Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites
Abstract
:1. Introduction
2. Activation of O2 by Fe-Based Materials
2.1. ZVI-Based Materials
2.2. Iron Sulfides
2.2.1. Pyrite
Material | Pollutant | Removal Ratio (%) | Reaction Time (h) | pH | Rate Constant | Reference |
---|---|---|---|---|---|---|
Pyrite | Trichloroethylene | 100 | 323 | 4.0 | 0.013 h−1 | [70] |
Pyrite | Acid orange 7 | 52.8 | 5 | 6.3 | N/A | [120] |
Pyrite | Carbamazepine | 81.5 | 24 | 7.0 | 0.103 ± 0.001 h−1 | [121] |
Pyrite | Phenol | 76.8 | 24 | 7.0 | 0.084 ± 0.001 h−1 | [121] |
Pyrite | Bisphenol A | 100 | 24 | 7.0 | 0.147 ± 0.001 h−1 | [121] |
SV-rich pyrite | Sulfamethoxazole | 88.3 | 12 | 8.5 | 29.2 × 10−4 h−1 | [122] |
Pyrite | Sulfamethoxazole | 70.0 | 12 | 4.0 | 0.095 h−1 | [123] |
Mackinawite | Flumequine | 79.8 | 4 | 7.0 | 51.6 × 10−3 min−1 | [124] |
Mackinawite | Enrofloxacin | 87.7 | 4 | 7.0 | 34.0 × 10−3 min−1 | [124] |
Mackinawite | Ciprofloxacin | 81.5 | 4 | 7.0 | 25.4 × 10−3 min−1 | [124] |
Mackinawite | Trichloroethylene | 23.4 * | 3 | 7.0 | 2.07 × 10−3 min−1 | [69] |
Mackinawite | Phenol | 34.1 * | 3 | 7.0 | 3.53 × 10−3 min−1 | [69] |
Surface-oxidized mackinawite | Phenol | 17.5 * | 1.5 | 7.3 | 3.8 × 10−3 min−1 | [125] |
2.2.2. Mackinawite
2.3. Iron (Oxyhydr)Oxides
2.4. Fe(II)-Containing Clay Minerals
Material | Pollutant | Removal Ratio (%) | Reaction Time (h) | pH | Rate Constant | Reference |
---|---|---|---|---|---|---|
Nontronite | 1,4-Dioxane | 78.8 * | 120 | 7.0 | N/A | [161] |
Illite | 1,4-Dioxane | 34.3 * | 120 | 7.0 | N/A | [161] |
Montmorillonite | 1,4-Dioxane | 27.4 * | 120 | 7.0 | N/A | [161] |
Reduced nontronite | Trichloroethylene | 50.0 | 0.5 | 7.5 | N/A | [160] |
Riparian sediment | Trichloroethylene | 27.6 | 6 | 7.0 | N/A | [164] |
Lakeshore sediment | Trichloroethylene | 19.1 | 6 | 7.0 | N/A | [164] |
Pond sediment | Trichloroethylene | 15.4 | 6 | 7.0 | N/A | [164] |
Nontronite | Phenol | 43.1 | 6 | 7.0 | N/A | [165] |
Montmorillonite | Phenol | 59.8 | 6 | 7.3 | N/A | [165] |
Sandbeach sediment | Phenol | 9.95 * | 10 | 6.96 | N/A | [168] |
Lakeshore sediment | Phenol | 39.3 * | 10 | 7.15 | N/A | [168] |
Farmland sediment | Phenol | 48.5 * | 10 | Unadjusted | N/A | [168] |
Paddy soils | Naphthalene | 76.0 * | 252 | Unadjusted | N/A | [169] |
Paddy soils | Phenanthrene | 49.6 * | 252 | Unadjusted | N/A | [169] |
Paddy soils | Pyrene | 28.6 * | 252 | Unadjusted | N/A | [169] |
3. Influencing Factors
3.1. O2 Concentration
3.2. Organic Ligands
3.3. Inorganic Anions
3.4. Microbial Activity
4. Conclusions and Perspectives
- The ROS-generation dynamics under environmental conditions need thorough elucidation and characterization to achieve more accurate prediction and precise control of pollutant removal performance in practical applications. Current studies have demonstrated that the major reactive species generated in O2 activation by Fe-based materials are H2O2, •OH, and O2•−. However, the potential contribution of other reactive species, especially 1O2, should be further explored, which has shown tremendous potential in selective oxidation of various contaminants [217,218]. Meanwhile, high-resolution monitoring of ROS-generation dynamics in actual subsurface environments is indispensable, which requires further exploration of novel tools suitable for in situ analysis of trace-level ROS. A notable example of such analytical tools is flow-injection chemiluminescence analysis, which can be performed with a portable device, achieving on-site quantification of •OH in environmental matrices [219].
- While O2 activation by Fe-based materials can degrade a variety of organic pollutants (e.g., TCE, PAHs, phenols, organic dyes, and antibiotics), future efforts are needed to explore its potential for degrading recalcitrant emerging pollutants (e.g., PFASs). The configuration of surface iron sites and interfacial microenvironment significantly affect the efficiency of O2 activation. Further research is needed to elucidate the relationship between the functional groups of pollutants and the electron-shuttle mechanism for the tailored development of efficient Fe-based materials for the removal of emerging pollutants. For example, •OH is ineffective in degrading PFASs, whereas O2•− has demonstrated the capability to degrade perfluorocarboxylic acids with varying chain lengths [220]. Although O2•− is an easily formed intermediate during O2 activation by Fe-based materials, it is quickly converted to other ROS. Therefore, nanotechnology-enabled rational material design is needed to manipulate the generation and consumption pathways of O2•− during O2 activation and improve its selectivity toward reaction with PFASs. This can benefit from theoretical simulations of the interaction between the material surface and O2/pollutant molecules under environmentally realistic conditions. Furthermore, the rational design of Fe-based materials for controllable O2 activation and ROS generation can be substantially expedited by incorporating machine-learning analysis of large datasets on the structure–reactivity relationships [221,222].
- Attention should be directed toward conducting pilot-scale applications of this technology to validate its effectiveness in real-world scenarios. In particular, for remediating contaminated sites lacking reactive Fe minerals, it is necessary to introduce Fe-based materials capable of efficient O2 activation. Iron-based materials that show excellent performance in laboratory studies may not work when applied in real aquifers, and it is vital to ensure that mass-produced remediation agents exhibit activity comparable to those tested in the initial research and development (R&D) stage. Moreover, the effective delivery of these Fe-based remediation agents can be a bottleneck for ISCO remediation via Fe-mediated O2 activation. This calls for a simultaneous evaluation of the transport properties of the Fe-based materials while optimizing their O2 activation efficiency.
- In addition to the above technical challenges, other barriers to the real-world applications of O2 activation for site remediation need to be overcome. To be economically viable and competitive, costs associated with the materials, equipment, and power need to be lowered. While Fe is an earth-abundant element, the R&D and scale-up production of sophisticated Fe-based materials still may be costly. Moreover, despite the abundance and availability of O2 in the air, the energy required to deliver it into deep aquifers adds to the total cost of this technology. Finally, since Fe-based materials (e.g., nZVI) have shown toxicity to a variety of soil organisms [223,224,225], it is critical to evaluate the potential environmental impact of these materials before they can be safely applied in the subsurface environment. A comprehensive consideration of these factors is warranted to ensure the successful utilization of O2, a green and inexhaustible oxidant, for sustainable in situ remediation of organic-contaminated sites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bunting, S.Y.; Lapworth, D.J.; Crane, E.J.; Grima-Olmedo, J.; Koroša, A.; Kuczyńska, A.; Mali, N.; Rosenqvist, L.; Van Vliet, M.E.; Togola, A.; et al. Emerging Organic Compounds in European Groundwater. Environ. Pollut. 2021, 269, 115945. [Google Scholar] [CrossRef] [PubMed]
- Hua, T.; Propp, V.R.; Power, C.; Brown, S.J.; Collins, P.; Smith, J.E.; Roy, J.W. Multizone Aquatic Ecological Exposures to Landfill Contaminants from a Groundwater Plume Discharging to a Pond. Environ. Toxicol. Chem. 2023, 42, 1667–1684. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; O’Connor, D.; Hou, D.; Jin, Y.; Li, G.; Zheng, C.; Ok, Y.S.; Tsang, D.C.W.; Luo, J. Groundwater Depletion and Contamination: Spatial Distribution of Groundwater Resources Sustainability in China. Sci. Total Environ. 2019, 672, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Goswami, R.; Patel, A.K.; Srivastava, M.; Das, N. Scenario, Perspectives and Mechanism of Arsenic and Fluoride Co-Occurrence in the Groundwater: A Review. Chemosphere 2020, 249, 126126. [Google Scholar] [CrossRef] [PubMed]
- Abiriga, D.; Vestgarden, L.S.; Klempe, H. Groundwater Contamination from a Municipal Landfill: Effect of Age, Landfill Closure, and Season on Groundwater Chemistry. Sci. Total Environ. 2020, 737, 140307. [Google Scholar] [CrossRef] [PubMed]
- Propp, V.R.; De Silva, A.O.; Spencer, C.; Brown, S.J.; Catingan, S.D.; Smith, J.E.; Roy, J.W. Organic Contaminants of Emerging Concern in Leachate of Historic Municipal Landfills. Environ. Pollut. 2021, 276, 116474. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, H.; Lei, S.; Semple, K.T.; Coulon, F.; Hu, Q.; Gao, J.; Guo, G.; Gu, Q.; Jones, K.C. Redevelopment of Urban Brownfield Sites in China: Motivation, History, Policies and Improved Management. Eco-Environ. Health 2022, 1, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xiang, Z.; Lin, D.; Zhu, L. Multimedia Distribution and Health Risk Assessment of Typical Organic Pollutants in a Retired Industrial Park. Front. Environ. Sci. Eng. 2023, 17, 142. [Google Scholar] [CrossRef]
- Moran, M.J.; Zogorski, J.S.; Squillace, P.J. Chlorinated Solvents in Groundwater of the United States. Environ. Sci. Technol. 2007, 41, 74–81. [Google Scholar] [CrossRef]
- Bulatović, S.; Ilić, M.; Šolević Knudsen, T.; Milić, J.; Pucarević, M.; Jovančićević, B.; Vrvić, M.M. Evaluation of Potential Human Health Risks from Exposure to Volatile Organic Compounds in Contaminated Urban Groundwater in the Sava River Aquifer, Belgrade, Serbia. Environ. Geochem. Health 2022, 44, 3451–3472. [Google Scholar] [CrossRef]
- Montuori, P.; De Rosa, E.; Cerino, P.; Pizzolante, A.; Nicodemo, F.; Gallo, A.; Rofrano, G.; De Vita, S.; Limone, A.; Triassi, M. Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. Toxics 2023, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Dong, Q.; Li, F.; Wang, T.; Qiu, X.; Zhu, T. A Systematic Review of Polycyclic Aromatic Hydrocarbon Derivatives: Occurrences, Levels, Biotransformation, Exposure Biomarkers, and Toxicity. Environ. Sci. Technol. 2023, 57, 15314–15335. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, Q.; Yang, L.; Zhang, Y.; Jiang, J.; Deng, S.; Wan, J.; Fan, T.; Long, T.; Zhang, S.; et al. Contaminant Characterization at Pesticide Production Sites in the Yangtze River Delta: Residue, Distribution, and Environmental Risk. Sci. Total Environ. 2023, 860, 160156. [Google Scholar] [CrossRef] [PubMed]
- Huo, Z.; Xi, M.; Xu, L.; Jiang, C.; Chen, W. Colloid-Facilitated Release of Polybrominated Diphenyl Ethers at an e-Waste Recycling Site: Evidence from Undisturbed Soil Core Leaching Experiments. Front. Environ. Sci. Eng. 2024, 18, 21. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Lavorgna, G.M.; Lippincott, D.R.; Nguyen, D.; Schaum, A.; Higgins, C.P.; Field, J. Leaching of Perfluoroalkyl Acids during Unsaturated Zone Flushing at a Field Site Impacted with Aqueous Film Forming Foam. Environ. Sci. Technol. 2023, 57, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Stroo, H.F.; Unger, M.; Ward, C.H.; Kavanaugh, M.C.; Vogel, C.; Leeson, A.; Marqusee, J.A.; Smith, B.P. Remediating Chlorinated Solvent Source Zones. Environ. Sci. Technol. 2003, 37, 224A–230A. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, J. Significance of Mass–Concentration Relation on the Contaminant Source Depletion in the Nonaqueous Phase Liquid (NAPL) Contaminated Zone. Transp. Porous Med. 2021, 137, 399–416. [Google Scholar] [CrossRef]
- Tatti, F.; Papini, M.P.; Sappa, G.; Raboni, M.; Arjmand, F.; Viotti, P. Contaminant Back-Diffusion from Low-Permeability Layers as Affected by Groundwater Velocity: A Laboratory Investigation by Box Model and Image Analysis. Sci. Total Environ. 2018, 622–623, 164–171. [Google Scholar] [CrossRef]
- Ma, T.; Pan, X.; Wang, T.; Li, X.; Luo, Y. Toxicity of Per- and Polyfluoroalkyl Substances to Nematodes. Toxics 2023, 11, 593. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, Z.; Chen, X.; Wang, W.; Liu, Z.; Sun, H.; Zhang, L. Comparative Toxicological Effects of Perfluorooctane Sulfonate and Its Alternative 6:2 Chlorinated Polyfluorinated Ether Sulfonate on Earthworms. Environ. Toxicol. Chem. 2023, 43, 170–181. [Google Scholar] [CrossRef]
- Ordaz, J.D.; Damayanti, N.P.; Irudayaraj, J.M.K. Toxicological Effects of Trichloroethylene Exposure on Immune Disorders. Immunopharmacol. Immunotoxicol. 2017, 39, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Grazuleviciene, R.; Nieuwenhuijsen, M.J.; Vencloviene, J.; Kostopoulou-Karadanelli, M.; Krasner, S.W.; Danileviciute, A.; Balcius, G.; Kapustinskiene, V. Individual Exposures to Drinking Water Trihalomethanes, Low Birth Weight and Small for Gestational Age Risk: A Prospective Kaunas Cohort Study. Environ. Health 2011, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Cheng, J.; He, L.; Zhang, M.; Ren, S.; Sun, J.; Xing, X.; Tang, Z. Polybrominated Diphenyl Ethers in Soils from Tianjin, North China: Distribution, Health Risk, and Temporal Trends. Environ. Geochem. Health 2021, 43, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Sankar, T.K.; Kumar, A.; Mahto, D.K.; Das, K.C.; Narayan, P.; Fukate, M.; Awachat, P.; Padghan, D.; Mohammad, F.; Al-Lohedan, H.A.; et al. The Health Risk and Source Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Soil of Industrial Cities in India. Toxics 2023, 11, 515. [Google Scholar] [CrossRef] [PubMed]
- Daraban, G.M.; Hlihor, R.-M.; Suteu, D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. Toxics 2023, 11, 983. [Google Scholar] [CrossRef]
- Horzmann, K.A.; Portales, A.M.; Batcho, K.G.; Freeman, J.L. Developmental Toxicity of Trichloroethylene in Zebrafish (Danio Rerio). Environ. Sci. Processes Impacts 2020, 22, 728–739. [Google Scholar] [CrossRef]
- Yan, Z.G.; Li, Z.G.; Du, J.Z. Effects of Environmental Organic Pollutants on Environment and Human Health: The Latest Updates. Toxics 2024, 12, 231. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Tian, M.; Zheng, X.; Gonzales, L.; Ohura, T.; Mai, B.; Simonich, S.L.M. Inhalation Cancer Risk Associated with Exposure to Complex Polycyclic Aromatic Hydrocarbon Mixtures in an Electronic Waste and Urban Area in South China. Environ. Sci. Technol. 2012, 46, 9745–9752. [Google Scholar] [CrossRef]
- Mahoney, H.; Xie, Y.; Brinkmann, M.; Giesy, J.P. Next Generation Per- and Poly-Fluoroalkyl Substances: Status and Trends, Aquatic Toxicity, and Risk Assessment. Eco-Environ. Health 2022, 1, 117–131. [Google Scholar] [CrossRef]
- Palazzolo, S.; Caligiuri, I.; Sfriso, A.A.; Mauceri, M.; Rotondo, R.; Campagnol, D.; Canzonieri, V.; Rizzolio, F. Early Warnings by Liver Organoids on Short- and Long-Chain PFAS Toxicity. Toxics 2022, 10, 91. [Google Scholar] [CrossRef]
- Stroo, H.F.; Leeson, A.; Marqusee, J.A.; Johnson, P.C.; Ward, C.H.; Kavanaugh, M.C.; Sale, T.C.; Newell, C.J.; Pennell, K.D.; Lebrón, C.A.; et al. Chlorinated Ethene Source Remediation: Lessons Learned. Environ. Sci. Technol. 2012, 46, 6438–6447. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl Radicals Based Advanced Oxidation Processes (AOPs) for Remediation of Soils Contaminated with Organic Compounds: A Review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Liu, J.W.; Wei, K.H.; Xu, S.W.; Cui, J.; Ma, J.; Xiao, X.L.; Xi, B.D.; He, X.S. Surfactant-Enhanced Remediation of Oil-Contaminated Soil and Groundwater: A Review. Sci. Total Environ. 2021, 756, 144142. [Google Scholar] [CrossRef] [PubMed]
- Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbæk, H.; Siegrist, R.L.; Bjerg, P.L. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Ranc, B.; Faure, P.; Croze, V.; Simonnot, M.O. Selection of Oxidant Doses for in Situ Chemical Oxidation of Soils Contaminated by Polycyclic Aromatic Hydrocarbons (PAHs): A Review. J. Hazard. Mater. 2016, 312, 280–297. [Google Scholar] [CrossRef]
- Wei, K.H.; Ma, J.; Xi, B.-D.; Yu, M.D.; Cui, J.; Chen, B.L.; Li, Y.; Gu, Q.B.; He, X.S. Recent Progress on In-Situ Chemical Oxidation for the Remediation of Petroleum Contaminated Soil and Groundwater. J. Hazard. Mater. 2022, 432, 128738. [Google Scholar] [CrossRef]
- Liu, H.; Bruton, T.A.; Doyle, F.M.; Sedlak, D.L. In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(III)- and Mn(IV)-Containing Oxides and Aquifer Materials. Environ. Sci. Technol. 2014, 48, 10330–10336. [Google Scholar] [CrossRef]
- Pan, C.; Wang, C.; Zhao, X.; Xu, P.; Mao, F.; Yang, J.; Zhu, Y.; Yu, R.; Xiao, S.; Fang, Y.; et al. Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-Nanocluster CuO/Graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Cao, X.; Xiang, M.; Huang, Y.; Li, H. A Critical Review of Groundwater Table Fluctuation: Formation, Effects on Multifields, and Contaminant Behaviors in a Soil and Aquifer System. Environ. Sci. Technol. 2024, 58, 2185–2203. [Google Scholar] [CrossRef]
- Ji, J.; Wang, Z.; Xu, Q.; Zhu, Q.; Xing, M. In Situ H2O2 Generation and Corresponding Pollutant Removal Applications: A Review. Chem. Eur. J. 2023, 29, e202203921. [Google Scholar] [CrossRef]
- Guo, X.; Lin, S.; Gu, J.; Zhang, S.; Chen, Z.; Huang, S. Simultaneously Achieving High Activity and Selectivity toward Two-Electron O2 Electroreduction: The Power of Single-Atom Catalysts. ACS Catal. 2019, 9, 11042–11054. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Z.; Ou, H.; Asiri, A.M.; Chen, Y.; Wang, X. Black Phosphorus and Polymeric Carbon Nitride Heterostructure for Photoinduced Molecular Oxygen Activation. Adv. Funct. Mater. 2018, 28, 1705407. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; He, J.-Z.; Pinton, R.; Cesco, S. Review on Iron Availability in Soil: Interaction of Fe Minerals, Plants, and Microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar] [CrossRef]
- Guo, H.; Barnard, A.S. Naturally Occurring Iron Oxide Nanoparticles: Morphology, Surface Chemistry and Environmental Stability. J. Mater. Chem. A 2013, 1, 27–42. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, X.; Peng, A.; Gu, C. Transformation and Toxicity of Environmental Contaminants as Influenced by Fe Containing Clay Minerals: A Review. Bull. Environ. Contam. Toxicol. 2020, 104, 8–14. [Google Scholar] [CrossRef]
- Gong, Y.; Tang, J.; Zhao, D. Application of Iron Sulfide Particles for Groundwater and Soil Remediation: A Review. Water Res. 2016, 89, 309–320. [Google Scholar] [CrossRef]
- Zeng, G.; Wang, J.; Dai, M.; Meng, Y.; Luo, H.; Zhou, Q.; Lin, L.; Zang, K.; Meng, Z.; Pan, X. Natural Iron Minerals in an Electrocatalytic Oxidation System and in Situ Pollutant Removal in Groundwater: Applications, Mechanisms, and Challenges. Sci. Total Environ. 2023, 871, 161826. [Google Scholar] [CrossRef]
- Quinn, J.; Geiger, C.; Clausen, C.; Brooks, K.; Coon, C.; O’Hara, S.; Krug, T.; Major, D.; Yoon, W.-S.; Gavaskar, A.; et al. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environ. Sci. Technol. 2005, 39, 1309–1318. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, B.; He, F.; Bradley, M.J.; Tratnyek, P.G. Mechanochemically Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of Trichloroethylene Dechlorination. Environ. Sci. Technol. 2017, 51, 12653–12662. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Weng, C.; Bai, W.; Jiao, Y.; Kaegi, R.; Lowry, G.V. Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. Environ. Sci. Technol. 2019, 53, 5936–5945. [Google Scholar] [CrossRef]
- Brumovský, M.; Oborná, J.; Micić, V.; Malina, O.; Kašlík, J.; Tunega, D.; Kolos, M.; Hofmann, T.; Karlický, F.; Filip, J. Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene. Environ. Sci. Technol. 2022, 56, 4425–4436. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Chen, J.; Hu, Y.; He, K.; Bylaska, E.J.; Tratnyek, P.G.; He, F. Degradation of Chloroform by Zerovalent Iron: Effects of Mechanochemical Sulfidation and Nitridation on the Kinetics and Mechanism. Environ. Sci. Technol. 2023, 57, 9811–9821. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Tan, S.; Yang, Z.; Zhang, Y. Dechlorination Helps Defluorination: Insights into the Defluorination Mechanism of Florfenicol by S-nZVI and DFT Calculations on the Reaction Pathways. Environ. Sci. Technol. 2024, 58, 2542–2553. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Faure, P.; Ruby, C.; Hanna, K. Remediation of PAH-Contaminated Soils by Magnetite Catalyzed Fenton-like Oxidation. Appl. Catal. B 2012, 117–118, 10–17. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, S.; Zhang, P.; Zhu, J.; Tong, M. Reduced Nontronite-Activated H2O2 for Contaminants Degradation: The Beneficial Role of Clayed Fractions in ISCO Treatments. J. Hazard. Mater. 2020, 386, 121945. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Fang, G.; Liu, G.; Zhou, D.; Gao, J.; Gu, C. The Effects of Fe-Bearing Smectite Clays on •OH Formation and Diethyl Phthalate Degradation with Polyphenols and H2O2. J. Hazard. Mater. 2018, 357, 483–490. [Google Scholar] [CrossRef]
- Sun, Y.; Danish, M.; Ali, M.; Shan, A.; Li, M.; Lyu, Y.; Qiu, Z.; Sui, Q.; Zang, X.; Lyu, S. Trichloroethene Degradation by Nanoscale CaO2 Activated with Fe(II)/FeS: The Role of FeS and the Synergistic Activation Mechanism of Fe(II)/FeS. Chem. Eng. J. 2020, 394, 124830. [Google Scholar] [CrossRef]
- Kim, J.-G.; Kim, H.-B.; Jeong, W.-G.; Baek, K. Enhanced-Oxidation of Sulfanilamide in Groundwater Using Combination of Calcium Peroxide and Pyrite. J. Hazard. Mater. 2021, 419, 126514. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Zhang, J.; Du, J.; Xu, S.; Wang, C.; Zhang, D.; Tang, J.; Zhao, H.; Zhou, J. Degradation of Phenanthrene by Peroxymonosulfate Activated with Bimetallic Metal-Organic Frameworks: Kinetics, Mechanisms, and Degradation Products. Chem. Eng. J. 2020, 397, 125401. [Google Scholar] [CrossRef]
- Lee, Y.C.; Li, Y.; Chen, M.J.; Chen, Y.-C.; Kuo, J.; Lo, S.L. Efficient Decomposition of Perfluorooctanic Acid by Persulfate with Iron-Modified Activated Carbon. Water Res. 2020, 174, 115618. [Google Scholar] [CrossRef]
- Dong, H.; He, Q.; Zeng, G.; Tang, L.; Zhang, L.; Xie, Y.; Zeng, Y.; Zhao, F. Degradation of Trichloroethene by Nanoscale Zero-Valent Iron (nZVI) and nZVI Activated Persulfate in the Absence and Presence of EDTA. Chem. Eng. J. 2017, 316, 410–418. [Google Scholar] [CrossRef]
- Liu, H.; Fu, P.; Liu, F.; Hou, Q.; Tong, Z.; Bi, W. Degradation of Ciprofloxacin by Persulfate Activated with Pyrite: Mechanism, Acidification and Tailwater Reuse. RSC Adv. 2022, 12, 29991–30000. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shao, P.; Gao, S.; Bai, Z.; Tian, J. Benzoquinone-Assisted Heterogeneous Activation of PMS on Fe3S4 via Formation of Active Complexes to Mediate Electron Transfer towards Enhanced Bisphenol A Degradation. Water Res. 2022, 226, 119218. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zeng, H.; Liang, Y.; Cao, Y.; Xiao, Y.; Ma, J. Degradation of Bisphenol AF in Water by Periodate Activation with FeS (Mackinawite) and the Role of Sulfur Species in the Generation of Sulfate Radicals. Chem. Eng. J. 2021, 407, 126738. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Zhao, X.; Jing, G.; Zhou, Z. Activation of Peracetic Acid with Zero-Valent Iron for Tetracycline Abatement: The Role of Fe(II) Complexation with Tetracycline. J. Hazard. Mater. 2022, 424, 127653. [Google Scholar] [CrossRef]
- Li, L.; Wu, Y.; Dong, W. Enhancement in Sulfamethoxazole Degradation via Efficient Heterogeneous Activation of Peracetic Acid by FeS. Water 2024, 16, 2405. [Google Scholar] [CrossRef]
- Joo, S.H.; Feitz, A.J.; Waite, T.D. Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 2004, 38, 2242–2247. [Google Scholar] [CrossRef]
- Noradoun, C.E.; Cheng, I.F. EDTA Degradation Induced by Oxygen Activation in a Zerovalent Iron/Air/Water System. Environ. Sci. Technol. 2005, 39, 7158–7163. [Google Scholar] [CrossRef]
- Cheng, D.; Neumann, A.; Yuan, S.; Liao, W.; Qian, A. Oxidative Degradation of Organic Contaminants by FeS in the Presence of O2. Environ. Sci. Technol. 2020, 54, 4091–4101. [Google Scholar] [CrossRef]
- Pham, H.T.; Kitsuneduka, M.; Hara, J.; Suto, K.; Inoue, C. Trichloroethylene Transformation by Natural Mineral Pyrite: The Deciding Role of Oxygen. Environ. Sci. Technol. 2008, 42, 7470–7475. [Google Scholar] [CrossRef]
- Ardo, S.G.; Nélieu, S.; Ona-Nguema, G.; Delarue, G.; Brest, J.; Pironin, E.; Morin, G. Oxidative Degradation of Nalidixic Acid by Nano-Magnetite via Fe2+/O2-Mediated Reactions. Environ. Sci. Technol. 2015, 49, 4506–4514. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Fang, G.; Liu, G.; Zhou, D.; Gao, J.; Gu, C. The Degradation of Diethyl Phthalate by Reduced Smectite Clays and Dissolved Oxygen. Chem. Eng. J. 2019, 355, 247–254. [Google Scholar] [CrossRef]
- Pi, L.; Cai, J.; Xiong, L.; Cui, J.; Hua, H.; Tang, D.; Mao, X. Generation of H2O2 by On-Site Activation of Molecular Dioxygen for Environmental Remediation Applications: A Review. Chem. Eng. J. 2020, 389, 123420. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Wang, J. Fenton/Fenton-like Processes with in-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Degradation of Emerging Contaminants: Advances and Prospects. J. Hazard. Mater. 2021, 404, 124191. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, F. Recent Advances in Molecular Oxygen Activation via Photocatalysis and Its Application in Oxidation Reactions. Chem. Eng. J. 2021, 421, 129915. [Google Scholar] [CrossRef]
- Ni, Y.; Zhou, C.; Xing, M.; Zhou, Y. Oxidation of Emerging Organic Contaminants by In-Situ H2O2 Fenton System. Green Energy Environ. 2024, 9, 417–434. [Google Scholar] [CrossRef]
- Wilson, G.S. Determination of Oxidation-Reduction Potentials. Methods Enzymol. 1978, 54, 396–410. [Google Scholar]
- Petersen, E.J.; Pinto, R.A.; Shi, X.; Huang, Q. Impact of Size and Sorption on Degradation of Trichloroethylene and Polychlorinated Biphenyls by Nano-Scale Zerovalent Iron. J. Hazard. Mater. 2012, 243, 73–79. [Google Scholar] [CrossRef]
- Li, Q.; Yin, J.; Wu, L.; Li, S.; Chen, L. Effects of Biochar and Zero Valent Iron on the Bioavailability and Potential Toxicity of Heavy Metals in Contaminated Soil at the Field Scale. Sci. Total Environ. 2023, 897, 165386. [Google Scholar] [CrossRef]
- Wei, K.; Li, H.; Gu, H.; Liu, X.; Ling, C.; Cao, S.; Li, M.; Liao, M.; Peng, X.; Shi, Y.; et al. Strained Zero-Valent Iron for Highly Efficient Heavy Metal Removal. Adv. Funct. Mater. 2022, 32, 2200498. [Google Scholar] [CrossRef]
- Li, Y.; Kawashima, N.; Li, J.; Chandra, A.P.; Gerson, A.R. A Review of the Structure, and Fundamental Mechanisms and Kinetics of the Leaching of Chalcopyrite. Adv. Colloid Interface Sci. 2013, 197–198, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Dong, H.; Wang, X. Effect of Ligands on the Production of Oxidants from Oxygenation of Reduced Fe-Bearing Clay Mineral Nontronite. Geochim. Cosmochim. Acta 2019, 251, 136–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M. A Critical Review of the Application of Chelating Agents to Enable Fenton and Fenton-like Reactions at High pH Values. J. Hazard. Mater. 2019, 362, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, L.; Fang, G.; Wang, L.; Kengara, F.O.; Zhu, C. The Mechanism of 2-Chlorobiphenyl Oxidative Degradation by Nanoscale Zero-Valent Iron in the Presence of Dissolved Oxygen. Environ. Sci. Pollut. Res. 2018, 25, 2265–2272. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, J.; Hou, J.; Zeng, R.J.; Xing, B. Degradation of Tetrabromobisphenol A by Sulfidated Nanoscale Zerovalent Iron in a Dynamic Two-Step Anoxic/Oxic Process. Environ. Sci. Technol. 2019, 53, 8105–8114. [Google Scholar] [CrossRef]
- Keenan, C.R.; Sedlak, D.L. Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen. Environ. Sci. Technol. 2008, 42, 1262–1267. [Google Scholar] [CrossRef]
- Harada, T.; Yatagai, T.; Kawase, Y. Hydroxyl Radical Generation Linked with Iron Dissolution and Dissolved Oxygen Consumption in Zero-Valent Iron Wastewater Treatment Process. Chem. Eng. J. 2016, 303, 611–620. [Google Scholar] [CrossRef]
- Lee, C.; Sedlak, D.L. Enhanced Formation of Oxidants from Bimetallic Nickel−Iron Nanoparticles in the Presence of Oxygen. Environ. Sci. Technol. 2008, 42, 8528–8533. [Google Scholar] [CrossRef]
- Ai, Z.; Gao, Z.; Zhang, L.; He, W.; Yin, J.J. Core–Shell Structure Dependent Reactivity of Fe@Fe2O3 Nanowires on Aerobic Degradation of 4-Chlorophenol. Environ. Sci. Technol. 2013, 47, 5344–5352. [Google Scholar] [CrossRef]
- He, D.; Ma, J.; Collins, R.N.; Waite, T.D. Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species. Environ. Sci. Technol. 2016, 50, 3820–3828. [Google Scholar] [CrossRef]
- Liu, X.; Fan, J.H.; Ma, L.M. Elimination of 4-Chlorophenol in Aqueous Solution by the Bimetallic Al–Fe/O2 at Normal Temperature and Pressure. Chem. Eng. J. 2014, 236, 274–284. [Google Scholar] [CrossRef]
- Fan, J.; Qin, H.; Zhang, Y.; Jiang, S. Degradation of 4-chlorophenol by BM Fe/Cu-O2 System: The Symbiosis of and •OH Radicals. Water Environ. Res. 2019, 91, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Huang, M.; Wang, Y.; Wu, X.; Zhang, F.; Li, D.; Zhou, T. New Insight in the O2 Activation by Nano Fe/Cu Bimetals: The Synergistic Role of Cu(0) and Fe(II). Chin. Chem. Lett. 2020, 31, 2831–2834. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Pu, S.; Ni, R.; Lin, Y.; Liu, Y. Novel Fenton-like System (Mg/Fe-O2) for Degradation of 4-Chlorophenol. Environ. Pollut. 2019, 250, 906–913. [Google Scholar] [CrossRef]
- Wu, J.; Lin, M.; Liu, M.; Chen, Z. Novel Crystalline/Amorphous Heterophase Fe-Mn Core–Shell Chains on-Site Generate Hydrogen Peroxide in Aqueous Solution. J. Colloid Interface Sci. 2024, 676, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Tang, L.; Feng, H.; Zeng, G.; Dong, H.; Zhang, C.; Huang, B.; Deng, Y.; Wang, J.; Zhou, Y. pH-Dependent Degradation of p-Nitrophenol by Sulfidated Nanoscale Zerovalent Iron under Aerobic or Anoxic Conditions. J. Hazard. Mater. 2016, 320, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, W.; Wang, Y.; Li, Z.; Huang, X.; Li, T.; Wang, H. Mechanochemical Synthesis of Microscale Zero-Valent Iron/N-Doped Graphene-like Biochar Composite for Degradation of Tetracycline via Molecular O2 Activation. J. Colloid Interface Sci. 2024, 659, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, L.; Li, W.; Fan, W.; Song, S.; Yang, J. Adsorption and Degradation of Sulfadiazine over Nanoscale Zero-Valent Iron Encapsulated in Three-Dimensional Graphene Network through Oxygen-Driven Heterogeneous Fenton-like Reactions. Appl. Catal. B 2019, 259, 118057. [Google Scholar] [CrossRef]
- Luo, Y.; Li, H.; Yang, H.; Yang, Z.; Li, C.; Liu, S.; Chen, Q.; Xu, W.; Zhang, W.; Tan, X. Critical Role of Dissolved Oxygen and Iron–Copper Synergy in Dual-Metal/Char Catalyst Systems. Environ. Sci. Nano 2024, 11, 2091–2102. [Google Scholar] [CrossRef]
- Duan, L.; Liu, X.; Zhang, H.; Liu, F.; Liu, X.; Zhang, X.; Dong, L. A Novel Way for Hydroxyl Radicals Generation: Biochar-Supported Zero-Valent Iron Composite Activates Oxygen to Generate Hydroxyl Radicals. J. Environ. Chem. Eng. 2022, 10, 108132. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Q.; Wang, J. Zn-Fe-CNTs Catalytic in Situ Generation of H2O2 for Fenton-like Degradation of Sulfamethoxazole. J. Hazard. Mater. 2018, 342, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, Q.; Liu, Y.; Wang, J. Fenton-like Oxidation of 4-Chlorophenol Using H2O2 in Situ Generated by Zn-Fe-CNTs Composite. J. Environ. Manag. 2018, 214, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wen, C.; Gao, S.; Dong, Y.; Zhang, M.; Li, B.; Hu, W.; Dong, J. Incorporation of Nanoscale Zero-Valent Iron Particles in Monodisperse Mesoporous Silica Nanospheres: Characterization, Reactivity, Transport in Porous Media. Colloids Surf. A 2018, 553, 28–34. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Kurosu, S.; Suzuki, M.; Kawase, Y. Hydroxyl Radical Generation by Zero-Valent Iron/Cu (ZVI/Cu) Bimetallic Catalyst in Wastewater Treatment: Heterogeneous Fenton/Fenton-like Reactions by Fenton Reagents Formed in-Situ under Oxic Conditions. Chem. Eng. J. 2018, 334, 1537–1549. [Google Scholar] [CrossRef]
- Chen, X.; Su, J.; Meng, Y.; Yu, M.; Zheng, M.; Sun, Y.; Xi, B. Oxygen Vacancy Promoted Heterogeneous Fenton-like Degradation of Sulfamethazine by Chlorine-Incorporated Micro Zero-Valent Iron. Chem. Eng. J. 2023, 463, 142360. [Google Scholar] [CrossRef]
- Rajajayavel, S.R.C.; Ghoshal, S. Enhanced Reductive Dechlorination of Trichloroethylene by Sulfidated Nanoscale Zerovalent Iron. Water Res. 2015, 78, 144–153. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Sun, Y.; Liang, L.; Pan, B.; Zhang, W.; Guan, X. Advances in Sulfidation of Zerovalent Iron for Water Decontamination. Environ. Sci. Technol. 2017, 51, 13533–13544. [Google Scholar] [CrossRef]
- Xu, J.; Li, H.; Lowry, G.V. Sulfidized Nanoscale Zero-Valent Iron: Tuning the Properties of This Complex Material for Efficient Groundwater Remediation. Acc. Mater. Res. 2021, 2, 420–431. [Google Scholar] [CrossRef]
- Garcia, A.N.; Zhang, Y.; Ghoshal, S.; He, F.; O’Carroll, D.M. Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation. Environ. Sci. Technol. 2021, 55, 8464–8483. [Google Scholar] [CrossRef]
- Song, S.; Su, Y.; Adeleye, A.S.; Zhang, Y.; Zhou, X. Optimal Design and Characterization of Sulfide-Modified Nanoscale Zerovalent Iron for Diclofenac Removal. Appl. Catal. B 2017, 201, 211–220. [Google Scholar] [CrossRef]
- Ma, D.; Jia, S.; Zhao, D.; Lu, Z.; Yang, Z. O2 Activation on the Outer Surface of Carbon Nanotubes Modified by Encapsulated Iron Clusters. Appl. Surf. Sci. 2014, 300, 91–97. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, X.; Wang, D.; Yin, J.-J.; Chen, H.; Gao, X.; Zhang, J.; Ibrahim, K.; Chai, Z.; Feng, W.; et al. Structure and Catalytic Activities of Ferrous Centers Confined on the Interface between Carbon Nanotubes and Humic Acid. Nanoscale 2015, 7, 2651–2658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, D.; Liu, Q.; Tang, J. Ligand-Citric Acid Enhanced in-Situ ROS Generation by GBC@nZVI to Promote the Aerobic Degradation of Adsorbed 2,4-Dichlorophenol. Chem. Eng. J. 2023, 477, 147126. [Google Scholar] [CrossRef]
- Rickard, D.; Luther, G.W. Chemistry of Iron Sulfides. Chem. Rev. 2007, 107, 514–562. [Google Scholar] [CrossRef] [PubMed]
- Borda, M.J.; Elsetinow, A.R.; Schoonen, M.A.; Strongin, D.R. Pyrite-Induced Hydrogen Peroxide Formation as a Driving Force in the Evolution of Photosynthetic Organisms on an Early Earth. Astrobiology 2001, 1, 283–288. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Bancroft, G.M.; Pratt, A.R.; Scaini, M.J. Sulfur and Iron Surface States on Fractured Pyrite Surfaces. Am. Mineral. 1998, 83, 1067–1076. [Google Scholar] [CrossRef]
- Borda, M.J.; Elsetinow, A.R.; Strongin, D.R.; Schoonen, M.A. A Mechanism for the Production of Hydroxyl Radical at Surface Defect Sites on Pyrite. Geochim. Cosmochim. Acta 2003, 67, 935–939. [Google Scholar] [CrossRef]
- Ling, C.; Liu, X.; Li, M.; Wang, X.; Shi, Y.; Qi, J.; Zhao, J.; Zhang, L. Sulphur Vacancy Derived Anaerobic Hydroxyl Radical Generation at the Pyrite-Water Interface: Pollutants Removal and Pyrite Self-Oxidation Behavior. Appl. Catal. B 2021, 290, 120051. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, S.; Liao, P. Mechanisms of Hydroxyl Radical Production from Abiotic Oxidation of Pyrite under Acidic Conditions. Geochim. Cosmochim. Acta 2016, 172, 444–457. [Google Scholar] [CrossRef]
- Hao, F.; Guo, W.; Lin, X.; Leng, Y.; Wang, A.; Yue, X.; Yan, L. Degradation of Acid Orange 7 in Aqueous Solution by Dioxygen Activation in a Pyrite/H2O/O2 System. Environ. Sci. Pollut. Res. 2014, 21, 6723–6728. [Google Scholar] [CrossRef]
- Tan, M.; Zheng, X.; Yu, W.; Chen, B.; Chu, C. Facet-Dependent Productions of Reactive Oxygen Species from Pyrite Oxidation. Environ. Sci. Technol. 2024, 58, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, H.; Sun, J.; Lu, L.; Li, S. Sulfur Vacancies in Pyrite Trigger the Path to Nonradical Singlet Oxygen and Spontaneous Sulfamethoxazole Degradation: Unveiling the Hidden Potential in Sediments. Environ. Sci. Technol. 2024, 58, 6753–6762. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Dai, C.; Tian, X.; Nie, Y.; Shi, J. Self-Acclimation Mechanism of Pyrite to Sulfamethoxazole Concentration in Terms of Degradation Behavior and Toxicity Effects Caused by Reactive Oxygen Species. J. Hazard. Mater. 2024, 464, 132962. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xian, Z.; Gao, S.; Bai, L.; Liang, S.; Tian, H.; Wang, C.; Gu, C. Mechanistic Insights into Surface Catalytic Oxidation of Fluoroquinolone Antibiotics on Sediment Mackinawite. Water Res. 2023, 232, 119651. [Google Scholar] [CrossRef]
- Cheng, D.; Liao, W.; Yuan, S. Effect of in Situ Generated Iron Oxyhydroxide Coatings on FeS Oxygenation and Resultant Hydroxyl Radical Production for Contaminant Degradation. Chem. Eng. J. 2020, 394, 124961. [Google Scholar] [CrossRef]
- Cohn, C.A.; Mueller, S.; Wimmer, E.; Leifer, N.; Greenbaum, S.; Strongin, D.R.; Schoonen, M.A. Pyrite-Induced Hydroxyl Radical Formation and Its Effect on Nucleic Acids. Geochem. Trans. 2006, 7, 3. [Google Scholar] [CrossRef]
- Kong, L.; Hu, X.; He, M. Mechanisms of Sb(III) Oxidation by Pyrite-Induced Hydroxyl Radicals and Hydrogen Peroxide. Environ. Sci. Technol. 2015, 49, 3499–3505. [Google Scholar] [CrossRef]
- Song, B.; Zeng, Z.; Almatrafi, E.; Shen, M.; Xiong, W.; Zhou, C.; Wang, W.; Zeng, G.; Gong, J. Pyrite-Mediated Advanced Oxidation Processes: Applications, Mechanisms, and Enhancing Strategies. Water Res. 2022, 211, 118048. [Google Scholar] [CrossRef]
- Schoonen, M.A.A.; Cohn, C.A.; Roemer, E.; Laffers, R.; Simon, S.R.; O’Riordan, T. Mineral-Induced Formation of Reactive Oxygen Species. Rev. Mineral. Geochem. 2006, 64, 179–221. [Google Scholar] [CrossRef]
- Fan, D.; Lan, Y.; Tratnyek, P.G.; Johnson, R.L.; Filip, J.; O’Carroll, D.M.; Nunez Garcia, A.; Agrawal, A. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation. Environ. Sci. Technol. 2017, 51, 13070–13085. [Google Scholar] [CrossRef]
- Dos Santos, E.C.; de Mendonça Silva, J.C.; Duarte, H.A. Pyrite Oxidation Mechanism by Oxygen in Aqueous Medium. J. Phys. Chem. C 2016, 120, 2760–2768. [Google Scholar] [CrossRef]
- Usher, C.R.; Cleveland, C.A.; Strongin, D.R.; Schoonen, M.A. Origin of Oxygen in Sulfate during Pyrite Oxidation with Water and Dissolved Oxygen: An In Situ Horizontal Attenuated Total Reflectance Infrared Spectroscopy Isotope Study. Environ. Sci. Technol. 2004, 38, 5604–5606. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Liang, J.; Wen, Z.; Zhou, Y.; Yan, Z.; Zhou, Y.; He, P.; Gu, C.; Gan, M.; Zhu, J. Insight into the Crystal Facet-Dependent Cr(VI) Reduction: A Comparative Study of Pyrite {100} and {111} Facets. J. Environ. Sci. 2025, 150, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Gan, M.; Wang, X.; Zhang, Y.; Fang, Y.; Gu, G.; Wang, Y.; Qiu, G. ROS Formation Driven by Pyrite-Mediated Arsenopyrite Oxidation and Its Potential Role on Arsenic Transformation. J. Hazard. Mater. 2023, 443, 130151. [Google Scholar] [CrossRef] [PubMed]
- Wehrli, B.; Sulzberger, B.; Stumm, W. Redox Processes Catalyzed by Hydrous Oxide Surfaces. Chem. Geol. 1989, 78, 167–179. [Google Scholar] [CrossRef]
- Schoonen, M.A.A.; Harrington, A.D.; Laffers, R.; Strongin, D.R. Role of Hydrogen Peroxide and Hydroxyl Radical in Pyrite Oxidation by Molecular Oxygen. Geochim. Cosmochim. Acta 2010, 74, 4971–4987. [Google Scholar] [CrossRef]
- Nicholson, R.V.; Gillham, R.W.; Reardon, E.J. Pyrite Oxidation in Carbonate-Buffered Solution: 2. Rate Control by Oxide Coatings. Geochim. Cosmochim. Acta 1990, 54, 395–402. [Google Scholar] [CrossRef]
- Liu, R.; Dai, Y.; Feng, Y.; Sun, S.; Zhang, X.; An, C.; Zhao, S. Hydroxyl Radical Production by Abiotic Oxidation of Pyrite under Estuarine Conditions: The Effects of Aging, Seawater Anions and Illumination. J. Environ. Sci. 2024, 135, 715–727. [Google Scholar] [CrossRef]
- Morgan, B.; Rate, A.W.; Burton, E.D. Water Chemistry and Nutrient Release during the Resuspension of FeS-Rich Sediments in a Eutrophic Estuarine System. Sci. Total Environ. 2012, 432, 47–56. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Han, Y.-S.; Park, S.W.; Hayes, K.F. Aerobic Oxidation of Mackinawite (FeS) and Its Environmental Implication for Arsenic Mobilization. Geochim. Cosmochim. Acta 2010, 74, 3182–3198. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Han, Y.-S.; Hayes, K.F. X-Ray Absorption and X-Ray Photoelectron Spectroscopic Study of Arsenic Mobilization during Mackinawite (FeS) Oxidation. Environ. Sci. Technol. 2010, 44, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Stylo, M.; Bernier-Latmani, R.; Hayes, K.F. Rapid Mobilization of Noncrystalline U(IV) Coupled with FeS Oxidation. Environ. Sci. Technol. 2016, 50, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Yuan, S.; Liao, P.; Zhang, P. Oxidizing Impact Induced by Mackinawite (FeS) Nanoparticles at Oxic Conditions Due to Production of Hydroxyl Radicals. Environ. Sci. Technol. 2016, 50, 11646–11653. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Guo, Y.; Liu, G.; Song, M.; Liang, Y.; Cai, Y.; Yin, Y. Hydroxyl Radical Formation upon Dark Oxidation of Reduced Iron Minerals: Effects of Iron Species and Environmental Factors. Chin. Chem. Lett. 2019, 30, 2241–2244. [Google Scholar] [CrossRef]
- Chiriţă, P.; Schlegel, M.L. Oxidative Dissolution of Iron Monosulfide (FeS) in Acidic Conditions: The Effect of Solid Pretreatment. Int. J. Miner. Process. 2015, 135, 57–64. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, Y.; Peng, H.; Zhu, Y.; Fang, D.; Wu, G.; Li, L.; Zeng, Z. Highly Efficient Degradation of Tetracycline Hydrochloride in Water by Oxygenation of Carboxymethyl Cellulose-Stabilized FeS Nanofluids. Int. J. Environ. Res. Public Health 2022, 19, 11447. [Google Scholar] [CrossRef]
- He, J.; Miller, C.J.; Collins, R.; Wang, D.; Waite, T.D. Production of a Surface-Localized Oxidant during Oxygenation of Mackinawite (FeS). Environ. Sci. Technol. 2020, 54, 1167–1176. [Google Scholar] [CrossRef]
- Meng, F.; Tong, H.; Feng, C.; Huang, Z.; Wu, P.; Zhou, J.; Hua, J.; Wu, F.; Liu, C. Structural Fe(II)-Induced Generation of Reactive Oxygen Species on Magnetite Surface for Aqueous As(III) Oxidation during Oxygen Activation. Water Res. 2024, 252, 121232. [Google Scholar] [CrossRef]
- Fang, G.D.; Zhou, D.M.; Dionysiou, D.D. Superoxide Mediated Production of Hydroxyl Radicals by Magnetite Nanoparticles: Demonstration in the Degradation of 2-Chlorobiphenyl. J. Hazard. Mater. 2013, 250–251, 68–75. [Google Scholar] [CrossRef]
- Fang, L.; Gao, B.; Li, F.; Liu, K.; Chi, J. The Nature of Metal Atoms Incorporated in Hematite Determines Oxygen Activation by Surface-Bound Fe(II) for As(III) Oxidation. Water Res. 2022, 227, 119351. [Google Scholar] [CrossRef]
- Ding, Y.; Ruan, Y.; Zhu, L.; Tang, H. Efficient Oxidative Degradation of Chlorophenols by Using Magnetic Surface Carboxylated Cu0/Fe3O4 Nanocomposites in a Wide pH Range. J. Environ. Chem. Eng. 2017, 5, 2681–2690. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, X.; Peng, L.; Yang, D.; Liu, Y. Zn0-CNTs-Fe3O4 Catalytic in Situ Generation of H2O2 for Heterogeneous Fenton Degradation of 4-Chlorophenol. Chemosphere 2018, 208, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tan, X.; Wang, E.; Zhao, J.; Ma, J. A Facile Strategy to Convert Low-Activity Commercial Iron Oxides and Cobalt Disulfide into High-Activity Fenton-like Catalysts: Spontaneous Generation of 1O2 for Aqueous Decontamination. Mater. Today Chem. 2022, 26, 101106. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, W.; Yu, H.; Chen, R.; Liu, Y.; Tian, Y.; Yuan, S. Fe(III) Oxyhydroxides Mediated Electron Transfer from Thiols to O2 for Hydroxyl Radical Production. Chem. Geol. 2024, 648, 121962. [Google Scholar] [CrossRef]
- Li, D.; Sun, J.; Fu, Y.; Hong, W.; Wang, H.; Yang, Q.; Wu, J.; Yang, S.; Xu, J.; Zhang, Y.; et al. Fluctuating Redox Conditions Accelerate the Electron Storage and Transfer in Magnetite and Production of Dark Hydroxyl Radicals. Water Res. 2024, 248, 120884. [Google Scholar] [CrossRef]
- Hong, Z.; Li, F.; Borch, T.; Shi, Q.; Fang, L. Incorporation of Cu into Goethite Stimulates Oxygen Activation by Surface-Bound Fe(II) for Enhanced As(III) Oxidative Transformation. Environ. Sci. Technol. 2023, 57, 2162–2174. [Google Scholar] [CrossRef]
- Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Redox Transformation of Arsenic by Fe(II)-Activated Goethite (α-FeOOH). Environ. Sci. Technol. 2010, 44, 102–108. [Google Scholar] [CrossRef]
- Warr, L.N. Earth’s Clay Mineral Inventory and Its Climate Interaction: A Quantitative Assessment. Earth-Sci. Rev. 2022, 234, 104198. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, X.; Liao, W.; Zhang, P.; Wang, X.; Tong, M. Mechanisms of Electron Transfer from Structrual Fe(II) in Reduced Nontronite to Oxygen for Production of Hydroxyl Radicals. Geochim. Cosmochim. Acta 2018, 223, 422–436. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, S.; Tong, M.; Liu, D. Oxidation of Trichloroethylene by the Hydroxyl Radicals Produced from Oxygenation of Reduced Nontronite. Water Res. 2017, 113, 72–79. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, H.; Wang, X.; Yu, T.; Cui, W. Degradation of 1,4-Dioxane by Hydroxyl Radicals Produced from Clay Minerals. J. Hazard. Mater. 2017, 331, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, X. The Impact of Electron Transfer between Structural Fe(II) and Aqueous Fe(III) on the Redox Transformation of Arsenic. Environ. Earth Sci. 2023, 82, 304. [Google Scholar] [CrossRef]
- Yu, C.; Qian, A.; Lu, Y.; Liao, W.; Zhang, P.; Tong, M.; Dong, H.; Zeng, Q.; Yuan, S. Electron Transfer Processes Associated with Structural Fe in Clay Minerals. Crit. Rev. Environ. Sci. Technol. 2024, 54, 13–38. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Yu, H.; Cheng, D.; Liu, H.; Yuan, S. Kinetic Models for Hydroxyl Radical Production and Contaminant Removal during Soil/Sediment Oxygenation. Water Res. 2023, 240, 120071. [Google Scholar] [CrossRef]
- Yu, C.; Ji, W.; Li, X.; Yuan, S.; Zhang, P.; Pu, S. Critical Role of Mineral Fe(IV) Formation in Low Hydroxyl Radical Yields during Fe(II)-Bearing Clay Mineral Oxygenation. Environ. Sci. Technol. 2024, 58, 9669–9678. [Google Scholar] [CrossRef]
- Rothwell, K.A.; Pentrak, M.P.; Pentrak, L.A.; Stucki, J.W.; Neumann, A. Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals. Environ. Sci. Technol. 2023, 57, 10231–10241. [Google Scholar] [CrossRef]
- Zhao, G.; Tan, M.; Wu, B.; Zheng, X.; Xiong, R.; Chen, B.; Kappler, A.; Chu, C. Redox Oscillations Activate Thermodynamically Stable Iron Minerals for Enhanced Reactive Oxygen Species Production. Environ. Sci. Technol. 2023, 57, 8628–8637. [Google Scholar] [CrossRef]
- Xie, W.; Yuan, S.; Tong, M.; Ma, S.; Liao, W.; Zhang, N.; Chen, C. Contaminant Degradation by •OH during Sediment Oxygenation: Dependence on Fe(II) Species. Environ. Sci. Technol. 2020, 54, 2975–2984. [Google Scholar] [CrossRef]
- Chen, N.; Huang, D.; Liu, G.; Chu, L.; Fang, G.; Zhu, C.; Zhou, D.; Gao, J. Active Iron Species Driven Hydroxyl Radicals Formation in Oxygenation of Different Paddy Soils: Implications to Polycyclic Aromatic Hydrocarbons Degradation. Water Res. 2021, 203, 117484. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, C.; Zhu, F.; Sun, H.; Wang, J.; Fang, G.; Zhou, D. Strong Substance Exchange at Paddy Soil-Water Interface Promotes Nonphotochemical Formation of Reactive Oxygen Species in Overlying Water. Environ. Sci. Technol. 2024, 58, 7403–7414. [Google Scholar] [CrossRef]
- Huang, D.; Chen, N.; Zhu, C.; Sun, H.; Fang, G.; Zhou, D. Dynamic Production of Hydroxyl Radicals during the Flooding–Drainage Process of Paddy Soil: An In Situ Column Study. Environ. Sci. Technol. 2023, 57, 16340–16347. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Dai, Y.; Liu, R.; Zhao, D.; Sun, S.; Xu, X.; Chen, Y.; Yuan, X.; Zhang, B.; Zhao, S. Production and Prediction of Hydroxyl Radicals in Distinct Redox-Fluctuation Zones of the Yellow River Estuary. J. Hazard. Mater. 2024, 469, 133980. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, Z.; Liu, J.; Latif, J.; Qin, J.; Yang, H.; Jiang, W.; Deng, Y.; Yang, K.; Ni, Z.; et al. Seasonal and Spatial Fluctuations of Reactive Oxygen Species in Riparian Soils and Their Contributions on Organic Carbon Mineralization. Environ. Sci. Technol. 2024, 58, 7066–7077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wu, B.; Zheng, X.; Chen, B.; Kappler, A.; Chu, C. Tide-Triggered Production of Reactive Oxygen Species in Coastal Soils. Environ. Sci. Technol. 2022, 56, 11888–11896. [Google Scholar] [CrossRef]
- Chen, N.; Fu, Q.; Wu, T.; Cui, P.; Fang, G.; Liu, C.; Chen, C.; Liu, G.; Wang, W.; Wang, D.; et al. Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. Environ. Sci. Technol. 2021, 55, 14281–14293. [Google Scholar] [CrossRef]
- Lu, J.; Yu, P.; Zhang, J.; Guo, Z.; Li, Y.; Wang, S.; Hu, Z. Biotic/Abiotic Transformation Mechanisms of Phenanthrene in Iron-Rich Constructed Wetland under Redox Fluctuation. Water Res. 2024, 261, 122033. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, M.; Liu, C.; Fang, G.; Chen, N.; Zhou, D.; Gao, J. The Formation of •OH with Fe-Bearing Smectite Clays and Low-Molecular-Weight Thiols: Implication of As(III) Removal. Water Res. 2020, 174, 115631. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Ho, P.; Berns, E.; Werth, C. Mechanisms for Abiotic Dechlorination of Trichloroethene by Ferrous Minerals under Oxic and Anoxic Conditions in Natural Sediments. Environ. Sci. Technol. 2018, 52, 13747–13755. [Google Scholar] [CrossRef]
- Kasozi, N.; Tandlich, R.; Fick, M.; Kaiser, H.; Wilhelmi, B. Iron Supplementation and Management in Aquaponic Systems: A Review. Aquac. Rep. 2019, 15, 100221. [Google Scholar] [CrossRef]
- Ren, H.; He, F.; Liu, S.; Li, T.; Zhou, R. Enhancing Fenton–like Process at Neutral pH by Fe(III)–GLDA Complexation for the Oxidation Removal of Organic Pollutants. J. Hazard. Mater. 2021, 416, 126077. [Google Scholar] [CrossRef]
- Jones, A.M.; Griffin, P.J.; Waite, T.D. Ferrous Iron Oxidation by Molecular Oxygen under Acidic Conditions: The Effect of Citrate, EDTA and Fulvic Acid. Geochim. Cosmochim. Acta 2015, 160, 117–131. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, S. Production of Hydroxyl Radicals from Abiotic Oxidation of Pyrite by Oxygen under Circumneutral Conditions in the Presence of Low-Molecular-Weight Organic Acids. Geochim. Cosmochim. Acta 2017, 218, 153–166. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, L.; He, M.; Lin, C.; Ouyang, W.; Liu, X.; Peng, X. Mechanistic Insights into Sb(III) and Fe(II) Co-Oxidation by Oxygen and Hydrogen Peroxide: Dominant Reactive Oxygen Species and Roles of Organic Ligands. Water Res. 2023, 242, 120296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Pan, Y.; Fu, W.; Wu, H.; Zhou, M.; Zhang, Y. Aminopolycarboxylic Acids Modified Oxygen Reduction by Zero Valent Iron: Proton-Coupled Electron Transfer, Role of Iron Ion and Reactive Oxidant Generation. J. Hazard. Mater. 2022, 430, 128402. [Google Scholar] [CrossRef] [PubMed]
- Checa-Fernandez, A.; Santos, A.; Romero, A.; Dominguez, C.M. Application of Chelating Agents to Enhance Fenton Process in Soil Remediation: A Review. Catalysts 2021, 11, 722. [Google Scholar] [CrossRef]
- De Laat, J.; Dao, Y.H.; Hamdi El Najjar, N.; Daou, C. Effect of Some Parameters on the Rate of the Catalysed Decomposition of Hydrogen Peroxide by Iron(III)-Nitrilotriacetate in Water. Water Res. 2011, 45, 5654–5664. [Google Scholar] [CrossRef]
- Zhang, Y.; Klamerth, N.; Messele, S.A.; Chelme-Ayala, P.; Gamal El-Din, M. Kinetics Study on the Degradation of a Model Naphthenic Acid by Ethylenediamine-N,N’-Disuccinic Acid-Modified Fenton Process. J. Hazard. Mater. 2016, 318, 371–378. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, Q.; Wang, X.; Wang, L.; Chen, J.; Zhang, J.; Lu, X. Removal of 2,4-Dichlorophenol from Contaminated Soil by a Heterogeneous ZVI/EDTA/Air Fenton-like System. Sep. Purif. Technol. 2014, 132, 346–353. [Google Scholar] [CrossRef]
- Huang, M.; Fang, G.; Chen, N.; Zhou, D. Hydroxylamine Promoted Hydroxyl Radical Production and Organic Contaminants Degradation in Oxygenation of Pyrite. J. Hazard. Mater. 2022, 429, 128380. [Google Scholar] [CrossRef]
- Li, K.; Ma, S.; Zou, C.; Latif, J.; Jiang, Y.; Ni, Z.; Shen, S.; Feng, J.; Jia, H. Unrecognized Role of Organic Acid in Natural Attenuation of Pollutants by Mackinawite (FeS): The Significance of Carbon-Center Free Radicals. Environ. Sci. Technol. 2023, 57, 20871–20880. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Y.; Lu, Y.; Qian, A.; Zhang, P.; Cui, Y.; Yuan, S. Mechanistic Insight into Humic Acid-Enhanced Hydroxyl Radical Production from Fe(II)-Bearing Clay Mineral Oxygenation. Environ. Sci. Technol. 2021, 55, 13366–13375. [Google Scholar] [PubMed]
- Cheng, D.; Ding, H.; Tan, Y.; Yang, D.; Pan, Y.; Liao, W.; He, F. Dramatically Enhanced Phenol Degradation upon FeS Oxygenation by Low-Molecular-Weight Organic Acids. J. Hazard. Mater. 2023, 459, 132260. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.D.; Zaki, Z.M.; Amir, A. Mechanisms of Enhanced Oxidative Degradation of Tetrachloroethene by Nano-Magnetite Catalysed with Glutathione. Chem. Eng. J. 2020, 393, 124760. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Z.; Zhang, R.; Liu, J.; Liu, J.; Dai, Y.; Zhang, C.; Jia, H. Interfacial Reaction between Organic Acids and Iron-Containing Clay Minerals: Hydroxyl Radical Generation and Phenolic Compounds Degradation. Sci. Total Environ. 2021, 783, 147025. [Google Scholar] [CrossRef]
- Qin, Y.; Song, F.; Ai, Z.; Zhang, P.; Zhang, L. Protocatechuic Acid Promoted Alachlor Degradation in Fe(III)/H2O2 Fenton System. Environ. Sci. Technol. 2015, 49, 7948–7956. [Google Scholar] [CrossRef]
- Xie, L.; Shang, C. Role of Humic Acid and Quinone Model Compounds in Bromate Reduction by Zerovalent Iron. Environ. Sci. Technol. 2005, 39, 1092–1100. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, J.; Liu, A.; Zhang, W.-X. Influence of Natural Organic Matter on Nanoscale Zero-Valent Iron for Contaminants Removal in Water: A Critical Review. Chem. Eng. J. 2024, 488, 150836. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Zhang, P.; Fu, Q.; Yu, C.; Yuan, S. Asymmetrical Changes of Electron-Donating and Electron-Accepting Capacities of Natural Organic Matter during Its Interaction with Fe Oxyhydroxides. Chem. Geol. 2024, 661, 122189. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, Q.; Sheng, Y.; Chen, C.; Yu, G.; Kappler, A. Coupled Iron Cycling and Organic Matter Transformation across Redox Interfaces. Nat. Rev. Earth Environ. 2023, 4, 659–673. [Google Scholar] [CrossRef]
- Wolf, M.; Kappler, A.; Jiang, J.; Meckenstock, R.U. Effects of Humic Substances and Quinones at Low Concentrations on Ferrihydrite Reduction by Geobacter Metallireducens. Environ. Sci. Technol. 2009, 43, 5679–5685. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, X.; Liu, X.; Huang, L.; Hu, J.; Chu, R.; Tolic, N.; Dong, H. Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation. Environ. Sci. Technol. 2020, 54, 15013–15023. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wei, X.; Zhu, M.; Cai, Y.; Wang, Y.; Dang, Z.; Yin, H. Unravelling the Removal Mechanisms of Trivalent Arsenic by Sulfidated Nanoscale Zero-Valent Iron: The Crucial Role of Reactive Oxygen Species and the Multiple Effects of Citric Acid. Sci. Total Environ. 2024, 916, 170275. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, L.; Ye, J.; Li, N.; Yan, B.; Chen, G. Influence and Mechanism of Water Matrices on H2O2-Based Fenton-like Oxidation Processes: A Review. Sci. Total Environ. 2023, 888, 164086. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Xu, L.; Deng, J.; Gao, S.; Huang, L.Z. Induced Generation of Hydroxyl Radicals from Green Rust under Oxic Conditions by Iron-Phosphate Complexes. Chem. Eng. J. 2021, 414, 128780. [Google Scholar] [CrossRef]
- Mu, Y.; Ai, Z.; Zhang, L. Phosphate Shifted Oxygen Reduction Pathway on Fe@Fe2O3 Core–Shell Nanowires for Enhanced Reactive Oxygen Species Generation and Aerobic 4-Chlorophenol Degradation. Environ. Sci. Technol. 2017, 51, 8101–8109. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Effect of Inorganic Anions on the Performance of Advanced Oxidation Processes for Degradation of Organic Contaminants. Chem. Eng. J. 2021, 411, 128392. [Google Scholar] [CrossRef]
- Hug, S.J.; Leupin, O. Iron-Catalyzed Oxidation of Arsenic(III) by Oxygen and by Hydrogen Peroxide: pH-Dependent Formation of Oxidants in the Fenton Reaction. Environ. Sci. Technol. 2003, 37, 2734–2742. [Google Scholar] [CrossRef]
- Ernstsen, V.; Gates, W.P.; Stucki, J.W. Microbial Reduction of Structural Iron in Clays—A Renewable Source of Reduction Capacity. J. Environ. Qual. 1998, 27, 761–766. [Google Scholar] [CrossRef]
- Chen, R.; Liu, H.; Zhang, P.; Ma, J.; Jin, M. Co-Response of Fe-Reducing/Oxidizing Bacteria and Fe Species to the Dynamic Redox Cycles of Natural Sediment. Sci. Total Environ. 2022, 815, 152953. [Google Scholar] [CrossRef]
- Han, R.; Lv, J.; Huang, Z.; Zhang, S.; Zhang, S. Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides. Environ. Sci. Technol. 2020, 54, 902–910. [Google Scholar] [CrossRef]
- Dong, H.; Coffin, E.S.; Sheng, Y.; Duley, M.L.; Khalifa, Y.M. Microbial Reduction of Fe(III) in Nontronite: Role of Biochar as a Redox Mediator. Geochim. Cosmochim. Acta 2023, 345, 102–116. [Google Scholar] [CrossRef]
- Pi, K.; Markelova, E.; Zhang, P.; Van Cappellen, P. Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence. Environ. Sci. Technol. 2019, 53, 10897–10905. [Google Scholar] [CrossRef]
- Dong, H.; Kukkadapu, R.K.; Fredrickson, J.K.; Zachara, J.M.; Kennedy, D.W.; Kostandarithes, H.M. Microbial Reduction of Structural Fe(III) in Illite and Goethite. Environ. Sci. Technol. 2003, 37, 1268–1276. [Google Scholar] [CrossRef]
- You, X.; Liu, S.; Berns-Herrboldt, E.C.; Dai, C.; Werth, C.J. Kinetics of Hydroxyl Radical Production from Oxygenation of Reduced Iron Minerals and Their Reactivity with Trichloroethene: Effects of Iron Amounts, Iron Species, and Sulfate Reducing Bacteria. Environ. Sci. Technol. 2023, 57, 4892–4904. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.J.; Bach, W.; McCollom, T.M.; Rogers, D.R. Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea. Geomicrobiol. J. 2004, 21, 393–404. [Google Scholar] [CrossRef]
- Jones, S.; Santini, J.M. Mechanisms of Bioleaching: Iron and Sulfur Oxidation by Acidophilic Microorganisms. Essays Biochem. 2023, 67, 685–699. [Google Scholar]
- Xie, Z.H.; He, C.S.; Pei, D.N.; Dong, Y.; Yang, S.R.; Xiong, Z.; Zhou, P.; Pan, Z.C.; Yao, G.; Lai, B. Review of Characteristics, Generation Pathways and Detection Methods of Singlet Oxygen Generated in Advanced Oxidation Processes (AOPs). Chem. Eng. J. 2023, 468, 143778. [Google Scholar] [CrossRef]
- Sun, Y.; Han, W.; Zhang, F.; Li, H.; Zhang, Z.; Zhang, X.; Shen, B.; Guo, S.Q.; Ma, T. Dual Defect Regulation of BiOCl Halogen Layer Enables Photocatalytic O2 Activation into Singlet Oxygen for Refractory Aromatic Pollutant Removal. Appl. Catal. B 2024, 345, 123689. [Google Scholar] [CrossRef]
- Yu, W.; Zheng, X.; Tan, M.; Wang, J.; Wu, B.; Ma, J.; Pan, Y.; Chen, B.; Chu, C. Field Quantification of Hydroxyl Radicals by Flow-Injection Chemiluminescence Analysis with a Portable Device. Environ. Sci. Technol. 2024, 58, 2808–2816. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, Y.; Xia, D.; Wei, Z.; Spinney, R.; Dionysiou, D.D.; Minakata, D.; Xiao, R.; Xie, H.-B.; Chai, L. Mechanistic Understanding of Superoxide Radical-Mediated Degradation of Perfluorocarboxylic Acids. Environ. Sci. Technol. 2022, 56, 624–633. [Google Scholar] [CrossRef]
- Wang, R.; Chen, H.; He, Z.; Zhang, S.; Wang, K.; Ren, N.; Ho, S.-H. Discovery of an End-to-End Pattern for Contaminant-Oriented Advanced Oxidation Processes Catalyzed by Biochar with Explainable Machine Learning. Environ. Sci. Technol. 2024, 58, 16867–16876. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Huang, J.; Tian, Y.; Hu, Z.; Luo, Z.; Wang, J.; Guo, Y. Machine-Learning-Assisted Descriptors Identification for Indoor Formaldehyde Oxidation Catalysts. Environ. Sci. Technol. 2024, 58, 8372–8379. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, R.; Coutris, C.; Nguyen, N.H.A.; Sevcu, A.; Gallego-Urrea, J.A.; Baun, A.; Joner, E.J. Ecotoxicity Testing and Environmental Risk Assessment of Iron Nanomaterials for Sub-Surface Remediation—Recommendations from the FP7 Project NanoRem. Chemosphere 2017, 182, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yi, K.; Chen, A.; Shao, J.; Peng, L.; Luo, S. Toxicity of Zero-Valent Iron Nanoparticles to Soil Organisms and the Associated Defense Mechanisms: A Review. Ecotoxicology 2022, 31, 873–883. [Google Scholar] [CrossRef]
- Zeng, G.; He, Y.; Wang, F.; Luo, H.; Liang, D.; Wang, J.; Huang, J.; Yu, C.; Jin, L.; Sun, D. Toxicity of Nanoscale Zero-Valent Iron to Soil Microorganisms and Related Defense Mechanisms: A Review. Toxics 2023, 11, 514. [Google Scholar] [CrossRef]
Pollutant | Material | Reaction Mechanism | Reference |
---|---|---|---|
Trichloroethylene | nZVI | Reductive dechlorination | [48] |
Trichloroethylene | mZVI | Reductive dechlorination | [49] |
Trichloroethylene | S-nZVI | Reductive dechlorination | [50] |
Trichloroethylene | S-mZVI | Reductive dechlorination | [49] |
Trichloroethylene | FexN | Reductive dechlorination | [51] |
Chloroform | S–N(C)–ZVI | Reductive dechlorination | [52] |
Florfenicol | S-nZVI | Reductive dehalogenation | [53] |
Fluorenone | Fe3O4 | H2O2 activation | [54] |
Trichloroethylene | Reduced nontronite | H2O2 activation | [55] |
Diethyl phthalate | Reduced nontronite | H2O2 activation | [56] |
Trichloroethylene | FeS | CaO2 activation | [57] |
Sulfanilamide | FeS2 | CaO2 activation | [58] |
Phenanthrene | FeCo-BDC | Peroxymonosulfate activation | [59] |
Perfluorooctanic acid | Fe/AC | Persulfate activation | [60] |
Trichloroethylene | nZVI | Persulfate activation | [61] |
Ciprofloxacin | FeS2 | Persulfate activation | [62] |
Bisphenol A | Fe3S4 | Peroxymonosulfate activation | [63] |
Bisphenol AF | FeS | Periodate activation | [64] |
Tetracycline | ZVI | Peracetic acid activation | [65] |
Sulfamethoxazole | FeS | Peracetic acid activation | [66] |
Species | Redox Potential (V) | Reference |
---|---|---|
Fe0/Fe(II) | −0.44 (vs. SHE) | [80] |
Structural Fe(II)/Fe(III) of pyrite | 0.66 (vs. SHE) | [81] |
Structural Fe(II)/Fe(III) of clay mineral | −0.6 to +0.6 (vs. SHE) | [82] |
Fe(III)/Fe(II)-CA | 0.37 (vs. NHE) | [83] |
Fe(III)/Fe(II)-OA | 0.002 (vs. NHE) | [83] |
Fe(III)/Fe(II)-EDTA | 0.12, 0.11, and 0.096 (vs. NHE) | [83] |
Fe(III)/Fe(II)-EDDS | 0.19 (vs. NHE) | [83] |
Fe(III)/Fe(II)-NTA | 0.10 and 0.39 (vs. NHE) | [83] |
Fe(H2O)62+/Fe(H2O)63+ | 0.77 (vs. NHE) | [83] |
Material | Pollutant | Removal Ratio (%) | Reaction Time (h) | pH | Rate Constant | Reference |
---|---|---|---|---|---|---|
ZVI | EDTA | 100 | 2.5 | 6.0 ± 0.2 | 1.02 h−1 | [68] |
nZVI | 2-Chlorobiphenyl | 59.4 | 4 | 5.0 | 0.0035 min−1 | [84] |
S-nZVI | Bisphenol A | 100 | 6 | 5.0 | 59.2 ± 2.29 h−1 | [85] |
Fe@Fe2O3 | 4-Chlorophenol | 77.8 | 7 | 6.0 | 0.22 h−1 | [89] |
Al–Fe | 4-Chlorophenol | 43.7 | 5 | 2.5 | N/A | [91] |
Fe/Cu | 4-Chlorophenol | 100 | 2 | 3.0 | N/A | [92] |
Fe/Cu | Diclofenac | 96 | 2 | 6.0 | N/A | [93] |
Mg/Fe | 4-Chlorophenol | 100 | 0.75 | 3.0 | N/A | [94] |
Fe/Mn | Enrofloxacin | 100 | 1 | 3.0 | N/A | [95] |
ZVI | Enrofloxacin | 58.6 | 1 | 3.0 | N/A | [95] |
S-nZVI | p-Nitrophenol | 99.3 * | 2 | 7.6 | 0.769 min−1 | [96] |
mZVI/NGB | Tetracycline | 100 | 0.83 | 5.8 | N/A | [97] |
3D-GN@nZVI | Sulfadiazine | 81.0 | 2 | 3.0 | N/A | [98] |
Cu/Fe-BC | Ciprofloxacin | 93.2 * | 1.5 | 5.0 | 0.052 min−1 | [99] |
Cu/Fe-BC | Enrofloxacin | 88.9 * | 1.5 | 5.0 | 0.036 min−1 | [99] |
Cu/Fe-BC | Norfloxacin | 95.4 * | 1.5 | 5.0 | 0.096 min−1 | [99] |
Cu/Fe-BC | Tetracycline | 82.3 * | 1.5 | 5.0 | 0.037 min−1 | [99] |
Cu/Fe-BC | Methylene blue | 95.6 * | 1.5 | 5.0 | 0.145 min−1 | [99] |
ZVI-BC | Tetracycline | 93.1 | 6 | Unadjusted | N/A | [100] |
Zn-Fe-CNTs | Sulfamethoxazole | 95.3 | 0.33 | 1.5 | N/A | [101] |
Zn-Fe-CNTs | 4-Chlorophenol | 90.8 | 0.33 | 2.0 | N/A | [102] |
nZVI@MSN | Nitrobenzene | 96.5 | 0.33 | 3.0 | 0.201 min−1 | [103] |
Material | Pollutant | Removal Ratio (%) | Reaction Time (h) | pH | Rate Constant | Reference |
---|---|---|---|---|---|---|
Magnetite | 2-Chlorobiphenyl | 80 | 4 | 3.0 | N/A | [149] |
Cu0/Fe3O4 | 4-Chlorophenol | 99.5 | 1 | 7.0 | 0.073 min−1 | [151] |
Zn0-CNTs-Fe3O4 | 4-Chlorophenol | 99 | 0.33 | 1.5 | N/A | [152] |
CNTs-Fe3O4 | 4-Chlorophenol | 25 | 0.33 | 1.5 | N/A | [152] |
b-CoS2/Fe3O4 | 4-Nitrophenol | 62.3 * | 0.25 | 5.0 | N/A | [153] |
b-CoS2/Fe3O4 | Methyl orange | 85.7 | 0.25 | 5.0 | N/A | [153] |
b-CoS2/Fe3O4 | Sulfadiazine | 67.1 | 0.25 | 5.0 | N/A | [153] |
b-CoS2/Fe3O4 | Tetracycline | 96.0 | 0.25 | 5.0 | N/A | [153] |
b-CoS2/Fe3O4 | Rhodamine b | 98.6 * | 0.25 | 5.0 | N/A | [153] |
b-CoS2/Fe3O4 | Malachite green | 91.5 * | 0.25 | 5.0 | N/A | [153] |
Ferrihydrite | Phenol | 29.8 * | 10 | 7.0 | N/A | [154] |
Species | Log β of Fe(II)-Complex | Log β of Fe(III)-Complex | Reaction Rate Constants with •OH (M−1 s−1) | Reference |
---|---|---|---|---|
EDTA | 14.3 | 25.1 | 2.0 × 109 | [83] |
EDDS | N/A | 20.6 | 2.5 × 109 | [83,187] |
NTA | 8.05 | 15.90 | 5.5 ×108 | [83,186] |
CA | 3.2 | 8.36–12.38 and 11.5 | 3.2 × 108 | [83] |
OA | > 4.70 | 9.4 | 1.0 × 107 | [83] |
HA | N/A | 6.65–7.59 | N/A | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Xu, L.; Wang, H.; Jiang, C. Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites. Toxics 2024, 12, 773. https://doi.org/10.3390/toxics12110773
He F, Xu L, Wang H, Jiang C. Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites. Toxics. 2024; 12(11):773. https://doi.org/10.3390/toxics12110773
Chicago/Turabian StyleHe, Fangru, Lianrui Xu, Hongyang Wang, and Chuanjia Jiang. 2024. "Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites" Toxics 12, no. 11: 773. https://doi.org/10.3390/toxics12110773
APA StyleHe, F., Xu, L., Wang, H., & Jiang, C. (2024). Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites. Toxics, 12(11), 773. https://doi.org/10.3390/toxics12110773