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Abstract: The widespread occurrence of atrazine (ATZ) in water environments presents a considerable
risk to human health and ecosystems. Herein, the performance of dielectric barrier discharge
integrated with periodate (DBD/PI) for ATZ decomposition was evaluated. Results demonstrated
that the DBD/PI system improved ATZ decomposition efficiency by 18.2–22.5% compared to the
sole DBD system. After 10 min treatment, the decomposition efficiency attained 82.4% at a discharge
power of 68 W, a PI dosage of 0.02 mM, and an initial ATZ concentration of 10 mg/L. As the PI
dosage increased, the decomposition efficiency exhibited a trend of initially increasing, followed
by a decrease. Acidic conditions were more favorable for ATZ removal compared to alkaline and
neutral conditions. Electron paramagnetic resonance (EPR) was adopted for characterizing the active
species produced in the DBD/PI system, and quenching experiments revealed their influence on ATZ
decomposition following a sequence of 1O2 > O2

−• > IO3• > OH•. The decomposition pathways
were proposed based on the theoretical calculations and intermediate identification. Additionally, the
toxic effects of ATZ and its intermediates were assessed. This study demonstrates that the DBD/PI
treatment represents an effective strategy for the decomposition of ATZ in aquatic environments.

Keywords: dielectric barrier discharge; periodate; atrazine; active species; decomposition pathway

1. Introduction

Atrazine (ATZ) represents a typical triazine herbicide commonly employed in the
control of grasses and broadleaf weeds in agriculture and forestry [1]. It is estimated
that the worldwide usage of ATZ ranges from 70,000 to 90,000 tons annually [2]. ATZ
has been detected in various aquatic environments owing to its high solubility and low
biodegradability, with levels varying from ng/L to µg/L [2]. Several studies have reported
that ATZ exhibits a range of toxic effects, including endocrine disruption, reproductive tox-
icity, and neurotoxicity, and is potentially carcinogenic to humans [3–5]. Previous research
has demonstrated that conventional treatment technologies, including biodegradation,
adsorption, nanofiltration, and coagulation, are either inefficient in eliminating ATZ or
require additional disposal processes [6,7]. Thus, it is crucial to develop efficient methods
for ATZ degradation from water.

Advanced oxidation processes (AOPs) are regarded as highly efficient methods for
treating refractory wastewater, as they effectively decompose recalcitrant organic contam-
inants through the generation of highly reactive radicals. Typical AOPs used for ATZ
removal include Fenton oxidation [8,9], photocatalytic oxidation [10], and ozonation [11,12].
However, Fenton-based oxidation typically requires a low pH range of 2~3.5 [13], restrict-
ing its practical application. The iron sludge produced during the treatment also needs
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additional disposal [10]. Solely ozone seems to be ineffective in removing ATZ and often re-
quires integrating other processes to generate highly reactive OH• [11]. The photocatalytic
oxidation process demonstrates efficient ATZ removal, yet many materials exhibit a strong
preference for specific illumination [14]. Additionally, the stability and regeneration of the
photocatalysts should also be considered. In recent years, plasma technology has become
extensively used in treating wastewater, owing to its simple operational procedures, high
efficacy in contaminant removal, and no secondary pollution. During the discharge process,
high-energy electrons interact with gas or liquid molecules, resulting in the production of
numerous active species like OH•, O3, H2O2, O2

−•, and ONOO− [15,16]. Nevertheless, the
inadequate energy efficiency caused by the incomplete utilization of some active species,
ultraviolet light, intense electric fields, and locally high temperatures generated during the
discharge remains a considerable challenge in plasma wastewater treatment.

To improve these limitations, researchers have integrated plasma with oxidants or
transition metals like hydrogen peroxide (H2O2) [17], ferrous ions (Fe2+) [18,19], persulfate
(PS) [20,21], sulfite [19,22], and peracetic acid (PAA) [23,24] to further promote the pro-
duction of active species. For instance, Shen et al. [20] utilized plasma for peroxydisulfate
activation, significantly enhancing the ATZ removal efficiency, where SO4

−• and OH• were
confirmed as the functional active species responsible for ATZ decomposition. Likewise, Li
et al. [23] employed the DBD/PAA system to degrade sulfamethoxazole in water, revealing
that the energy yield of the DBD/PAA system was three times that of the DBD system
alone. Periodate (PI) has recently gained considerable attention as an emerging oxidant
due to its moderate oxidation potential, thermal stability, and convenient transport and
storage [25,26]. Given the limited oxidative capacity of PI alone for effective contaminant
decomposition, further activating PI to convert it into highly reactive free radicals, such
as IO3•, OH•, and O2

−•, can significantly improve its efficacy and facilitate the efficient
decomposition of contaminants. So far, a variety of activation methods have been studied,
including freezing [27], heating [28], alkali [29], hydrogen peroxide (H2O2) [30], ultravi-
olet (UV) radiation [31,32], ultrasound [33,34], and the use of transition metal ions and
oxides [35,36]. Hence, the introduction of PI into the plasma system facilitates its activation
through the application of various physical and chemical effects produced by plasma.
This approach overcomes the weaknesses of sole plasma and sole PI treatment, thereby
increasing the generation of a greater quantity of active species and enhancing the energy
efficacy of the plasma process.

In this context, the performance of the DBD/PI treatment for ATZ decomposition was
first studied. The effects of PI dosage, discharge power, initial ATZ concentration, and
solution pH on ATZ removal were also investigated. Subsequently, electron paramagnetic
resonance (EPR) and quenching experiments were conducted to identify the functional
active species for ATZ decomposition. The intermediates of ATZ decomposition were
analyzed by LC-MS, and potential decomposition pathways were suggested. Additionally,
the toxicities of these intermediates were also predicted.

2. Materials and Methods
2.1. Chemicals

ATZ was provided by TCI (Shanghai, China). Sodium periodate (NaIO4), NaOH,
HCl, tert-butanol (TBA), acetonitrile (HPLC grade), and methanol (HPLC grade) were
provided by Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). L-histidine and BQ
were procured from Macklin Biochemical Co., Ltd. (Shanghai, China). Phenol, DMPO and
TEMP were bought from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
All chemicals were of at least analytical purity and were utilized directly without addi-
tional purification.

2.2. Experimental Apparatus and Procedure

Experiments were conducted utilizing the experimental apparatus depicted in Figure 1.
The plasma generator (CTP-2000K) was provided by Nanjing Suman Plasma Technology
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Co., Ltd. (Nanjing, China). The DBD reactor was a planar quartz glass container, 150 mm
in diameter and 8 mm in thickness. The reactor was connected to a high-voltage electrode
at the top and a grounding electrode at the bottom. An oscilloscope (TBS2104B, Tektronix,
Beaverton, OR, USA) was used to monitor the discharge parameters, and the discharge
waveforms were illustrated in Figure 2.
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Figure 1. Schematic diagram of the experimental system.
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Figure 2. Discharge waveforms (a) and Lissajous figure (b) of the DBD/PI treatment.

ATZ stock solution of 1 g/L was prepared in acetonitrile and stored at 4 ◦C before
use. During the experiment, the stock solution was diluted with deionized water until
the desired concentration (5 mg/L to 25 mg/L) was reached. In each experimental batch,
35 mL of ATZ solution was introduced into the reactor for treatment of 2, 4, 6, 8, and 10 min.
following the treatment, the samples were subjected to filtration utilizing a 0.45 µm polyte-
trafluoroethylene membrane for subsequent analysis. Each experiment was performed at
least in duplicate, and the average data were presented.

2.3. Analytical Methods

ATZ was quantified using a UltiMate 3000 (Thermo Fisher, Waltham, MA, USA)
high-performance liquid chromatography (HPLC) equipped with an ODS C18 column
(4.6 × 250 mm). The mobile phase was methanol and ultrapure water (60/40, v/v) and the
flow rate was fixed at 1 mL/min. The injected sample volume was 20 µL. The detection
wavelength was 225 nm, and the temperature of analytical column was maintained at
35 ◦C.

The intermediates of ATZ decomposition were analyzed by LC-MS (Agilent 1290
UPLC-QTOF 6550, Agilent, CA, USA) equipped with a Waters BEH C18 column
(2.1 × 100 mm). Formic acid water (0.1%) (A) and acetonitrile (B) served as the mo-
bile phase. The elution procedure began with 90% mobile phase A and held for 10 min,
then decreasing linearly to 10% in 20 min, followed by an immediate rise to 90% in 1 min
and sustained for 4 min. A total of 5 µL of sample was injected for analysis and the column
temperature was 35 ◦C. QTOF system operated in positive ion mode electrospray ionization
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(ESI) mode with a voltage of 4000 V and scanning range of 50~1000 m/z. The sheath gas
temperature was 350 ◦C, and the gas flow rate was 12 L/min.

The decomposition kinetics were determined based on the pseudo-first-order kinetic
model using Equation (1):

ln
Ct

C0
= −kt (1)

where C0 and Ct were the concentrations of ATZ at 0 min and t min, mg/L; k was the
pseudo-first-order rate constant, min−1.

The synergistic impact between DBD and PI was confirmed by calculating the syner-
gistic factor (SF) through Equation (2):

SF =
kDBD/PI

kDBD + kPI
(2)

where kDBD/PI was the rate constant of ATZ decomposition in the DBD/PI system; kDBD
and kPI were the rate constants of ATZ decomposition in the sole DBD and PI systems, re-
spectively.

Discharge power was calculated using Equation (3) according to Lissajous figure:

P =
1
T

∫ T

0
VIdt =

CM

T

∫ T

0
V

dVM

dt
dt = fCM

∫
VdVM (3)

where P was the discharge power, W; V was the output voltage of the power supply, V; T
was the period; f was the output frequency, Hz. When V and VM were plotted on the x-y
axes of the oscilloscope, a closed curve, known as the Q-V Lissajous figure, is obtained as
shown in Figure 2b. The area of this closed curve is directly proportional to the discharge
power, P.

Assume that the sensitivity of the X-axis of the oscilloscope is kx volts per grid, the
sensitivity of the Y-axis is ky volts per grid, and the ratio of the voltage divider is k. Then
the area enclosed by the Lissajous figure is A. From Equation (3), the discharge power is:

P = fCMkxkykA (4)

The internal sampling capacitor of the experimental power supply is C = 0.47 µF, and
the voltage sampling ratio is 1000:1, meaning the actual voltage unit is in kilovolts (kV), with
k = 1000. The signal acquisition attenuation factors for CH1 and CH2 are kx = 1 and ky = 1
(This experiment has been calibrated and there is no attenuation). The Lissajous figure area,
A = 17.1, was directly calculated using Origin 2024 software (OriginLab, Northampton,
MA, USA).

Energy yield (EY, mg/kWh) refers to the quantity of ATZ degraded by consuming one
unit of energy and was determined using Equation (5) [37]:

EY =
C0 × V × η

P × t
(5)

where C0 was the ATZ concentration (mg/L), η was the ATZ removal efficiency (%), P is
the discharge power (W), V was the volume of ATZ solution (mL), and t is the discharge
time (h), respectively.

DFT calculations were carried out utilizing the Gaussian 16 Revision C.02 program [38].
ATZ molecular geometry optimization and vibrational frequency analysis were run at the
M06-2X/def2-SVP level [39]; single-point energy calculations were run at M06-2X/def2-
TZVP level employing the SMD model.

The solution pH was determined utilizing a pH meter (6010M, Jenco). The existence
of free radicals was identified using EPR spectrometer (EMXnano231, Bruker, Germany).
The toxicity assessment of the intermediates was performed using ECOSAR v2.2 toxicity
prediction software [40].
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3. Results and Discussion
3.1. Decomposition of ATZ by DBD Combined with PI

Figure 3 illustrates the decomposition of ATZ through plasma treatment with and
without the addition of PI. In the control experiment with PI alone, the decomposition
efficiency of ATZ was merely 6.2%, suggesting that PI itself exerted a very limited ox-
idative capacity for ATZ decomposition. Following a 10-min of sole DBD treatment, the
concentration of ATZ in the solution decreased by approximately 59.8%, while this value
increased to 78.0%, 82.4%, and 79.2% upon the introduction of 0.01, 0.02, and 0.03 mM PI.
Correspondingly, the rate constant (k) of ATZ decomposition rose from 0.094 to 0.14, 0.18,
and 0.16 min−1, respectively. The calculated synergistic factor (SF) for the DBD treatment
and PI with different concentrations ranged from 1.41 to 1.77, suggesting that the DBD/PI
system exhibited a good synergistic impact on pollutant removal. Furthermore, the energy
yields of the sole DBD and DBD/PI system were determined, as illustrated in Figure 3b.
The energy yield of the DBD/PI systems (32.0~39.8 mg/kWh) was 1.52~1.89 times that of
the sole DBD system (21.0 mg/kWh), demonstrating that the integration of PI enhanced the
energy efficiency of the plasma process. The observed results could be elucidated by the
activation of PI by plasma, which promoted the production of active species and accelerated
ATZ decomposition. Specifically, ultraviolet light and heat generated during the plasma
process enabled PI to be effectively activated to form IO3• and O−• (Equation (6)) [25].
Furthermore, PI could also directly interact with the active species produced in the plasma
system. For instance, H2O2 can react with IO4

− to yield IO3• and O2
−•, followed by the

radical rearrangement and recombination reactions, ultimately leading to the formation of
OH• and 1O2 (Equations (7)–(10)) [41,42].

IO4
− + hv/heat → IO3• + O−• (6)

IO4
−+ H2O2 → IO3• + O2

−• + H2O (7)

IO4
− + 2O2

−• + H2O → IO3
− + 21O2 + 2OH− (8)

H2O2 + O2
−• → OH• + OH− + 1O2 (9)

IO3
− + •OH → IO3• + OH− (10)
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Figure 3. Relative concentration decay curve for ATZ decomposition (a); the pseudo-first-order rate
constants and energy yields at different PI dosages (b) ([ATZ] = 10 mg/L, P = 68 W).

Notably, while the introduction of an appropriate amount of PI promoted the gen-
eration of active species in the DBD system, an excessive concentration of PI addition
may exert detrimental effects on the decomposition process. Figure 3 illustrates a slight
decrease in ATZ decomposition as the additive PI dose escalated from 0.02 to 0.03 mM,
with the decomposition efficiency and k value decreasing by 3.2% and 11.0%, respectively.
Excess IO4

− not only quenched the OH• generated in the system but also reacted with
IO3• (Equations (11) and (12)), thus competing with ATZ for the active species in the
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system. Moreover, the recombination of iodine radicals also reduced the abundance of
active species (Equations (13) and (14)) [43], thus limiting the decomposition of ATZ.

IO4
− + •OH → IO4• + OH− (11)

IO4
− + IO3• → IO3

− + IO4• (12)

IO3• + IO3• → I2O6 (13)

IO4• + IO4• → I2O8 (14)

3.2. Effect of Discharge Power

The discharge power greatly influences the abundance of active species and the
intensity of physical effects, which are crucial for the decomposition of contaminants [44].
Figure 4 presents the ATZ decomposition efficiency and the corresponding k values in the
DBD/PI system at different discharge powers. At a discharge power of 56 W, the removal
efficiency of ATZ was 63.4% after 10-min treatment, while it enhanced to 72.8%, 78.0%,
85.6%, and 87.6% at discharge power of 62, 68, 74, and 77 W, respectively. Correspondingly,
the k values rose from 0.102 to 0.196 min−1 as the discharge power escalated from 56 to
77 W. The enhancement of electric field strength with greater discharge power could lead
to increased electron density and greater amounts of active species, thus increasing the
likelihood of collisions between ATZ and electrons or active species [45]. More importantly,
the enhanced physical and chemical effects produced at higher discharge power further
facilitated the activation of PI, resulting in the generation of more active species that
promoted the decomposition of ATZ.
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Figure 4. Relative concentration decay curve for ATZ decomposition (a) and kinetic curves (b) at
different discharge powers ([ATZ] = 10 mg/L, [IO4

−] = 0.01 mM).

3.3. Effect of Initial ATZ Concentration

Figure 5 demonstrates the decomposition efficiency of ATZ at various initial concen-
trations in the DBD/PI system. The decomposition efficiency and k value of ATZ were
observed to decrease with increasing initial concentration. As shown in Figure 5a, the
decomposition efficiency of ATZ achieved 100% within 8-min treatment at an initial concen-
tration of 5 mg/L, yet it fell to 78.0%, 50.5%, 45.0%, and 36.5% as the initial concentration
increased to 10, 15, 20 and 25 mg/L, respectively. At a certain discharge power, the quantity
of active species generated in the DBD/PI system remained steady [46]; thus, an increase
in ATZ initial concentration resulted in heightened competition for active species. This
increased competition ultimately led to insufficient active species within the system to
effectively degrade the excess ATZ. Additionally, the intermediates produced during the
decomposition process would further compete with ATZ for active species. Nevertheless,
the absolute removal amount at an initial concentration of 25 mg/L was twice that of
5 mg/L, which could be ascribed to the increased collision probability between active
species and ATZ at higher initial concentrations, thus improving the utilization efficacy of
active species.
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Figure 5. Relative concentration decay curve for ATZ decomposition (a) and kinetic curves (b) at
different initial ATZ concentrations ([IO4

−] = 0.01 mM, P = 68 W).

3.4. Effect of Solution pH

Solution pH is a vital factor influencing the contaminant decomposition in the plasma
process, as it impacts both the formation of active species and the protonation of the contam-
inants. In the presence of PI, solution pH also affects PI speciation and oxidation potential.
As illustrated in Figure 6, the decomposition efficiencies of ATZ in the DBD/PI system
were 86.3%, 86.8%, 78.0%, and 76.3% at pH 3, 5, 7 and 9, respectively. Correspondingly,
the k values declined from 0.181 to 0.138 min−1 when the solution pH rose from 3 to 9.
In general, ATZ achieved effective decomposition across the whole pH range, with acidic
conditions being more favorable for its decomposition. Given that the pKa value of ATZ
was approximately 1.7, it maintained negative charges across the pH range of 3~9 [47].
Thus, the influence of solution pH was likely due to its impact on the active species and PI
species formation in the system. On the one hand, a greater quantity of OH• was generated
within the system under acidic conditions, and it maintained a higher oxidation potential
in this case [48,49], thereby promoting the decomposition of ATZ. In contrast, OH• was
readily consumed by excess OH− in alkaline solutions. On the other hand, the dominant
species of PI varied with the pH of the solution. Specifically, the dominant species of PI
was IO4

− when the solution pH < 8, while it was converted to the dimerized H2I2O10
4−

when the solution pH exceeded 8 [50]. This variation in species also led to a reduction in PI
oxidation potential from 1.6 eV to 0.7 eV [43], thereby hindering the decomposition of ATZ.
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Figure 6. Relative concentration decay curve for ATZ decomposition (a) and kinetic curves (b) at
different solution pH ([ATZ] = 10 mg/L, [IO4

−] = 0.01 mM, P = 68 W).

3.5. The Roles of Active Species

The active species formed in the system were verified using EPR. Figure 7a illustrates
that adding DMPO to the DBD/PI system produced a signal with a distinct 1:2:2:1 char-
acteristic peak, signifying the generation of OH• within the system. OH• is the major
reactive radical in the DBD system, possessing an oxidation potential of 2.8 V, and is likely
to be significantly involved in the decomposition of ATZ [51]. Notably, while DMPO can
also capture O2

−•, the rapid decomposition of DMPO-OOH into DMPO-OH presents
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significant challenges for its detection. Moreover, when TEMP was added to the solution, a
strong 1:1:1 characteristic signal was detected, demonstrating the presence of 1O2 in the
DBD/PI system (Figure 7b).
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Figure 7. EPR spectra of (a) DMPO and (b) TEMP as spin-trapping agents in the DBD/PI system.

To further investigate the functional active species of ATZ decomposition in the
DBD/PI system, TBA, L-histidine, and BQ were employed to scavenge OH•, 1O2, and
O2

−•, respectively. As displayed in Figure 8, the ATZ decomposition efficiency dramatically
dropped from 78.0% to 10.9% with the addition of 30 mM L-histidine, and the corresponding
k value decreased by 90.7%, suggesting that 1O2 exhibited an essential contribution to
ATZ decomposition. It was reported that 1O2 possesses high electrophilicity, allowing it
to selectively react with electron-rich compounds [52]. This enables it to interact with the
N-isopropyl group in the ATZ molecule, thereby promoting the decomposition of ATZ [53].
The decomposition of ATZ was also strongly inhibited when TBA and BQ were added to
the DBD/PI system, and the decomposition efficiencies decreased from 78.0% to 44.1% and
22.4%, respectively, suggesting that OH• and O2

−• were also crucial in ATZ decomposition
in the DBD/PI system. Moreover, the quenching of O2

−• and OH• may also influence the
activation of PI [25], consequently leading to a further reduction in ATZ decomposition.
Additionally, the formation of iodine radicals through the activation of PI is expected, yet
direct identification remains challenging. Thus, to explore the impact of IO3• on the ATZ
decomposition, the quenching experiment was also conducted using phenol as a radical
scavenger [42]. Figure 8 demonstrates that phenol addition significantly hindered the
decomposition of ATZ, resulting in a reduction of decomposition efficiency from 78.0% to
34.9%. This observation suggested that IO3• was also responsible for the decomposition
of ATZ. In general, these scavengers exhibited inhibitory impacts following the order of
L-histidine > BQ > phenol > TBA, suggesting that the contributions of active species to
ATZ decomposition during the DBD/PI treatment were ranked in the following order:
1O2 > O2

−• > IO3• > OH•.
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different scavengers addition ([ATZ] = 10 mg/L, [IO4
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3.6. Degradation Mechanism of ATZ

Figure 9 illustrates the ATZ mineralization during the DBD/PI process. The total
organic carbon (TOC) removal increased with discharge time, reaching approximately
21.5% after 10 min treatment. This result suggested that some organic intermediates were
formed during the ATZ degradation process.

Toxics 2024, 12, x FOR PEER REVIEW 9 of 15 
 

 

on the ATZ decomposition, the quenching experiment was also conducted using phenol 
as a radical scavenger [42]. Figure 8 demonstrates that phenol addition significantly hin-
dered the decomposition of ATZ, resulting in a reduction of decomposition efficiency 
from 78.0% to 34.9%. This observation suggested that IO3• was also responsible for the 
decomposition of ATZ. In general, these scavengers exhibited inhibitory impacts follow-
ing the order of L-histidine > BQ > phenol > TBA, suggesting that the contributions of 
active species to ATZ decomposition during the DBD/PI treatment were ranked in the 
following order: 1O2 > O2−• > IO3• > OH•. 

 
Figure 8.  Relative concentration decay curve for ATZ decomposition (a) and kinetic curves (b) 
with different scavengers addition ([ATZ] = 10 mg/L, [IO4−] = 0.01 mM, P = 68 W). 

3.6. Degradation Mechanism of ATZ 
Figure 9 illustrates the ATZ mineralization during the DBD/PI process. The total or-

ganic carbon (TOC) removal increased with discharge time, reaching approximately 
21.5% after 10 min treatment. This result suggested that some organic intermediates were 
formed during the ATZ degradation process. 

 
Figure 9. TOC removal during ATZ degradation in the DBD/PI system (pH = 7.0, [ATZ] = 10 mg/L, 
[IO4−] = 0.01 mM, P = 68 W). 

Therefore, density functional theory (DFT) calculation combined with intermediate 
identification was conducted to further explore the degradation mechanism of ATZ. The 
highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO), as well 
as the Fukui function of ATZ, were first calculated. Figure 10b,c illustrates that the HOMO 
of ATZ was mainly distributed on the C-N, C-H, and C-C bonds of the side chain, whereas 
the LUMO was concentrated on the triazine ring and the C-Cl bond, suggesting that they 
were susceptible to electrophilic and nucleophilic reactions, respectively. Figure 10d pre-
sents the detailed Fukui indices of ATZ. The result revealed that N27, N4, and H28 exhib-
ited higher f− values, implying their susceptibility to electrophilic attack; C1, Cl16, and N4 
showed higher f+ values, suggesting that they were prone to nucleophilic attack. Likewise, 

0 2 4 6 8 10

−1.6

−1.2

−0.8

−0.4

0.0

ln
(c

t/c
0)

Time (min)

 No scavengers  k=0.137 min−1

 Phenol               k=0.040 min−1

 TBA                   k=0.062 min−1

 L-histidine          k=0.013 min−1

 BQ                     k=0.022 min−1

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

c/
c 0

Time (min)

 No scavengers
 Phenol 
 TBA
 L-histidine
 BQ

（a） （b）

Figure 9. TOC removal during ATZ degradation in the DBD/PI system (pH = 7.0, [ATZ] = 10 mg/L,
[IO4

−] = 0.01 mM, P = 68 W).

Therefore, density functional theory (DFT) calculation combined with intermediate
identification was conducted to further explore the degradation mechanism of ATZ. The
highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO), as well as
the Fukui function of ATZ, were first calculated. Figure 10b,c illustrates that the HOMO of
ATZ was mainly distributed on the C-N, C-H, and C-C bonds of the side chain, whereas the
LUMO was concentrated on the triazine ring and the C-Cl bond, suggesting that they were
susceptible to electrophilic and nucleophilic reactions, respectively. Figure 10d presents the
detailed Fukui indices of ATZ. The result revealed that N27, N4, and H28 exhibited higher
f− values, implying their susceptibility to electrophilic attack; C1, Cl16, and N4 showed
higher f+ values, suggesting that they were prone to nucleophilic attack. Likewise, N27,
N4, Cl16, and C1 demonstrated the highest f0 values, signifying that they were also prone
to react with radicals.
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Subsequently, the degradation intermediates were analyzed via liquid LC-MS and
a total of nine intermediates were identified. Based on theoretical calculations and the
identified intermediates, the possible decomposition pathways of ATZ were proposed.
Firstly, the electrophilic character of 1O2 and IO3• enables them to target electron-rich
functional groups in contaminants [54,55]. Thus, the N atoms present in the side chain
of ATZ were readily susceptible to attack by 1O2/IO3•, leading to the cleavage of the
C-N bond. On the other hand, IO3• and OH• transformed ATZ into the carbon-centered
radical through hydrogen atom abstraction, which subsequently interacted with O2/O2

−•
to yield peroxide radical [6,56]. These processes ultimately led to the formation of 6-chloro-
N2-ethyl-N4-methyl-1,3,5-triazine-2,4-diamine (CEAT) and 6-chloro-N2-isopropyl-1,3,5-
triazine-2,4-diamine (CAIT) via dealkylation. The oxygen-attacked carbon-centered radical
could also be dehydrated to form the olefination by-products 6-chloro-N2-isopropyl-N4-
vinyl-1,3,5-triazine-2,4-diamine (CVIT) and 4-isopropylamino-6-vinylamino-1,3,5-triazin-
2-ol (OVIT) [52]. CEAT further underwent alkylic-oxidation to form 2-chloro-4-amino-
6-acetamido-s-triazine (CADT). CAIT and OVIT could be further dealkylated to yield 2-
chloro-4,6-diamino-s-triazine (CAAT) and 2-chloro-4-amino-6-acetamido-s-triazine (OAIT),
respectively [47]. In addition, the Cl atom in the ATZ molecule was susceptible to attack
by plasma electrons or OH• due to its high f0 and f+ values, leading to the formation of
4-ethylamino-6-isopropylamino-s-triazine (OEIT), while 2-hydroxy-4,6-diamino-s-triazine
(OAAT) was also generated as the reaction progressed.

Based on the aforementioned discussion, we proposed a possible mechanism for PI
addition to improve the plasma degradation of ATZ, as shown in Figure 11. High-energy
electrons in plasma dissociated or excited gas molecules to form excited species and radicals,
which subsequently initiate a series of chain reactions to generate various active species
when in contact with water. Introducing PI into the system further promoted the generation
of active species. PI was activated by plasma electrons, H2O2, UV radiation, and thermal
effects produced by plasma discharge, causing the generation of IO3•. Subsequently, the
generation of OH•, O2

−•, and 1O2 was intensified through propagation reactions. Finally,
under the attack of these active species, ATZ was degraded via de-alkylation, olefination,
alkylic-oxidation, and dechlorination reactions.
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3.7. Toxicity Analysis

To explore the ecological impact of ATZ and its intermediates, the acute and chronic
toxicity of ATZ and its intermediates were predicted by using ECOSAR v2.2 [40], as shown
in Figure 12.
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Figure 12. Predicted acute toxicities (a–c) and chronic toxicities (d–f) for fish, daphnid and green
algae of ATZ and its intermediates by ECOSAR.

In terms of acute toxicity, the LC50 values of ATZ were 20.2 mg/L for fish and
15.7 mg/L for daphnid, while the EC50 value for green algae was 0.105 mg/L. For chronic
toxicity, the chronic values (Chv) of ATZ were 1.5, 0.917, and 0.51 mg/L for fish, daphnids,
and green algae, respectively. These results suggested that ATZ can be categorized as
harmful to fish, toxic to daphnids, and very toxic to green algae. Following the treatment of
the DBD/PI system, reduced acute toxicity in seven intermediates compared to ATZ was
observed. Additionally, the chronic toxicity of all intermediates was lowered in contrast to
ATZ, suggesting that the DBD/PI treatment effectively mitigated the adverse impacts of
ATZ on aquatic ecosystems.

4. Conclusions

The integration of DBD and PI enhances the decomposition of ATZ and increases the
energy efficacy of the plasma treatment process. The influence of PI dosage, discharge
power, initial ATZ concentration, and solution pH value on the decomposition process
was studied. Increased discharge power and reduced initial concentration were favorable
for ATZ decomposition. The decomposition efficiency demonstrated an initial upward
trend followed by a decline as the PI concentration increased, with the best performance
observed at a PI concentration of 0.02 mM. Acidic environments were more favorable for
ATZ decomposition by the DBD/PI system compared to alkaline and neutral conditions.
EPR analysis and quenching experiments confirmed that 1O2, OH•, O2

−•, and IO3• signif-
icantly contribute to the decomposition of ATZ. Based on the reactive sites analysis and
intermediate identification results, the decomposition pathways were proposed involving
de-alkylation, olefination, alkylic-oxidation, and dechlorination. Additionally, the toxicities
of the intermediates were evaluated. This study reveals that the DBD/PI process is a viable
approach for treating ATZ-contaminated wastewater, and it offers insights for enhancing
plasma-based treatment in wastewater remediation.
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