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Abstract: The accumulation of potential toxic elements in agricultural soil and rice is of particular
concern in China. However, studies on the risk assessment of these elements in regional soil–rice
systems remain limited. The aim of this study is to evaluate the pollution status and potential health
risk of potential toxic elements in typical paddy soil and rice in Henan Province. A total of 80 soil
samples and corresponding rice samples were collected to determine the contents of Cd, Pb, As,
Cr, Cu, Zn, and Ni, and to assess their potential health risks to local consumers. Results showed
that the average contents of these elements in soils were below the national risk screening values in
GB15618-2018. Only the average content of Cr in rice exceeded the limit in GB 2762-2022 specified
by the national food safety standard. The rates of exceeding the limits for Cd, Pb, As, and Cr in rice
samples were 13.89%, 15.28%, 15.28%, and 27.78%, respectively. The health risk assessment indicated
that rice intake for both adults and children caused carcinogenic and non-carcinogenic health risks to
varying degrees. Local residents are advised to purchase rice from outside the study area to meet
their daily needs and strictly regulate the pollution of potential toxic elements within the area.

Keywords: heavy metals; soil; rice; health risk assessment

1. Introduction

Soil is a key element of life on Earth [1,2]. The rapid development of global urban-
ization, industrialization, and intensive agriculture, on the one hand, has promoted social
and economic development and improved people’s quality of life; on the other hand, it has
also led to the entry of many potential toxic elements polluting farmland soil, resulting in
soil environmental deterioration and quality reduction [3]. Numerous studies indicated
that large-scale farmlands, both domestically and internationally, are contaminated with
potential toxic elements to varying degrees [4–8]. The 2014 National Soil Pollution Survey
Bulletin reported that 19.4% of farmland soil points exceeded acceptable levels of potential
toxic elements in China. Among these pollutants, Cd, Ni, and Cu were identified as the
most prevalent contaminants [9]. News about food safety and human health problems
caused by potential toxic element pollution in farmland soil is also endless, with “cadmium
rice” and “cadmium wheat” being the most concerning [10–12]. Assessing the pollution
levels of potential toxic elements in agricultural soil is essential, as it provides data to
inform the selection of appropriate countermeasures.

In recent years, scholars have conducted extensive research on the soil–crop system,
focusing on research hotspots such as potential toxic element content, pollution evaluation
and source identification, and health risk evaluation, including crops such as rice, wheat,
corn, vegetables, and melons [13–16]. The characteristics of pollution in soil and crops and
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the assessment of health risks are still the current research hotspots. However, previous
studies have mostly focused on polluted sites or typical farmland blocks [17–20], and
regional research work is insufficient. Conducting regional soil–crop potential toxic element
collaborative health risk assessment research work is helpful for optimizing and adjusting
the agricultural product structure to avoid foodborne hazards. Moreover, understanding
the regional characteristics of pollution can support the development of more targeted
environmental management policies tailored to the specific contamination profiles of
different areas. The research area of Xinyang is located in the three mountain areas and one
beach area of Henan Province, the Dabie Mountain concentrated poverty area belonging to
the Qinling Mountains and Huai River dividing line, the dividing line between the north
and the south, and the warm temperate zone and subtropical zone dividing line, with the
geographical characteristics of the north and south compatibility [21]. Xinyang is the main
rice producing area in Henan Province, and it is also a typical “rice-wheat” double cropping
area. Although rice production is lower than corn production, it is also the second largest
staple food of Henan’s people [22]. The rice from Xinyang is of great importance to the
food supply not only of the people in Henan but also a majority of the Chinese population.
Xinyang rice is regularly supplied to regions such as Guangxi and Guangdong. Rice is the
most important food crop for the local people in Xinyang; many families eat rice three times
a day. In addition, rice provides more than 70% of their daily calorie intake from food [23].
Consequently, the quality and safety of rice are closely related to human health and quality
of life. However, the current pollution characteristics and health risks associated with the
regional soil–crop system remain unclear. In view of this, this study aims to evaluate the
potential toxic element pollution and health risk in typical paddy soil and rice in Henan
Province in order to provide a scientific basis for the evaluation, governance, and risk
management of potential toxic element pollution in regional soil and crops.

2. Materials and Methods
2.1. Overview of the Study Area

The study area is located in typical rice paddy region of Xinyang, Henan Province. The
study area has a population of 6.4 million people [24]. Xinyang is situated at the junction
of three provinces, Hubei, Henan, and Anhui, in the southern part of Henan Province. It
is located between the northern foot of the Dabie Mountain range and the upper reaches
of the Huai River. The geographical coordinates are between 113◦45′ and 115◦55′ east
longitude and 31◦23′ and 32◦37′ north latitude. Xinyang has numerous rivers belonging to
the Yangtz River and Huai River water systems. The soil types are mainly yellow-brown
earths, lime concretion black soils, and paddy soil [25].

2.2. Sample Collection and Pre-Treatment

Uniform grid sampling was conducted using a 10 km × 10 km grid method, with soil
samples collected near the center of each grid point. To avoid the strong impact of human
activities on the soil, sampling points were located more than 5 km from cities, more than
2 km from townships, residential areas, transportation arteries, and industrial enterprises,
more than 1 km from villages, and more than 200 m from farm roads and ditches. A total
of 80 soil samples and corresponding rice samples were collected in the study area, and the
sampling points are shown in Figure 1.

At the sampling points, researchers first selected representative 10 m × 10 m sampling
units. Within each unit, in the area of 25 m2 around the sampling point, five surface soil
subsamples were collected according to the “quincunx” method. After mixing the five
subsamples, a representative soil sample of this location was formed. Plant debris, bricks,
and pebbles were removed, and the remaining soil was reduced using the “quartering
method” to obtain approximately 1 kg of soil for analysis. Rice samples were similarly
collected through multi-point mixing.
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Samples were naturally air-dried and passed through a 10-mesh nylon sieve with
thorough mixing (for pH and cation exchange capacity (CEC) detection). Approximately
25 g of soil was randomly taken from around 30 points from the 10-mesh sample, ensuring
that all particles passed through a 100-mesh nylon sieve (for potential toxic element and
organic matter (OM) content detection) [26]. After drying, the rice samples were threshed by
hand kneading the sample bags, and the plastic bags were sealed tightly. The pH in soil was
measured using a PHSJ-3F pH meter with a soil-to-water ratio of 1:2.5 (w/v). The content of
CEC in soil samples was measured by the EDTA-ammonium acetate exchange method [27].
The OM content was determined using the wet oxidation method with K2Cr2O7 and H2SO4
in an oil bath at 170–180 ◦C, followed by titration with calibrated FeSO4 [28]. To determine
the contents of Cd, Pb, As, Cr, Cu, Zn, and Ni, HNO3-HF-HClO4 was used to digest soil
samples [29], and HNO3-HClO4 was used to digest rice samples [30]. For the determination
of As content in the samples, soil and rice samples were digested using aqua regia and
HNO3-H2O2 systems, respectively, under a microwave digestion apparatus, and then
determined with an atomic fluorescence spectrometer (AFS-3100, Beijing Haiguang, China).
The detection and quantification limits were as follows: 0.0003 mg/kg and 0.0009 mg/kg
for Cd, 0.004 mg/kg and 0.015 mg/kg for Pb, 0.0007 mg/kg and 0.003 mg/kg for As,
0.004 mg/kg and 0.014 mg/kg for Cr, 0.004 mg/kg and 0.015 mg/kg for Cu, 0.07 mg/kg
and 0.25 mg/kg for Zn, and 0.004 mg/kg and 0.015 mg/kg for Ni.
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During the measurement process, each batch of samples (soil samples and wheat
samples) were quality-controlled, respectively, with standard sample spike recovery (GSS-2
and GSB-24), parallel samples, and blank samples. Each batch includes three standard
samples and three blank samples, while parallel samples constitute 20% of the batch. The
recovery rates (84.3–108.2%) and the relative errors of parallel samples (0.5%) are all within
the acceptable range.

2.3. Bioaccumulation Factor

The bioaccumulation factor (BAF) reflects the plant’s ability to absorb pollutants from
the surrounding soil [31]. The higher the BAF value, the stronger the ability of rice to
accumulate potential toxic elements; a lower BAF indicates that rice has a weaker ability
to accumulate potential toxic elements and stronger resistance to pollution [32]. BAF was
calculated as follows:

BAF =
Crice
Csoil

(1)

where Crice represents the element content in rice (mg/kg) and Csoil is the element content
in soil (mg/kg).

2.4. Health Risk Assessment Methods

The human body is exposed to different degrees of carcinogenic and non-carcinogenic
risks of potential toxic elements through ingesting rice. Cd, Pb, As, Cr, Cu, Zn, and Ni
all pose a non-carcinogenic health risk, among which As, Cd, Ni, and Cr also pose a
carcinogenic risk. The daily exposure amounts, carcinogenic and non-carcinogenic risk
characterization models, and parameter selections for various potential toxic elements are
shown in Tables 1 and 2 [33–38].

Table 1. Assessment models of human health risk.

Health Risks Compartment Equations

Exposure pathway Ingestion Rice ADDi =
Ci ·Ii ·EF·ED

BW·AT

Non-carcinogenic health risk
Hazard quotient

Cd, Pb, As, Cr, Cu, Zn, Ni
HQi =

ADDi
R f Di

Health risk HI =
7
∑
1

HQi

Carcinogenic health risk
Carcinogenic risk of single metals

Cd, As, Cr, Ni
CRi = ADDi × SFi

Total carcinogenic risk TCR =
4
∑

i=1
CRi

Table 2. Exposure parameters for potential toxic elements in rice.

Parameter Symbols Parameters Values (Adults) Values (Children)

BW [38] Body weight/kg 62.8 15
Ii [24] Rice ingestion rate/g·d−1 0.1 0.2

ED [31] Lifetime exposure duration/a 30 (non-carcinogenic),
70 (carcinogenic)

6 (non-carcinogenic),
70 (carcinogenic)

EF [31] Exposure frequency/d·a−1 365 365

AT [39] Exposure time/d
AT = ED × 365

(non-carcinogenic)
AT = 25,550 (carcinogenic)

AT = ED × 365
(non-carcinogenic)

AT = 25,550 (carcinogenic)

In the formulas in Table 1, ADDi is the average daily intake of element i through
rice ingestion, mg·(kg·d)−1; Ci is the content of a potential toxic element in rice, mg·kg−1;
HQi is the non-carcinogenic health risk index of potential toxic element i; HI is the total
non-carcinogenic risk index; CRi represents the single health risk index of a carcinogenic
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potential toxic element i; TCR is the total carcinogenic risk index caused by a carcinogenic
potential toxic element. When HQi or HI is less than 1, the non-carcinogenic health risk can
be ignored; when it is greater than 1, this indicates the presence of non-carcinogenic health
risks. When CRi or TCR is lower than 1 × 10−6, the carcinogenic risk is negligible; when
1 × 10−6 < CRi or TCR < 1 × 10−4, the carcinogenic risk is in an acceptable range; when CRi
or TCR is higher than 1 × 10−4, consuming rice has a strong carcinogenic risk and needs to
be strictly controlled [40].

Referring to the US EPA [33,34] and the site environmental assessment guidelines [41],
as well as related research results [42–44], the values of RfD and SF are shown in Table 3.

Table 3. Values of RfD and SF for ingestion of rice.

Cd Pb As Cr Cu Zn Ni

RfD [33] 1.00 × 10−3 1.40 × 10−3 3.00 × 10−4 3.00 × 10−3 0.04 0.30 0.02
SF 6.1 [43,44] NA 1.50 [33] 0.50 [34] NA NA 1.70 [34]

NA—not applicable.

3. Results and Discussion
3.1. Contents of Potential Toxic Elements in Paddy Soil

The Table 4 presents the contents of potential toxic elements and selected soil proper-
ties. The contents of Cd, Pb, As, Cr, Cu, Zn, and Ni in soil samples ranged from 0.08 to 0.31,
18.37 to 36.70, 0.01 to 26.69, 51.52 to 147.43, 17.39 to 47.09, 7.11 to 182.25, and 17.36 to 60.01,
with average contents of 0.14, 23.98, 6.19, 71.36, 26.57, 57.95, and 30.39 mg/kg, respectively.
Compared with the background values of soil (A layer) in Henan Province, the average
contents of Cd, Pb, Cr, Cu, and Ni were higher than the background values, equivalent
to 2.00, 1.8, 1.13, 1.33, and 1.11 times the background values, respectively. The average
contents of As and Zn were both lower than their background values, equivalent to 63.16%
and 92.72% of their background values, respectively. It is observable that there is a varying
degree of accumulation of elements such as Cd and Cu in the soil of the rice-growing areas
of Xinyang. Compared with the risk screening values in GB15618-2018 [45], the average
contents of the seven potential toxic elements in the soil were below the screening values;
the maximum contents of each potential toxic element also did not exceed the screening
values, so each element had an excess rate of 0. This indicates that the environmental
quality of the soil in the study area is relatively good.

Table 4. Contents of potential toxic elements in soil (mg/kg).

pH SOM CEC Cd Pb As Cr Cu Zn Ni

Min 4.77 6.55 8.93 0.08 18.37 0.01 51.52 17.39 7.11 17.36
Max 7.14 38.55 47.50 0.31 36.70 26.69 147.43 47.09 182.25 60.01

Mean 6.34 26.25 22.88 0.14 23.98 6.19 71.36 26.57 57.95 30.39
SD 0.52 0.91 8.31 0.03 3.10 3.47 15.65 4.66 35.04 5.97

CV (%) 8.17 34.71 36.30 19.47 12.93 56.01 21.93 17.54 60.47 19.63
Background value [46] _ _ _ 0.07 22.3 9.8 63.2 20.0 62.5 27.4

Risk screening value [45] _ _ _ 0.4 100 30 250 50 200 70
Exceeded screening (%) 0 0 0 0 0 0 0

The coefficient of variation (CV) of potential toxic element content reflects the degree
of spatial variation between sampling points in the study area. A CV of less than 20%
indicates a relatively weak degree of variation, 20% ≤ CV ≤ 50% indicates a medium
degree of variation, and 50% < CV ≤ 100% indicates a strong degree of variation [46]. The
CVs for As and Zn were relatively large, at 56.1% and 60.47%, respectively, both falling into
the category of strong variation; the CVs for Cd, Pb, Cr, Cu, and Ni were 19.47%, 12.93%,
21.93%, 17.54%, and 19.63%, respectively, with Cr being the only one in the moderate
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variation category, and all others showing weak variation. The relatively large variation
ranges in the contents of As and Zn may be influenced by human activities [47].

The soil pH ranged from 4.77 to 7.14, with an average pH of 6.34 (Table 4), indicating
slightly acidic conditions. The SOM content varied between 6.55 and 38.55 g/kg, with an
average content of 26.25 g/kg, suggesting a medium level of SOM content (20–30 g/kg)
in the region [48]. The CEC content ranged from 8.93 to 47.50, with an average content of
22.88 cmol(+)/kg, classifying the soil as having medium fertility. The CVs for soil pH, SOM,
and CEC were 8.17%, 34.71%, and 36.30%, respectively. Different fertilization methods
across farmlands may result in rice cultivation having a relatively minor effect on soil pH,
while significantly impacting soil SOM and CEC.

3.2. Contents of Potential Toxic Elements in Rice

According to the statistics for the potential toxic element contents in rice (Table 5), the
average contents of Cd, Pb, As, Cr, Cu, Zn, and Ni in rice were 0.11, 0.14, 0.34, 1.46, 3.61,
18.05, and 8.79 mg/kg, respectively, in descending order as Zn > Ni > Cu > Cr > As > Pb > Cd,
with the nutritional element Zn having the highest content and the more toxic elements
Pb and Cd having the lowest content. Pb and Cr have a larger fluctuation range, at
0.01~2.49 mg/kg and 0.01~11.68 mg/kg, respectively, with corresponding CVs reaching
224.17% and 177.52% (Table 5), indicating a large degree of spatial variation. Pb and Cr are
considered to have very strong variation, Cd, Cu, As, and Ni show strong variation, and Zn
shows moderate variation. The average content of Cr in rice was significantly higher than
the permissible limits in China of GB 2762-2022 [49], exceeding the standard by 1.46 times,
while the average contents of the other elements were lower than the standard values. The
rates of exceeding the limits for Cd, Pb, As, and Cr in rice samples were 13.89%, 15.28%,
15.28%, and 27.78%, respectively. The results showed that the Cd, Pb, As, and Cr in rice
were seriously polluted, which should be paid attention to.

Table 5. Contents of potential toxic elements in rice (mg/kg).

Cd Pb As Cr Cu Zn Ni

Min 0.003 0.01 0.002 0.01 1.15 7.44 0.11
Max 0.33 2.49 1.76 11.68 27.88 40.41 8.79

Mean 0.11 0.14 0.34 1.46 3.61 18.05 1.68
GB 2762-2022 0.2 0.2 0.5 1.0 —— —— ——

SD 0.08 0.32 0.22 2.59 3.25 6.65 1.27
CV (%) 70.70 224.17 65.66 177.52 90.00 36.84 75.28

Exceeded–standard (%) 13.89 15.28 15.28 27.78 —— —— ——

3.3. Correlation Analysis of Potential Toxic Elements in Soil and Rice

Based on the analysis of potential toxic elements in soil and rice, Cd and Cu accumu-
lated in soil to varying degrees, and the Cd, Pb, As, and Cr in rice were seriously polluted.
The Pearson correlation analysis results show (Table 6) that there were no significant cor-
relations between the contents of potential toxic elements in the soil and corresponding
potential toxic elements in the rice, and all correlation coefficients were low. The corre-
lation coefficients for Cd, Cu, Zn, and Ni were negative. Studies have shown that low
contents of potential toxic element stress have a certain role in promoting root vitality;
but, with the continuous increase in potential toxic element contents, the ability of crops
to absorb and transport potential toxic elements will gradually decrease, preventing the
further accumulation of potential toxic elements in plants. In addition, it can be seen that
the contents of potential toxic elements in the soil of the study area did not exceed the
screening values, whereas the contents of potential toxic elements in rice exceeded the
standard values seriously. The absorption of potential toxic elements by crops is influenced
by multiple factors, making it insufficient to rely solely on the soil’s pollution status to
assess the accumulation of these elements in crops.
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Table 6. Results of Pearson correlation analysis of potential toxic elements in soil and rice.

Cd-r Pb-r As-r Cr-r Cu-r Zn-r Ni-r

Cd-s −0.127 0.014 −0.051 −0.150 −0.084 0.053 −0.068
Pb-s −0.133 0.064 −0.059 −0.046 0.047 −0.052 0.063
As-s −0.057 0.119 0.012 −0.024 −0.149 −0.070 −0.196
Cr-s −0.066 0.067 −0.066 0.148 0.035 −0.096 −0.021
Cu-s −0.208 −0.047 −0.121 −0.026 −0.011 −0.173 −0.033
Zn-s 0.013 −0.058 −0.116 −0.165 −0.017 −0.016 −0.055
Ni-s −0.174 0.114 0.032 0.093 0.017 −0.113 −0.042

3.4. Bioaccumulation of Potential Toxic Elements in Rice

The bioaccumulation factors (BCFS) for Cd, Pb, As, Cr, Cu, Zn, and Ni were 2.27~277.74%,
0.02~9.81%, 0.02~51.75%, 0.06~17.16%, 3.76~95.32%, 8.37~512.99%, and 0.32~25.66%, re-
spectively (Table 7); the BCFS of Cd, Cu, and Zn varied widely. The average BCFS for Cd,
Pb, As, Cr, Cu, Zn, and Ni were 86.08%, 0.57%, 7.26%, 1.91%, 14.11%, 51.03%, and 5.72%
(Table 3). The accumulation capacity of these potential toxic elements in rice followed
this order: Cd > Zn > Cu > As > Ni > Cr > Pb [48]. The BCFS of potential toxic elements
in rice were related to plant growth characteristics and the chemical form of potential
toxic elements, among other factors. Zn and Cu are trace elements required for plant
growth, playing an important role in physiological activities such as chlorophyll formation,
respiration, and photosynthesis in plants, and thus are relatively more accumulated in
plant bodies [50]. Cd mainly exists in the form of an exchangeable state in acidic paddy
fields, with a strong migration ability, and rice has a higher accumulation capacity for Cd.
Cr, Ni, Pb, and As, which are mostly present in the soil in the form of residue, especially
the stable form of Cr, which accounts for more than 85%, making it difficult for plants to
absorb [51]. In addition, the physicochemical properties of the soil and rice varieties also
affect the absorption of potential toxic elements by rice to a certain extent.

Table 7. Statistical results of soil–rice bioaccumulation factors (%).

Cd Pb As Cr Cu Zn Ni

Min 2.27 0.02 0.02 0.06 3.76 8.37 0.32
Max 277.74 9.81 51.75 17.16 95.32 512.99 25.66

Mean 86.08 0.57 7.26 1.91 14.11 51.03 5.72

3.5. Human Health Risk Assessment

According to the dietary guidelines for Chinese residents and the survey of the dietary
status of local residents, rice is the primary food crop in the study area. In conjunction with
the latest Henan statistical yearbook of 2023 and the actual situation of the local area, the
average daily rice intake is 437.56 g for adults and 145.86 g for children [24].

The non-carcinogenic risks (Table 8) associated with exposure to potential toxic el-
ements through rice ingestion revealed that the HQ of children was higher than that of
adults. Except for HQAs, HQCr, which was significantly greater than 1, the HQ of other
potential toxic elements in adults was lower than 1. The HQ values of Cd, As, and Cr were
higher than 1 in children. Based on the HQ values for different elements, the HQ value
of As was the largest among adults and children (7.58 and 10.58, respectively). Judging
from the results of element contribution rates (Figure 2), the HQ value of As constituted
54.82% of the total HI of adults and 54.81% for children, indicating that As is the main
non-carcinogenic potential toxic element. Followed by Cr, the HQCr of adults and children
was 3.25 and 4.54, respectively, comprising over 23.5% of the total HI. This indicated that
As, Cr, and Cd are the primary non-carcinogenic risk factors in the study area. Enhancing
the pollution control of As, Cr, and Cd is essential to safeguard residents’ health. The total
HI for adults and children exposed to potentially toxic elements through rice consumption
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was 13.82 and 19.30, respectively (Table 8), both much higher than 1, indicating that the
non-carcinogenic health risk is relatively serious and requires attention.

Table 8. Non-carcinogenic health risk assessment for adults and children.

HQ
HI

HQCd HQpb HQAs HQCr HQCu HQZn HQNi

Adults 0.74 0.68 7.58 3.25 0.60 0.40 0.56 13.83
Children 1.04 0.95 10.58 4.54 0.84 0.56 0.78 19.30
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The carcinogenic risk assessment results indicated that both the CR and TCR are higher
for children than adults (Table 9). The TCR for adults and children from rice intake was
3.20 × 10−2 and 4.50 × 10−2, respectively, which was far greater than the limit set by the US
EPA (1 × 10−4), indicating a very serious carcinogenic risk. CRCd, CRAs, CRCr, and CRNi
were higher than 1 × 10−4, with CRNi contributing the largest, accounting for 59.77% of the
total TCR for both adults and children (Figure 2), and was the most significant carcinogenic
potential toxic element. Secondly, CRCr accounted for 15.31% of the total TCR of adults
and children.

Table 9. Carcinogenic risk index for adults and children.

CRCd CRAs CRCr CRNi TCR

Adults 4.50 × 10−3 3.40 × 10−3 4.90 × 10−3 1.90 × 10−2 3.20 × 10−2

Children 6.30 × 10−3 4.70 × 10−3 6.80 × 10−3 2.70 × 10−2 4.50 × 10−2

The results indicated that rice consumption poses varying degrees of carcinogenic and
non-carcinogenic health risks to both adults and children. Similar health risks associated
with rice consumption have been reported in other domestic provinces, such as Hunan [52]
and Guizhou [53], as well as in countries like Thailand [54] and Iran [55]. The contribution
rates of potential toxic elements vary significantly across regions. According to local condi-
tions, the targeted control of heavy metal pollution in each region should be implemented.
It is also recommended that local residents reduce their rice intake and consider purchasing
food from outside the study area.

3.6. Uncertainty Analysis

The health risk assessment results of human exposure to potential toxic elements were
influenced by many factors, including the accuracy of exposure parameters, the stability
of the model, the representativeness and uniformity of the selected samples, and the
overall sampling results [38]. Consequently, risk assessment results often exhibit significant
uncertainty. The small sample size of this study may introduce a degree of randomness
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to the results. In addition, there were differences between adults and children in terms
of dietary habits, living environments, and physiological characteristics. The health risk
assessment results are mainly calculated based on the data provided by the statistical
yearbook of Henan Province, the US EPA, and China’s population exposure parameter
manual. Thus, the results may not fully reflect the specific conditions of the study area,
potentially leading to deviations in the assessment. The health risk assessment model
also has a certain degree of uncertainty. Despite these limitations, this study provides a
valuable assessment of the risks posed by exposure to potential toxic elements through
rice consumption. These findings offer an important foundation for prioritizing health and
environmental risk management efforts in the study area.

Monte Carlo simulation was employed to reduce the uncertainty of the risk assess-
ment results. To assess the non-carcinogenic risk of As exposure in children through rice
consumption, a comprehensive analysis was conducted. This analysis involved repeatedly
calculating the risk 10,000 times, taking into account various factors such as the distribu-
tion characteristics and parameter settings of children’s rice intake, body weight, and the
As content in rice. By integrating these factors, this study aimed to provide a detailed
and accurate estimation of the potential health risks associated with arsenic exposure in
children. A sensitivity analysis using Crystal Ball software (version 11.1.30) revealed that
the As concentration in rice is the most significant factor affecting the non-carcinogenic
risk of human exposure, with a sensitivity of 96%. The mean and median values of the
HQAs were 9.04 and 8.99 (Figure 3), respectively, which are relatively close to the value of
10.58 obtained using the health risk evaluation model recommended by the US EPA. This
indicated minimal bias in the non-carcinogenic risk assessment of children’s As exposure
from rice consumption in this study. It showed that local residents face a significantly
higher health risk, which requires more attention.
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4. Conclusions

The average contents of Cd, Pb, As, Cr, Cu, Zn, and Ni in soil were below the screening
values in GB 15618-2018, indicating that the environmental quality of the soil in the study
area is relatively good. But, compared with the limits in GB 2762-2022 specified by the
national food safety standard, the rates of exceeding the limits for Cd, Pb, As, and Cr in
rice samples were 13.89%, 15.28%, 15.28%, and 27.78%, respectively, indicating that Cd, Pb,
As, and Cr in rice were seriously polluted. The accumulation capacity of these potential
toxic elements in rice decreased in the following order: Cd > Zn > Cu > As > Ni > Cr > Pb.
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The health risk assessment indicated that rice intake for both adults and children caused
carcinogenic and non-carcinogenic health risks to varying degrees, with the risk for children
being higher than that for adults. It is strongly recommended that local residents reduce
their consumption of locally sourced rice. Instead, they should consider purchasing rice
from outside the region to meet their dietary needs. Additionally, it is crucial to implement
stringent measures to control and monitor the pollution of potential toxic elements in
the area.
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