary and Future Perspectives

With the recent developments in analytical chemistry, omics, and data science, signals
of hazardous chemicals can be detected early. New screening techniques and tools can de-
tect an unprecedented number of chemicals and their effects. Models can predict exposure
and effects, while AI, NLP, and bioinformatic tools can handle massive amounts of diverse
data. In light of the above-presented tools, the suggested EWS workflow can be used as
a screening tool, particularly when there is a lack of data and even before chemicals are
being commercialized. In Figure 3, a computational EWS is shown with data collection and
signal curation to scoring exposure and effect potential, signal integration, and potential
NERC notification. The EWS commences with the reporting of findings resulting from
omics, non-target screening, or similar, or from a broad scope horizon scanning that is
conducted regularly. Such scanning activities should cover grey literature, patent docu-
ments, environmental and human samples, and products and materials (Part I). Using
NLP techniques and data curation methods will be essential to yield chemical structure
information for use in the subsequent steps. NLP can also assist in automatic data collection
monitoring, surveillance of global databases, and web scraping, and thus potentially detect,
e.g., anomalies in real-time data. The methodologies have been used for the development of
AOPs [84] and QSAR models [85], and to encode chemical structures and similarities [86].
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potential NERCs.

The entry step of the EWS might go straight to data integration and scoring if enough
experimental data for exposure and hazard scoring were identified. Alternatively, a curated
chemical structure is the primary result from the data collection and curation phase (Step I),
as an entry to external and internal exposure modeling (Step II) and effect modeling (Step III)
(Figure 3). Exposure can be assessed in silico by predicting a compound’s potential fate,
such as accumulation in biota or specific tissues, i.e., dose at target. Predicting the exposure
potential will necessitate scenario settings for emissions, consumption and manufacturing
information, and potential transformation reactions and their kinetics. Effect models
should cover a wide range of effects, species, and biological complexity. Overall, several
computational tools are available that can be integrated into an EWS to assess the exposure
and effect potential. In addition, AI-based methodologies are being introduced in the field,
providing an opening for better use of available data, and potentially improved predictive
capacity for regulatory use [87]. Examples of applications include machine learning models
developed for predicting toxicity of per- and polyfluoroalkyl substances [88], the use
of transformers for structure decoding combined with deep learning to predict aquatic
toxicity [89], and using neuronal networks to predict bioavailability [90]. Signals from the
experimental data and computer models can be combined to form a matrix of exposure and
effect indicators. Each compound can be scored based on its potential hazard properties,
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reliability, or other criteria (Step IV). This last step includes the integration of data that may
lead to signals indicating a potential NERC that should be communicated to stakeholders
where decisions are taken on next steps.

Despite these promising developments in data and model generation, combining them
into an efficient EWS for identifying emerging issues is still a challenge for scientists and
stakeholders. For example, many computational tools rely on experimental data and their
applicability domains may not accommodate certain types of NERCs. It is also critical to
develop experimental and computational models for less-studied health impacts including
effects on the immune system, early neurodevelopment, and the metabolic system. In
addition, transformation products and mixtures are frequently overlooked, as are certain
types of compounds, such as polymers. Furthermore, the actual integration of EWS results,
such as the development of a scoring system, presents a significant challenge in deter-
mining critical hazard levels. Finally, an EWS should ideally be built on a computational
platform that is both maintainable and implementable while remaining user-friendly and
in compliance with the FAIR principles. Furthermore, it should allow for automatization to
alert responsible stakeholders as signals are identified. That would require seamless com-
munication between different existing models and platforms. In conclusion, developing an
EWS with a strong computational component would be a significant step toward the early
detection and thus better assessment and mitigation of chemical risks.
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