Toxicological and Biomarker Assessment of Freshwater Zebra Mussels (Dreissena polymorpha) Exposed to Nano-Polystyrene
Abstract
:1. Introduction
2. Methodology
2.1. Materials and Model Organisms
2.1.1. Dreissena polymorpha Collection
2.1.2. D. polymorpha Maintenance
2.1.3. Nano-Polystyrene Spheres (NPS)
2.2. Methods
2.2.1. NPS Toxicological Exposure Testing (NTET)
2.2.2. Clearance Rate Testing (CR)
2.2.3. Fulton’s Condition Factor Testing
2.2.4. Dissection, Homogenate Preparation for Biomarker Testing
2.2.5. Glutathione S-Transferase (GST)
2.2.6. Lipid Peroxidation
2.2.7. Metallothionein
2.2.8. DNA Strand Breaks (DSB)
2.2.9. Ferric Reducing Antioxidant Power (FRAP)
2.2.10. Statistical Analysis
3. Results
3.1. Acute NPS Toxicity
3.2. Clearance Rate Analysis
3.3. Condition Factor (kc) of Zebra Mussels
3.4. Biomarker Assay Results
3.4.1. Glutathione S-Transferase Activity
3.4.2. Lipid Peroxidation Activity
3.4.3. Metallothioneins
3.4.4. DNA Strand Breaks
3.4.5. Ferric Reducing Antioxidant Power Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Husain, I.; Alalyanib, M.; Hanga, A.H. Al Disposable Plastic Food Container and Its Impacts on Health. J. Energy Environ. Sci. 2015, 130, 618–623. [Google Scholar]
- Yurtsever, M.; Yurtsever, U. Commonly Used Disposable Plastic Bags as a Source of Microplastic in Environment. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea; Springer Water; Springer: Cham, Switzerland, 2018; pp. 99–106. [Google Scholar] [CrossRef]
- Kole, J.P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef] [PubMed]
- Brandon, J.; Goldstein, M.; Ohman, M.D. Long-term aging and degradation of microplastic particles: Comparing in situ oceanic and experimental weathering patterns. Mar. Pollut. Bull. 2016, 110, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.; Nihei, Y.; Kudou, K.; Hinata, H. Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environ. Pollut. 2019, 244, 958–965. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef]
- Klaeger, F.; Tagg, A.S.; Otto, S.; Bienmüller, M.; Sartorius, I.; Labrenz, M. Residual Monomer Content Affects the Interpretation of Plastic Degradation. Sci. Rep. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Van den Oever, M.; Molenveld, K.; van der Zee, M.; Bos, H. Bio-Based and Biodegradable Plastics: Facts and Figures: Focus. on Food Packaging in the Netherlands (No. 1722); Wageningen Food & Biobased Research; Wageningen University & Research: Wageningen, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Adamcova, D.; Vaverkova, M. Biodegradation of degradable/biodegradable plastic material in controlled composting environment. Pol. J. Environ. Stud. 2014, 23, 1465–1474. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 116. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, D.; Pinheiro, C.; Amorim, J.; Oliva-Teles, L.; Guilhermino, L.; Vieira, M.N. Microplastic pollution in commercial salt for human consumption: A review. Estuar. Coast. Shelf Sci. 2019, 219, 161–168. [Google Scholar] [CrossRef]
- Yan, M.; Nie, H.; Xu, K.; He, Y.; Hu, Y.; Huang, Y.; Wang, J. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China. Chemosphere 2019, 217, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.D.; Wertz, H.; Leads, R.R.; Weinstein, J.E. Microplastic in two South Carolina Estuaries: Occurrence, distribution, and composition. Mar. Pollut. Bull. 2018, 128, 223–233. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, L.; Wang, T.; Li, D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Mar. Pollut. Bull. 2014, 86, 562–568. [Google Scholar] [CrossRef]
- Cincinelli, A.; Martellini, T.; Guerranti, C.; Scopetani, C.; Chelazzi, D.; Giarrizzo, T. A potpourri of microplastics in the sea surface and water column of the Mediterranean Sea. TrAC Trends Anal. Chem. 2019, 110, 321–326. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Setälä, O.; Heinonen, M.; Koistinen, A. How well is microlitter purified from wastewater?—A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res. 2017, 109, 164–172. [Google Scholar] [CrossRef]
- Raju, S.; Carbery, M.; Kuttykattil, A.; Senathirajah, K.; Subashchandrabose, S.R.; Evans, G.; Thavamani, P. Transport and fate of microplastics in wastewater treatment plants: Implications to environmental health. Rev. Environ. Sci. Biotechnol. 2018, 17, 637–653. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. Wastewater treatment plant effluent as a source of microplastics: Review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci. Technol. 2016, 74, 2253–2269. [Google Scholar] [CrossRef]
- Magni, S.; Binelli, A.; Pittura, L.; Avio, C.G.; Della Torre, C.; Parenti, C.C.; Gorbi, S.; Regoli, F. The fate of microplastics in an Italian Wastewater Treatment Plant. Sci. Total Environ. 2019, 652, 602–610. [Google Scholar] [CrossRef]
- Sheth, J.; Shah, D. Marine Pollution from Plastics and Microplastics. J. Mar. Biol. Oceanogr. 2019, 8, 1000201. [Google Scholar]
- Batley, G.E.; Kirby, J.K.; McLaughlin, M.J. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc. Chem. Res. 2013, 46, 854–862. [Google Scholar] [CrossRef]
- Abueg, L.C. A Survey of the Ocean’s Plastic Waste Problem, and Some Policy Developments of the Philippines; MPRA: Munich, Germany, 2019; pp. 1–19. [Google Scholar]
- Bouwman, H.; Minnaar, K.; Bezuidenhout, C.; Verster, C. Microplastics in Freshwater Environments: A Scoping Study; Water Research Commission. Report No. 2610/1/18; North West University: Potchefstroom, South Africa, 2018. [Google Scholar]
- Xiang, Q.; Zhou, Y.; Tan, C. Toxicity Effects of Polystyrene Nanoplastics with Different Sizes on Freshwater Microalgae Chlorella Vulgaris. Molecules 2023, 28, 3958. [Google Scholar] [CrossRef]
- Reynolds, A.; Giltrap, D.M.; Chambers, P.G. Acute Growth Inhibition & Toxicity Analysis of Nano-Polystyrene Spheres on Raphidocelis Subcapitata. Ecotoxicol. Environ. Saf. 2021, 207, 111153. [Google Scholar] [CrossRef]
- Sheng, C.; Zhang, S.; Zhang, Y. The Influence of Different Polymer Types of Microplastics on Adsorption, Accumulation, and Toxicity of Triclosan in Zebrafish. J. Hazard. Mater. 2021, 402, 123733. [Google Scholar] [CrossRef]
- Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Bellas, J.; Monteiro, S.M. Single and Combined Acute and Subchronic Toxic Effects of Microplastics and Copper in Zebrafish (Danio Rerio) Early Life Stages. Chemosphere 2021, 277, 130262. [Google Scholar] [CrossRef]
- Manuel, P.; Almeida, M.; Martins, M.; Oliveira, M. Effects of Nanoplastics on Zebrafish Embryo-Larval Stages: A Case Study with Polystyrene (PS) and Polymethylmethacrylate (PMMA) Particles. Environ. Res. 2022, 213, 113584. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Benedetti, M.; d’Errico, G.; Regoli, F.; Bebianno, M.J. Polystyrene Nanoplastics in the Marine Mussel Mytilus Galloprovincialis. Environ. Pollut. 2023, 333, 122104. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Sousa, V.S.; Teixeira, M.R.; Bebianno, M.J. Chronic Toxicity of Polystyrene Nanoparticles in the Marine Mussel Mytilus Galloprovincialis. Chemosphere 2022, 287, 132356. [Google Scholar] [CrossRef]
- Roman, C.; Mahé, P.; Latchere, O.; Catrouillet, C.; Gigault, J.; Métais, I.; Châtel, A. Effect of Size Continuum from Nanoplastics to Microplastics on Marine Mussel Mytilus Edulis: Comparison in Vitro/in Vivo Exposure Scenarios. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 264, 109512. [Google Scholar] [CrossRef]
- Pencik, O.; Durdakova, M.; Molnarova, K.; Kucsera, A.; Klofac, D.; Kolackova, M.; Adam, V.; Huska, D. Microplastics and Nanoplastics Toxicity Assays: A Revision towards to Environmental-Relevance in Water Environment. J. Hazard. Mater. 2023, 454, 131476. [Google Scholar] [CrossRef]
- Gong, H.; Li, R.; Li, F.; Guo, X.; Xu, L.; Gan, L.; Yan, M.; Wang, J. Toxicity of Nanoplastics to Aquatic Organisms: Genotoxicity, Cytotoxicity, Individual Level and beyond Individual Level. J. Hazard. Mater. 2023, 443, 130266. [Google Scholar] [CrossRef]
- Geremia, E.; Muscari Tomajoli, M.T.; Murano, C.; Petito, A.; Fasciolo, G. The Impact of Micro- and Nanoplastics on Aquatic Organisms: Mechanisms of Oxidative Stress and Implications for Human Health—A Review. Environments 2023, 10, 161. [Google Scholar] [CrossRef]
- Bråte, I.L.N.; Hurley, R.; Iversen, K.; Beyer, J.; Thomas, K.V.; Steindal, C.C.; Green, N.W.; Olsen, M.; Lusher, A. Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study. Environ. Pollut. 2018, 243, 383–393. [Google Scholar] [CrossRef]
- Nam, P.N.; Tuan, P.Q.; Thuy, D.T.; Quynh, L.T.P.; Amiard, F. Contamination of microplastics in bivalve first evaluation in Vietnam. Vietnam J. Earth Sci. 2019, 41, 252–258. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Claessens, M.; Vandegehuchte, M.B.; Janssen, C.R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 2015, 199, 10–17. [Google Scholar] [CrossRef]
- Green, D.S. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut. 2016, 216, 95–103. [Google Scholar] [CrossRef]
- Zhao, S.; Ward, J.E.; Danley, M.; Mincer, T.J. Field-Based Evidence for Microplastic in Marine Aggregates and Mussels: Implications for Trophic Transfer. Environ. Sci. Technol. 2018, 52, 11038–11048. [Google Scholar] [CrossRef]
- Reynolds, A.; Giltrap, M.; Chambers, G. Evaluation of non-invasive toxicological analysis of nano-polystyrene in relative in vivo conditions to D. magna. Environ. Sci. Nano 2019, 6, 2832–2849. [Google Scholar] [CrossRef]
- Vaughan, R.; Turner, S.D.; Rose, N.L. Microplastics in the sediments of a UK urban lake. Environ. Pollut. 2017, 229, 10–18. [Google Scholar] [CrossRef]
- Horton, A.A.; Svendsen, C.; Williams, R.J.; Spurgeon, D.J.; Lahive, E. Large microplastic particles in sediments of tributaries of the River Thames, UK—Abundance, sources and methods for effective quantification. Mar. Pollut. Bull. 2017, 114, 218–226. [Google Scholar] [CrossRef]
- Di, M.; Wang, J. Microplastics in Surface Waters and Sediments of the Three Gorges Reservoir, China. Sci. Total Environ. 2018, 616–617, 1620–1627. [Google Scholar] [CrossRef]
- Corcoran, P.L.; Norris, T.; Ceccanese, T.; Walzak, M.J.; Helm, P.A.; Marvin, C.H. Hidden Plastics of Lake Ontario, Canada and Their Potential Preservation in the Sediment Record. Environ. Pollut. 2015, 204, 17–25. [Google Scholar] [CrossRef]
- Khan, M.B.; Prezant, R.S. Microplastic Abundances in a Mussel Bed and Ingestion by the Ribbed Marsh Mussel Geukensia Demissa. Mar. Pollut. Bull. 2018, 130, 67–75. [Google Scholar] [CrossRef]
- Lancioni, T.; Gaino, E. The Invasive Zebra Mussel Dreissena Polymorpha in Lake Trasimeno (Central Italy): Distribution and Reproduction. Ital. J. Zool. 2006, 73, 335–346. [Google Scholar] [CrossRef]
- Strayer, D.L.; Malcom, H.M. Effects of Zebra Mussels (Dreissena Polymorpha) on Native Bivalves: The Beginning of The End or The End of the Beginning? N. Am. Benthol. Soc. 2007, 26, 111–122. [Google Scholar] [CrossRef]
- Strayer, D.L.; Hattala, K.A.; Kahnle, A.W. Effects of an Invasive Bivalve (Dreissena Polymorpha) on Fish in the Hudson River Estuary. Can. J. Fish. Aquat. Sci. 2004, 61, 924–941. [Google Scholar] [CrossRef]
- Cope, W.G.; Bartsch, M.R.; Hightower, J.E. Population Dynamics of Zebra Mussels Dreissena Polymorpha (Pallas, 1771) during the Initial Invasion of the Upper Mississippi River, USA. J. Molluscan Stud. 2006, 72, 179–188. [Google Scholar] [CrossRef]
- Nienhuis, S.; Haxton, T.J.; Dunkley, T.C. An Empirical Analysis of the Consequences of Zebra Mussel Invasions on Fisheries in Inland, Freshwater Lakes in Southern Ontario. Manag. Biol. Invasions 2014, 5, 287–302. [Google Scholar] [CrossRef]
- Reed-Andersen, T.; Carpenter, S.R.; Padilla, D.K.; Lathrop, R.C. Predicted Impact of Zebra Mussel (Dreissena Polymorpha) Invasion on Water Clarity in Lake Mendota. Can. J. Fish. Aquat. Sci. 2000, 57, 1617–1626. [Google Scholar] [CrossRef]
- McLaughlan, C.; Aldridge, D.C. Cultivation of Zebra Mussels (Dreissena Polymorpha) within Their Invaded Range to Improve Water Quality in Reservoirs. Water Res. 2013, 47, 4357–4369. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Aldridge, D.C.; Moggridge, G.D. Zebra Mussel Filtration and Its Potential Uses in Industrial Water Treatment. Water Res. 2008, 42, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.A. Determining Effective Decontamination Methods for Watercraft Exposed to Zebra Mussels Dreissena polymorph (Pallas 1776), That Do Not Use Hot Water with High Pressure Spray; Occasional Paper No. 52, Collection of Papers 2; State University of New York, College of Oneonta: Oneonta, NY, USA, 2010. [Google Scholar]
- MacIsaac, H.J. Potential Abiotic and Biotic Impacts of Zebra Mussels on the Inland Waters of North America. Am. Zool. 1996, 36, 287–299. [Google Scholar] [CrossRef]
- McMahon, R.F. The Physiological Ecology of the Zebra Mussel, Dreissena Polymorpha, in North America and Europe. Am. Zool. 1996, 36, 339–363. [Google Scholar] [CrossRef]
- Navarro, A.; Sánchez-Fontenla, J.; Cordero, D.; Faria, M.; Peña, J.B.; Saavedra, C.; Blázquez, M.; Ruíz, O.; Ureña, R.; Torreblanca, A.; et al. Genetic and Phenoptypic Differentiation of Zebra Mussel Populations Colonizing Spanish River Basins. Ecotoxicology 2013, 22, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Sykes, C.L.; Wilson, W.D. Challenges of Developing a Molluscicide for Use on Dreissena Rostriformis Bugensis Veligers in Fish Transport Tanks. In Biology and Management of Invasive Quagga and Zebra Mussels in the Western United States; Routledge: London, UK, 2015; pp. 488–502. [Google Scholar]
- Voets, J.; Talloen, W.; de Tender, T.; van Dongen, S.; Covaci, A.; Blust, R.; Bervoets, L. Microcontaminant Accumulation, Physiological Condition and Bilateral Asymmetry in Zebra Mussels (Dreissena Polymorpha) from Clean and Contaminated Surface Waters. Aquat. Toxicol. 2006, 79, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Lucy, F.E.; Connolly, M.; Graczyk, T.K.; Tamang, L.; Sullivan, M.R.; Mastitsky, S.E. Zebra Mussels (Dreissena Polymorpha) Are Effective Sentinels of Water Quality Irrespective of Their Size. Aquat. Invasions 2010, 5, 49–57. [Google Scholar] [CrossRef]
- Binelli, A.; Della Torre, C.; Magni, S.; Parolini, M. Does Zebra Mussel (Dreissena Polymorpha) Represent the Freshwater Counterpart of Mytilus in Ecotoxicological Studies? A Critical Review. Environ. Pollut. 2015, 196, 386–403. [Google Scholar] [CrossRef]
- Quinn, B.; Costello, M.J.; Dorange, G.; Wilson, J.G.; Mothersill, C. Development of an in Vitro Culture Method for Cells and Tissues from the Zebra Mussel (Dreissena Polymorpha). Cytotechnology 2009, 59, 121–134. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; D’Errico, G.; Pauletto, M.; Bargelloni, L.; Regoli, F. Pollutants Bioavailability and Toxicological Risk from Microplastics to Marine Mussels. Environ. Pollut. 2015, 198, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Arini, A.; Muller, S.; Coma, V.; Grau, E.; Sandre, O.; Baudrimont, M. Origin, Exposure Routes and Xenobiotics Impart Nanoplastics with Toxic Effects on Freshwater Bivalves. Environ. Sci. Nano 2023, 10, 1352–1371. [Google Scholar] [CrossRef]
- Weber, A.; Jeckel, N.; Wagner, M. Combined Effects of Polystyrene Microplastics and Thermal Stress on the Freshwater Mussel Dreissena Polymorpha. Sci. Total Environ. 2020, 718, 137253. [Google Scholar] [CrossRef] [PubMed]
- Hongyu, Z.; Rozdina, D.; Kozuharov, D.; Traykov, I. Accumulation of Microplastics in Zebra Mussel (Dreissena Polymorpha, Pallas, 1771) in the Sand Pit Lake Kazichene, Bulgaria. IOP Conf. Ser. Earth Environ. Sci. 2024, 1305, 012005. [Google Scholar] [CrossRef]
- Atamanalp, M.; Kokturk, M.; Gündüz, F.; Parlak, V.; Ucar, A.; Alwazeer, D.; Alak, G. The Use of Zebra Mussel (Dreissena Polymorpha) as a Sentinel Species for the Microplastic Pollution of Freshwater: The Case of Beyhan Dam Lake, Turkey. Sustainability 2023, 15, 1422. [Google Scholar] [CrossRef]
- Pastorino, P.; Prearo, M.; Anselmi, S.; Menconi, V.; Bertoli, M.; Dondo, A.; Pizzul, E.; Renzi, M. Use of the Zebra Mussel Dreissena Polymorpha (Mollusca, Bivalvia) as a Bioindicator of Microplastics Pollution in Freshwater Ecosystems: A Case Study from Lake Iseo (North Italy). Water 2021, 13, 434. [Google Scholar] [CrossRef]
- Hanana, H.; Turcotte, P.; Pilote, M.; Auclair, J.; Gagnon, C.; Gagne, F. Biomarker Assessment of Lanthanum on a Freshwater Invertebrate, Dreissena Polymorpha. SOJ Biochem. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Quinn, B.; Gagné, F.; Blaise, C.; Costello, M.J.; Wilson, J.G.; Mothersill, C. Evaluation of the Lethal and Sub-Lethal Toxicity and Potential Endocrine Disrupting Effect of Nonylphenol on the Zebra Mussel (Dreissena Polymorpha). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 118–127. [Google Scholar] [CrossRef]
- Guilhermino, L.; Vieira, L.R.; Ribeiro, D.; Tavares, A.S.; Cardoso, V.; Alves, A.; Almeida, J.M. Uptake and Effects of the Antimicrobial Florfenicol, Microplastics and Their Mixtures on Freshwater Exotic Invasive Bivalve Corbicula Fluminea. Sci. Total Environ. 2018, 622–623, 1131–1142. [Google Scholar] [CrossRef]
- Rosety, M.; Ribelles, A.; Rosety-Rodriguez, M.; Carrasco, C.; Ordonez, F.J.; Rosety, J.M. Morpho-Histochemical Study of the Biological Effects of Sodium Dodecyl Sulphate on the Digestive Gland of the Portuguese Oyster. Histol. Histopathol. 2000, 15, 1137–1143. [Google Scholar] [CrossRef]
- Giltrap, M.; Ronan, J.; Hardenberg, S.; Parkes, G.; McHugh, B.; McGovern, E.; Wilson, J.G. Assessment of Biomarkers in Mytilus Edulis to Determine Good Environmental Status for Implementation of MSFD in Ireland. Mar. Pollut. Bull. 2013, 71, 240–249. [Google Scholar] [CrossRef]
- OECD Environment, Health and Safety Publications. OECD Guideline No. 121 Detailed Review Paper on Molluscs Life-Cycle Toxicity Testing; The Working Party on Chemicals, Pesticides and Biotechnology Environment; OECD: Paris, France, 2009; Volume 33, pp. 1–16. [Google Scholar] [CrossRef]
- Schnitzer, E.; Pinchuk, I.; Lichtenberg, D. Peroxidation of Liposomal Lipids. Eur. Biophys. J. 2007, 36, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Ruttkay-Nedecky, B.; Nejdl, L.; Gumulec, J.; Zitka, O.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. The Role of Metallothionein in Oxidative Stress. Int. J. Mol. Sci. 2013, 14, 6044–6066. [Google Scholar] [CrossRef] [PubMed]
- Viarengo, A.; Ponzano, E.; Dondero, F.; Fabbri, R. A Simple Spectrophotometric Method for Metallothionein Evaluation in Marine Organisms: An Application to Mediterranean and Antarctic Molluscs. Mar. Environ. Res. 1997, 44, 69–84. [Google Scholar] [CrossRef]
- Linde, A.R.; Garcia-Vazquez, E. A Simple Assay to Quantify Metallothionein Helps to Learn about Bioindicators and Environmental Health. Biochem. Mol. Biol. Educ. 2006, 34, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, I.; Nentwich, M.; Fiedeler, U.; Gazso, A.; Simko, M. Nano Regulation in the European Union. Inst. Technol. Assess. Austrian Acad. Ciences 2010, 17, 1–6. [Google Scholar] [CrossRef]
- Steensgaard, I.; Syberg, K.; Rist, S.; Hartmann, N.; Boldrin, A.; Hansen, S.F. From Macro- to Microplastics—Analysis of EU Regulation along the Life Cycle of Plastic Bags. Environ. Pollut. 2017, 224, 289–299. [Google Scholar] [CrossRef]
- Rauscher, H.; Rasmussen, K.; Sokull-Klüttgen, B. Regulatory Aspects of Nanomaterials in the EU. Chem. Ing. Tech. 2017, 89, 224–231. [Google Scholar] [CrossRef]
- Carole, E.; Celine, S.-L.V.; Jesse, W.; Elizabeth, M. Legal Limits on Single-Use Plastics and Microplastics: A Global Review of National Laws and Regulation; UNEA: Nairobi, Kenya, 2018. [Google Scholar]
- Smith, E.J.; Davison, W.; Hamilton-Taylor, J. Methods for Preparing Synthetic Freshwaters. Water Res. 2002, 36, 1286–1296. [Google Scholar] [CrossRef]
- Paul-Pont, I.; Lacroix, C.; González Fernández, C.; Hégaret, H.; Lambert, C.; Le Goïc, N.; Frère, L.; Cassone, A.L.; Sussarellu, R.; Fabioux, C.; et al. Exposure of Marine Mussels Mytilus spp. to Polystyrene Microplastics: Toxicity and Influence on Fluoranthene Bioaccumulation. Environ. Pollut. 2016, 216, 724–737. [Google Scholar] [CrossRef]
- Marigómez, I.; Múgica, M.; Izagirre, U.; Sokolova, I.M. Chronic Environmental Stress Enhances Tolerance to Seasonal Gradual Warming in Marine Mussels. PLoS ONE 2017, 12, e0174359. [Google Scholar] [CrossRef]
- Kolandhasamy, P.; Su, L.; Li, J.; Qu, X.; Jabeen, K.; Shi, H. Adherence of Microplastics to Soft Tissue of Mussels: A Novel Way to Uptake Microplastics beyond Ingestion. Sci. Total Environ. 2018, 610–611, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A. Algal Culturing Techniques; Elsevier Ltd.: Amsterdam, The Netherlands, 2005; Volume 41. [Google Scholar] [CrossRef]
- Munir, N.; Imtiaz, A.; Sharif, N.; Naz, S. Optimization of Growth Conditions of Different Algal Strains and Determination of Their Lipid Contents. J. Anim. Plant Sci. 2015, 25, 546–553. [Google Scholar]
- Csavina, J.L.; Stuart, B.J.; Guy Riefler, R.; Vis, M.L. Growth Optimization of Algae for Biodiesel Production. J. Appl. Microbiol. 2011, 111, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Dorney, J. Polystyrene: A Potential Standard for Developing IIn Vitro Cellular Tracking Methods for Nanotoxicology. Ph.D. Thesis, Technological University Dublin, Dublin, Ireland, 2013. [Google Scholar] [CrossRef]
- OECD. OECD. OECD Guideline No. 202: Daphnia sp., Acute Immobillisation Test. In OECD Guidelines for Testing of Chemicals; OECD: Paris, France, 2004. [Google Scholar]
- Widdows, J.; Staff, F. Biological Effects of Contaminants: Measurement of Scope for Growth in Mussels. Tech. Mar. Environ. Sci. 2006, 40, 34. [Google Scholar] [CrossRef]
- Quinn, B.; Schmidt, W.; O’Rourke, K.; Hernan, R. Effects of the Pharmaceuticals Gemfibrozil and Diclofenac on Biomarker Expression in the Zebra Mussel (Dreissena Polymorpha) and Their Comparison with Standardised Toxicity Tests. Chemosphere 2011, 84, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.S.H.; Lim, S.L. Ferric Reducing Capacity Versus Ferric Reducing Antioxidant Power for Measuring Total Antioxidant Capacity. Lab. Med. 2013, 44, 51–55. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Mussatto, S. Ferric Reducing Antioxidant Power (Frap) Assay; No. 408; BioVision: Milpitas, CA, USA, 2010; p. 593. [Google Scholar]
- Imanpour Namin, J.; Nami, E.; Heidary, S. Length-Weight Relationship and Fulton’s Condition Factor of Macrobrachium Nipponense (De Haan, 1849) in Southern Coasts of the Caspian Sea-Iran. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 1650–1656. [Google Scholar]
- Sethukali, A.; Nadeeka Thushari, G.G.; Darshaka Jayasena, D. Comparative Analysis of Morphological Characteristics of Clam (Marcia Opima) in Mannar Coastal Belt, Sri Lanka. Int. J. Fish. Aquat. Stud. 2018, 6, 392–399. [Google Scholar]
- Li, Y.; Zhou, F.; Ma, Z.; Huang, J.; Jiang, S.; Yang, Q.; Li, T.; Qin, J.G. Length–Weight Relationship and Condition Factor of Giant Tiger Shrimp, Penaeus Monodon (Fabricius, 1798) from Four Breeding Families. Springerplus 2016, 5, 1279. [Google Scholar] [CrossRef]
- Mozsár, A.; Boros, G.; Sály, P.; Antal, L.; Nagy, S.A. Relationship between Fulton’s Condition Factor and Proximate Body Composition in Three Freshwater Fish Species. J. Appl. Ichthyol. 2015, 31, 315–320. [Google Scholar] [CrossRef]
- Oluwatoyin, A.; Akintade, A.; Edwin, C.; Victor, K. A Study of Length-Weight Relationship and Condition Factor of West African Blue Crab (Callinectes Pallidus) from Ojo Creek, Lagos, Nigeria. Am. J. Res. Commun. 2013, 1, 102–114. [Google Scholar]
- Patadiya, D.S.; Jawahar, P.; Jayakumar, N.; Pereira, J.J. Length: Weight Relationship and Relative Condition Factor of Indian Anchovy Stolephorus Indicus (van Hasselt, 1823) from Thoothukudi Coastal Waters. J. Entomol. Zool. Stud. 2018, 6, 279–282. [Google Scholar]
- Stevenson, R.D.; Woods, W.A. Condition Indices for Conservation: New Uses for Evolving Tools. Integr. Comp. Biol. 2006, 46, 1169–1190. [Google Scholar] [CrossRef]
- US-EPA. Ecological Effects Test 850.1300 Chronic Test. Prev. Pestic. Toxic Subst. 1996, 7101, 1–7. [Google Scholar]
- Clifton, G.; Kaplowitz, N. The Glutathione S-Transferases of the Small Intestine in the Rat. Cancer Res. 1977, 37, 788–791. [Google Scholar]
- Czuczejko, J.; Mila-Kierzenkowska, C.; Szewczyk-Golec, K. Plasma α-Glutathione S -Transferase Evaluation in Patients with Acute and Chronic Liver Injury. Can. J. Gastroenterol. Hepatol. 2019, 2019, 5850787. [Google Scholar] [CrossRef]
- Gibbs, J.; Yang, J.-S.; Slattery, J. Comparison of Human Liver and Small Intestinal Glutathione S-Transferase-Catalyzed Busulfan Conjugation in Vitro. Drug Metab. Dispos. 1998, 26, 52–55. [Google Scholar]
- Reis, B.; Carneiro, M.; Machado, J.; Azevedo, J.; Vasconcelos, V.; Martins, J. Transcriptional Responses of Glutathione Transferase Genes in Ruditapes Philippinarum Exposed to Microcystin-LR. Int. J. Mol. Sci. 2015, 16, 8397–8414. [Google Scholar] [CrossRef]
- Van Veld, P.; Lee, R. Intestinal Glutathione S-Transferase Activity in Flounder Platichthys Flesus Collected from Contaminated and Reference Sites. Mar. Ecol. Prog. Ser. 1988, 46, 61–63. [Google Scholar] [CrossRef]
- Belcheva, N.N.; Chelomin, V.P. Glutathione S-Transferase Activity in Marine Invertebrates from Peter the Great Bay in the Sea of Japan. Russ. J. Mar. Biol. 2011, 37, 62–68. [Google Scholar] [CrossRef]
- Boryslawskyj, M.; Garrood, A.C.; Pearson, J.T.; Woodhead, D. Elevation of Glutathione-S-Transferase Activity as a Stress Response to Organochlorine Compounds, in the Freshwater Mussel, Sphaerium Corneum. Mar. Environ. Res. 1988, 24, 101–104. [Google Scholar] [CrossRef]
- Baalousha, M. Effect of Nanomaterial and Media Physicochemical Properties on Nanomaterial Aggregation Kinetics. NanoImpact 2017, 6, 55–68. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Balbi, T. Interactive Effects of Nanoparticles with Other Contaminants in Aquatic Organisms: Friend or Foe? Mar. Environ. Res. 2015, 111, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 2010, 39, 1909–1924. [Google Scholar] [CrossRef]
- Hüffer, T.; Weniger, A.-K.; Hofmann, T. Data on Sorption of Organic Compounds by Aged Polystyrene Microplastic Particles. Data Brief 2018, 18, 474–479. [Google Scholar] [CrossRef]
- Ribeiro, F.; O’Brien, J.W.; Galloway, T.; Thomas, K.V. Accumulation and Fate of Nano- and Micro-Plastics and Associated Contaminants in Organisms. TrAC Trends Anal. Chem. 2019, 111, 139–147. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Z.; Wu, D.; Chen, M.; Lv, W.; Zhao, Y. Accumulation of Polystyrene Microplastics in Juvenile Eriocheir Sinensis and Oxidative Stress Effects in the Liver. Aquat. Toxicol. 2018, 200, 28–36. [Google Scholar] [CrossRef]
- Dumlu, E.G.; Bozkurt, B.; Tokaç, M.; Kiyak, G.; Özkardeş, A.B.; Ergin, M.; Yazgan, A.; Kılıç, M. Oxidative Stress and Lipid Peroxidation in the Ischemic Small Intestine: Pathological and Biochemical Evaluation in a Rat Model of Superior Mesenteric Ischemia. Int. Surg. 2014, 99, 868–874. [Google Scholar] [CrossRef]
- Siddique, Y.H.; Ara, G.; Afzal, M. Estimation of Lipid Peroxidation Induced by Hydrogen Peroxide in Cultured Human Lymphocytes. Dose-Response 2012, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Spallholz, J.E.; Boylan, L.M.; Driskell, J.A. Free Radicals, Lipid Peroxidation, and the Antioxidants. In Nutrition; CRC Press: Boca Raton, FL, USA, 1999; pp. 265–275. [Google Scholar] [CrossRef]
- Ahmad, I.; Mohmood, I.; Mieiro, C.L.; Coelho, J.P.; Pacheco, M.; Santos, M.A.; Duarte, A.C.; Pereira, E. Lipid Peroxidation vs. Antioxidant Modulation in the Bivalve Scrobicularia Plana in Response to Environmental Mercury—Organ Specificities and Age Effect. Aquat. Toxicol. 2011, 103, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Alves de Almeida, E.; Celso Dias Bainy, A.; Paula de Melo Loureiro, A.; Regina Martinez, G.; Miyamoto, S.; Onuki, J.; Fujita Barbosa, L.; Carrião Machado Garcia, C.; Manso Prado, F.; Eliza Ronsein, G.; et al. Oxidative Stress in Perna Perna and Other Bivalves as Indicators of Environmental Stress in the Brazilian Marine Environment: Antioxidants, Lipid Peroxidation and DNA Damage. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Chandurvelan, R. Investigation of Waterborne Cadmium Toxicity in the Green-Lipped Mussel, Perna Canaliculus Using Biomarkers—A Potential Bioindicator of Coastal Metal Pollution in New Zealand. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2013. [Google Scholar]
- Lund, E.K.; Fairweather-Tait, S.J.; Wharf, S.G.; Johnson, I.T. Chronic Exposure to High Levels of Dietary Iron Fortification Increases Lipid Peroxidation in the Mucosa of the Rat Large Intestine. J. Nutr. 2001, 131, 2928–2931. [Google Scholar] [CrossRef] [PubMed]
- Serino, M.; Waget, A.; Marsollier, N.; Masseboeuf, M.; Payros, G.; Kabani, C.; Denom, J.; Lacombe, A.; Thiers, J.-C.; Negre-Salvayre, A.; et al. Lipid-Induced Peroxidation in the Intestine Is Involved in Glucose Homeostasis Imbalance in Mice. PLoS ONE 2011, 6, e21184. [Google Scholar] [CrossRef]
- Desouky, M.M.A. Metallothionein Is Up-Regulated in Molluscan Responses to Cadmium, but Not Aluminum, Exposure. J. Basic Appl. Zool. 2012, 65, 139–143. [Google Scholar] [CrossRef]
- Faria, M.; Huertas, D.; Soto, D.X.; Grimalt, J.O.; Catalan, J.; Riva, M.C.; Barata, C. Contaminant Accumulation and Multi-Biomarker Responses in Field Collected Zebra Mussels (Dreissena Polymorpha) and Crayfish (Procambarus Clarkii), to Evaluate Toxicological Effects of Industrial Hazardous Dumps in the Ebro River (NE Spain). Chemosphere 2010, 78, 232–240. [Google Scholar] [CrossRef]
- Wang, W.C.; Mao, H.; Ma, D.D.; Yang, W.X. Characteristics, Functions, and Applications of Metallothionein in Aquatic Vertebrates. Front. Mar. Sci. 2014, 1, 34. [Google Scholar] [CrossRef]
- Lee, S.J.; O’Connor, B.F.; Stuart, S.A.; Wang, J.Y.J. DNA-Damage-Induced Apoptosis. In Molecular Oncology; Cambridge University Press: Cambridge, UK, 2013; pp. 465–472. [Google Scholar] [CrossRef]
- Moreira, H.; Szyjka, A.; Paliszkiewicz, K.; Barg, E. Prooxidative Activity of Celastrol Induces Apoptosis, DNA Damage, and Cell Cycle Arrest in Drug-Resistant Human Colon Cancer Cells. Oxid. Med. Cell. Longev. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Nowsheen, S.; Yang, E. The Intersection between DNA Damage Response and Cell Death Pathways. Exp. Oncol. 2012, 34, 243. [Google Scholar]
- Roos, W.P.; Kaina, B. DNA Damage-Induced Cell Death by Apoptosis. Trends Mol. Med. 2006, 12, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Surova, O.; Zhivotovsky, B. Various Modes of Cell Death Induced by DNA Damage. Oncogene 2013, 32, 3789–3797. [Google Scholar] [CrossRef] [PubMed]
- Borges, H.L.; Linden, R.; Wang, J.Y. DNA Damage-Induced Cell Death: Lessons from the Central Nervous System. Cell Res. 2008, 18, 17–26. [Google Scholar] [CrossRef] [PubMed]
- González-Soto, N.; Hatfield, J.; Katsumiti, A.; Duroudier, N.; Lacave, J.M.; Bilbao, E.; Orbea, A.; Navarro, E.; Cajaraville, M.P. Impacts of Dietary Exposure to Different Sized Polystyrene Microplastics Alone and with Sorbed Benzo[a]Pyrene on Biomarkers and Whole Organism Responses in Mussels Mytilus Galloprovincialis. Sci. Total Environ. 2019, 684, 548–566. [Google Scholar] [CrossRef] [PubMed]
- Naha, P. Eco and in Vitro Mammalian Toxicological Assessment of Polymeric Nanomaterials. Ph.D. Thesis, Technological University Dublin, Dublin, Ireland, 2011. [Google Scholar] [CrossRef]
- Ribeiro, F.; Garcia, A.R.; Pereira, B.P.; Fonseca, M.; Mestre, N.C.; Fonseca, T.G.; Ilharco, L.M.; Bebianno, M.J. Microplastics Effects in Scrobicularia Plana. Mar. Pollut. Bull. 2017, 122, 379–391. [Google Scholar] [CrossRef]
- Galloway, T.; Langston, W.; Hagger, J.; Jones, M. The Application of Biological-Effects Tools to Inform the Condition of European Marine Sites; Natural England: London, UK, 2008. [Google Scholar]
- Hagger, J.A.; Depledge, M.H.; Galloway, T.S. Toxicity of Tributyltin in the Marine Mollusc Mytilus Edulis. Mar. Pollut. Bull. 2005, 51, 811–816. [Google Scholar] [CrossRef]
- Sparks, C.; Marnewick, J.; Odendaal, J.; Snyman, R. Antioxidant Responses in Mytilus Galloprovincialis Exposed to Copper. Fresenius Environ. Bull. 2018, 27, 488–502. [Google Scholar]
- Bour, A.; Haarr, A.; Keiter, S.; Hylland, K. Environmentally Relevant Microplastic Exposure Affects Sediment-Dwelling Bivalves. Environ. Pollut. 2018, 236, 652–660. [Google Scholar] [CrossRef]
- Capolupo, M.; Franzellitti, S.; Valbonesi, P.; Lanzas, C.S.; Fabbri, E. Uptake and Transcriptional Effects of Polystyrene Microplastics in Larval Stages of the Mediterranean Mussel Mytilus Galloprovincialis. Environ. Pollut. 2018, 241, 1038–1047. [Google Scholar] [CrossRef]
- Magni, S.; Gagné, F.; André, C.; Della Torre, C.; Auclair, J.; Hanana, H.; Parenti, C.C.; Bonasoro, F.; Binelli, A. Evaluation of Uptake and Chronic Toxicity of Virgin Polystyrene Microbeads in Freshwater Zebra Mussel Dreissena Polymorpha (Mollusca: Bivalvia). Sci. Total Environ. 2018, 631–632, 778–788. [Google Scholar] [CrossRef]
- Woods, M.N.; Stack, M.E.; Fields, D.M.; Shaw, S.D.; Matrai, P.A. Microplastic Fiber Uptake, Ingestion, and Egestion Rates in the Blue Mussel (Mytilus Edulis). Mar. Pollut. Bull. 2018, 137, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Desforges, J.-P.W.; Galbraith, M.; Ross, P.S. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 2015, 69, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Effects of Microplastics on Microalgae Populations: A Critical Review. Sci. Total Environ. 2019, 665, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, X.; Wang, J.; Tan, L. Toxic Effects of Microplastic on Marine Microalgae Skeletonema Costatum: Interactions between Microplastic and Algae. Environ. Pollut. 2017, 220, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.V.; Hewins, B.; Harding, W.; MacDonald, E.; Gibson, G. Changes in the Microbiome and Associated Host Tissue Structure in the Blue Mussel (Mytilus Edulis) Following Exposure to Polystyrene Microparticles. Can. J. Zool. 2022, 100, 719–731. [Google Scholar] [CrossRef]
- Green, D.S.; Colgan, T.J.; Thompson, R.C.; Carolan, J.C. Exposure to Microplastics Reduces Attachment Strength and Alters the Haemolymph Proteome of Blue Mussels (Mytilus Edulis). Environ. Pollut. 2019, 246, 423–434. [Google Scholar] [CrossRef]
- Revel, M.; Lagarde, F.; Perrein-Ettajani, H.; Bruneau, M.; Akcha, F.; Sussarellu, R.; Rouxel, J.; Costil, K.; Decottignies, P.; Cognie, B.; et al. Tissue-Specific Biomarker Responses in the Blue Mussel Mytilus spp. Exposed to a Mixture of Microplastics at Environmentally Relevant Concentrations. Front. Environ. Sci. 2019, 7, 33. [Google Scholar] [CrossRef]
- Weber, A.; Jeckel, N.; Weil, C.; Umbach, S.; Brennholt, N.; Reifferscheid, G.; Wagner, M. Ingestion and Toxicity of Polystyrene Microplastics in Freshwater Bivalves. Environ. Toxicol. Chem. 2021, 40, 2247–2260. [Google Scholar] [CrossRef]
- Gibson, K.J.; Miller, J.M.; Johnson, P.D.; Stewart, P.M. Toxicity of Sodium Dodecyl Sulfate tO Federally Threatened and Petitioned Freshwater Mollusk Species. Freshw. Mollusk Biol. Conserv. 2016, 19, 29. [Google Scholar] [CrossRef]
- Giari, L.; Vincenzi, F.; Fano, E.A.; Graldi, I.; Gelli, F.; Castaldelli, G. Sensitivity to Selected Contaminants in a Biological Early Warning System Using Anodonta Woodiana (Mollusca). Water SA 2017, 43, 200. [Google Scholar] [CrossRef]
- Jorge, R.A.D.L.V.C.; Moreira, G.S. Use of Sodium Dodecyl Sulfate and Zinc Sulfate as Reference Substances for Toxicity Tests with the Mussel Perna Perna (Linnaeus, 1758) (Mollusca: Bivalvia). Ecotoxicol Environ Saf. 2005, 61, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Ostroumov, S.A.; Widdows, J. Inhibition of Mussel Suspension Feeding by Surfactants of Three Classes. Hydrobiologia 2006, 556, 381–386. [Google Scholar] [CrossRef]
- Suzuki, N.; Morishima, Y.; Arimori, S.; Endo, T. Preparation of Polystyrene Nanoparticles by Seed Polymerization Using Amphiphilic Random Copolymer Micelles as Seeds. Polym. J. 2007, 39, 187–191. [Google Scholar] [CrossRef]
- Kraak, M.H.S.; Toussaint, M.; Lavy, D.; Davids, C. Short-Term Effects of Metals on the Filtration Rate of the Zebra Mussel Dreissena Polymorpha. Environ. Pollut. 1994, 84, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Payne, B.S.; Wang, S.Y. Filtration Dynamics of the Zebra Mussel, Dreissena Polymorpha. Can. J. Fish. Aquat. Sci. 1996, 53, 29–37. [Google Scholar] [CrossRef]
- Wong, W.H.; Levinton, J. Consumption Rates of Two Rotifer Species by Zebra Mussels Dreissena Polymorpha. Mar. Freshw. Behav. Physiol. 2005, 38, 149–157. [Google Scholar] [CrossRef]
- Sprung, M.; Rose, U. Influence of Food Size and Food Quantity on the Feeding of the Mussel Dreissena Polymorpha. Oecologia 1988, 77, 526–532. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, A.; Cody, E.; Giltrap, M.; Chambers, G. Toxicological and Biomarker Assessment of Freshwater Zebra Mussels (Dreissena polymorpha) Exposed to Nano-Polystyrene. Toxics 2024, 12, 774. https://doi.org/10.3390/toxics12110774
Reynolds A, Cody E, Giltrap M, Chambers G. Toxicological and Biomarker Assessment of Freshwater Zebra Mussels (Dreissena polymorpha) Exposed to Nano-Polystyrene. Toxics. 2024; 12(11):774. https://doi.org/10.3390/toxics12110774
Chicago/Turabian StyleReynolds, Andrew, Enya Cody, Michelle Giltrap, and Gordon Chambers. 2024. "Toxicological and Biomarker Assessment of Freshwater Zebra Mussels (Dreissena polymorpha) Exposed to Nano-Polystyrene" Toxics 12, no. 11: 774. https://doi.org/10.3390/toxics12110774
APA StyleReynolds, A., Cody, E., Giltrap, M., & Chambers, G. (2024). Toxicological and Biomarker Assessment of Freshwater Zebra Mussels (Dreissena polymorpha) Exposed to Nano-Polystyrene. Toxics, 12(11), 774. https://doi.org/10.3390/toxics12110774