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Abstract: Increasing studies are indicating a potential association between ambient air pollution
exposure and fasting blood glucose (FBG), an indicator of prediabetes and diabetes. However,
there is inconsistency within the existing literature. The aim of this study was to summarize the
associations of exposures to particulate matters (PMs) (with aerodynamic diameters of ≤1 µm (PM1),
≤2.5 µm (PM2.5), and ≤10 µm (PM10), respectively) and gaseous pollutants (sulfur dioxide (SO2),
nitrogen dioxide (NO2) and ozone (O3)) with FBG based on the existing epidemiological research
for a better understanding of the relationship between air pollution and diabetes. Up to 2 July 2024,
we performed a comprehensive literature retrieval from various electronic databases (PubMed, Web
of Science, Scopus, and Embase). Random-effect and fixed-effect models were utilized to estimate
the pooled percent changes (%) and 95% confidence intervals (CIs). Then, subgroup meta-analyses
and meta-regression analyses were applied to recognize the sources of heterogeneity. There were
33 studies eligible for the meta-analysis. The results showed that for each 10 µg/m3 increase in
long-term exposures to PM1, PM2.5, PM10, and SO2, the pooled percent changes in FBG were 2.24%
(95% CI: 0.54%, 3.96%), 1.72% (95% CI: 0.93%, 2.25%), 1.19% (95% CI: 0.41%, 1.97%), and 0.52%
(95% CI:0.40%, 0.63%), respectively. Long-term exposures to ambient NO2 and O3 were not related to
alterations in FBG. In conclusion, our findings support that long-term exposures to PMs of various
aerodynamic diameters and SO2 are associated with significantly elevated FBG levels.

Keywords: air pollution; fasting blood glucose; gaseous pollutant; meta-analysis; particulate matter

1. Introduction

Diabetes is a complex metabolic disorder characterized by hyperglycemia due to
dysfunctional insulin secretion or action [1,2]. This disease has become one of the most
significant contributors to the global burden of disease and premature mortality [3–5]. The
number of people with diabetes was estimated to be approximately 529 million in 2021,
and this figure was projected to increase to 1.31 billion by 2050 [6]. Globally, 79.2 million
disability-adjusted life years (DALYs) lost were caused by diabetes in 2021 [6]. Recent
projections indicate an approximate 75% rise in diabetes-related mortality rates from 2016
to 2040 [7].
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Major ambient air pollutants consist of particulate matters (PMs) of different sizes
(e.g., aerodynamic diameter ≤1 µm (PM1), ≤2.5 µm (PM2.5), and ≤10 µm (PM10)) and
gaseous pollutants including sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone
(O3) [4,8]. In 2021, air pollution was ranked as the second leading risk factor for early
deaths worldwide, and it was estimated to contribute to approximately 8.1 million deaths,
accounting for about 12% of total global deaths [9]. There has been increasing evidence in
recent years suggesting that air pollution is an emerging risk factor for diabetes [10–12]. The
underlying mechanisms may include the following. (1) Overproduction of proinflammatory
mediators [5,13]: exposure to air pollutants induces elevated levels of proinflammatory me-
diators, including tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), interleukin-8
(IL-8), and interleukin-6 (IL-6), which in turn lead to the activation of c-Jun N-terminal
kinase (JNK) [14–16]. Activated JNK inhibits insulin signaling via serine phosphorylation
of the substrate proteins of insulin receptor, leading to the development of insulin resis-
tance and consequently an increased risk of elevated glucose [14–16]. (2) Development of
oxidative stress [5,13]: exposure to air pollutants induces oxidative stress by increasing
reactive oxygen species (ROS) levels, leading to mitochondrial destruction and subsequent
β-cell dysfunction [5,17]. In addition, animal experiments have shown that oxidative stress
can exacerbate insulin resistance by blocking insulin signaling via the activation of nuclear
factor-kappa-B (NF-κB) [18]. (3) Endothelial dysfunction [13]: exposure to air pollutants
may exacerbate endothelial dysfunction by inducing inflammation and oxidative stress,
whereas endothelial dysfunction may impair the action of insulin in skeletal muscle, in-
ducing blood flow to non-nutritive tissues, which can lead to increased blood glucose
levels [13,19,20]. (4) Over-activity of the sympathetic nervous system [21]: exposure to
air pollutants leads to sympathetic nervous activation and reduced heart rate variabil-
ity, which in turn leads to reduced insulin sensitivity and ultimately disturbed glucose
metabolism [21–23].

Fasting blood glucose (FBG), also known as basal glucose, is widely used by clinicians
to diagnose diabetes and prediabetes [2]. Impaired fasting glucose (IFG) refers to an ele-
vated fasting glucose level that does not yet meet the diagnostic criteria for diabetes [2].
People with IFG are considered to have prediabetes, which indicates a high risk of devel-
oping diabetes in the future [2]. To date, several epidemiological studies have shown that
exposure to ambient air pollution has an adverse impact on FBG. For example, Yang et al.
(2018) and Feizi et al. (2023) have demonstrated that long-term exposures to PMs (PM2.5 and
PM10), SO2, NO2, and O3 contribute to an increased risk of elevated FBG [8,24]. However,
other studies presented inconsistent results. For example, Holliday et al. (2019) and Liu
et al. (2022) did not observe any significant associations between long-term exposures to
PMs (PM2.5 and PM10) and elevated FBG [25,26]. Lin et al. (2020) also found no association
between NO2 and O3, and elevated FBG [27]. Only one meta-analysis has been conducted
to investigate the association between exposure to air pollution and FBG. However, this
meta-analysis only investigated the associations between PM2.5 and PM10 exposures and
FBG, and did not consider the impact of other ambient air pollutants [28].

This study focused on the potential effects of long-term exposure to air pollution on
FBG rather than short-term exposure. According to the WHO report at the 68th World
Health Assembly, while short-term and long-term exposures to air pollution can both
lead to adverse health effects, long-term exposure to air pollution could be more damag-
ing to health, with many adverse health effects occurring at relatively low levels (below
WHO-proposed air quality guidelines levels) [29]. Given the paucity of research on the as-
sociations of short-term exposures to ambient PM1, SO2, NO2, and O3 with FBG compared
to that of long-term exposures, and the fact that the associations of short-term exposures
to PM2.5 and PM10 with FBG have been evaluated in a recent meta-analysis [28], we only
comprehensively evaluated the associations of long-term exposures to a variety of am-
bient air pollutants (PM1, PM2.5, PM10, SO2, NO2, and O3) with FBG based on relevant
epidemiological studies.
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2. Methods
2.1. Search Strategy

A systematic search for studies in electronic databases (PubMed, Web of Science,
Scopus, and Embase) was conducted up to 2 July 2024. Furthermore, the references of all
eligible studies that were not found in the search results were also scrutinized. The search
strategies were constructed using a combination of keywords related to air pollution, PMs,
SO2, NO2 or O3, and FBG simultaneously. The study was conducted strictly according
to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement [30]. Table S1 in the Supplementary Materials contains the full list of specific
search phrases.

2.2. Inclusion and Exclusion Criteria

Studies were considered according to the following criteria: (1) epidemiological studies
that examined the association of ambient air pollution exposure with FBG levels; (2) studies
that provided effect estimates (percent changes or regression coefficients) with 95% confi-
dence intervals (CIs) for quantitative estimations of the association of FBG with ambient
air pollution exposure; (3) cross-sectional or cohort studies; and (4) literature published
in English.

Studies would be rejected according to the following criteria: (1) studies about indoor
or occupational exposures; (2) standardized quantitative transformation could not be
performed; (3) non-epidemiological investigations, such as toxicological studies or animal
experiments; (4) conference proceedings, editorials, case reports, meta-analyses, and review
articles; (5) studies about other blood glucose indices (e.g., glycated hemoglobin, random
blood glucose); (6) studies examining the potential effects of short-term exposure to targeted
air pollution; and (7) the corresponding author(s) could not be reached at the time of
extracting the data.

2.3. Data Extraction

Two reviewers (T.W. and Y.Y.) individually gathered the following data from each
included study: first author, publication year, study area, participant type, sample size,
study design, air pollution exposure assessment method, exposure period, FBG levels, effect
estimates, and related 95% CIs. If there was a dispute, a third investigator (Y.L.) would
make the final decision. A fourth investigator (S.W.) undertook a meticulous evaluation of
all the recordings, data extraction, and statistical analysis techniques before submission.
Two distinct categories of exposure to ambient air pollution were recognized: short-term
exposure and long-term exposure. Short-term exposure is defined as exposure that lasts for
a few weeks or days, and may result in acute health effects; whereas long-term exposure is
defined as exposure that persists for a minimum of six months and may result in chronic
health effect s [31,32]. The present study focused on long-term exposure to air pollution.
In instances where multiple exposure windows were provided in a single study, the effect
estimate from the exposure window with the most significant effect value (i.e., smallest
p-value) was selected. In instances where multiple models were employed in a single study,
the effect estimates from the single-pollutant model that controlled for the greatest number
of covariates were extracted. In instances where multiple studies were conducted on the
same population, the study that investigated the most types of ambient air pollutants was
included. Furthermore, if the included article lacked the quantitative data we needed, we
would endeavor to contact the corresponding author(s). If the corresponding author(s)
did not respond to our request for quantitative information, the article in question would
be excluded.

2.4. Quality Assessment

As the included studies were epidemiological studies with different designs, the
Effective Public Health Practice Project (EPHPP) quality assessment tool was used to assess
the quality of each study based on six basic criteria, including selection bias, study design,
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control of confounders, use of blinding, data collection methods, and the presence of
withdrawals and drop-outs. Each criterion was rated as good, moderate or poor, and an
overall rating was given based on these six criteria [33]. All quality assessments were
conducted independently by two investigators (T. W. and Y. Y.). This tool is described in
detail in Table S2 (Supplementary Materials).

2.5. Statistical Analysis

Percent changes and 95% CIs were used to describe the association of FBG with
ambient air pollution. We standardized all the percent changes (%) and 95% CIs to ob-
tain the effect values of incremental exposure to ambient air pollutants at 10 µg/m3.
The formula is as follows: change % (standardized) = change % (original) × Increment
(standardized)/increment (original) [34]. Ambient air pollutants in different units were
uniformly converted into mass concentrations (µg/m3): (1) SO2: 1 ppb = 64/22.4 µg/m3;
(2) NO2: 1 ppb = 46/22.4 µg/m3; (3) O3: 1 ppb = 48/22.4 µg/m3 (i.e., 22.4 is the molar
volume of gas under standard conditions at 0 ◦C, 101.33 kPa) [35]. If eligible studies
log-transformed the data of FBG before analysis, the extracted effect estimates were antilog-
transformed. If the included study only reported regression coefficients, the coefficients
were converted into percent changes per 10 µg/m3 increase in pollutant concentrations by
applying the formula [β × 10 ÷ M] × 100%, where β denotes the regression coefficient and
M denotes the average level of FBG [36].

The Cochrane Q statistical test (p < 0.05 considered significant) and the Standard I2 test
were used to quantify the heterogeneity among all the included studies [35]. In most cases, a
random-effects model was employed to pool changes in FBG associated with standardized
increments in ambient air pollutant concentrations. However, when the heterogeneity
among studies was small (i.e., I2 is less than 50%), a fixed-effect model was used instead [37].
In addition, per-specified subgroup and meta-regression analyses were performed to
examine potential sources of heterogeneity. The subgroup criteria included the study area
(Asia, Europe, and America), sample size (<5000 and ≥5000), participant type (general
population and pregnant women), mean/median age of participant (≤18 years, 19–64 years
and ≥65 years), female proportion (<50% and ≥50%), study design (cohort study and cross-
sectional study), exposure assessment method (fixed site monitoring and model estimation),
study quality (high and moderate), and number of controlled confounders (<10 and ≥10).
The Q-tests were employed to evaluate the differences between subgroups [38]. Sensitivity
analyses were performed to estimate the reliability of the findings by omitting one study
at a time. To avoid potential bias caused by the artificial selection of exposure windows,
sensitivity analyses were conducted to examine the influence of different exposure windows
on the main results for each pollutant. For cases where the number of articles corresponding
to different exposure windows was fewer than or equal to three, sensitivity analyses were
not performed. Furthermore, we also examined the impact of including different studies
conducted in the same population on the results in sensitivity analyses. Funnel plots,
Egger’s test, and Begg’s test were applied to probe potential publication bias. All analyses
were performed using the metafor package in R software (version 4.4.1), which can be used
for meta-analysis, subgroup and regression analyses, and sensitivity analyses [39]. The
pooled estimate with p < 0.05 (2-sided) was considered statistically significant.

3. Results
3.1. Literature Search and Characteristics of Included Studies

After a systematic search in four designated databases, a total of 13,448 articles were
retrieved. After excluding duplicates and articles that did not match by reading the titles
and abstracts, a comprehensive analysis was conducted on 93 relevant articles. Ultimately,
33 articles were selected for inclusion in the meta-analysis (Figure 1). Table 1 summarizes
the key details of the 33 studies. Among the 33 studies, there were 5, 29, 13, 6, 12, and
8 studies examining the associations of long-term exposures to PM1, PM2.5, PM10, SO2, NO2,
and O3 with FBG, respectively. Of all the studies included, 24 were carried out in Asia, 4 in
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Europe, and 5 in America, with sample sizes ranging from 113 to 20,076,032. The participant
type involved the general population (covering all age groups) and pregnant women. The
study design included cohort and cross-sectional studies. Ambient air pollutant data
were mainly obtained from model estimation, followed by fixed-site monitoring. In terms
of study quality, 16 studies were rated “high” quality, while the others were considered
“moderate” quality (Table S3, Supplementary Materials).
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Table 1. Main characteristics of the studies included in the meta-analysis.

Author Study
Area

Study
Period

Sample
Size

Participant
Type Age

Female
Proportion
(%)

Study
Design

Exposure
Assessment
Method

Study
Quality

Exposure
Window Pollutants Incremental

Scale (µg/m3)
Percent Changes
(%) and 95% CIs

Alderete et al. [40]
(2017) America 2001 to 2012 314

General
population 11.4 ± 1.7 a 70.4 Cohort study Fixed-site

monitoring High 1 y average PM2.5 4 0.1 (−0.2, 0.4)
NO2 10.71 0.02 (−0.2, 0.3)

Cai L et al. [41]
(2019) China 2016 to 2017 4234

General
population 9.1 ± 1.8 a 46.6

Cross-sectional
study

Model
estimation Moderate 6 m average PM2.5 10 2.3 (1.0, 3.8)

PM10 10 0.9 (0.5, 1.4)

Cai Y et al. [42]
(2017) Netherland 2006 to 2013 93,277 General

population 44.9 ± 12.3 a 59
Cross-sectional
study

Model
estimation Moderate 1 y average PM10 2.4 0.6 (0.4,0.7)

NO2 8.8 0.6 (0.4, 0.8)

Chen et al. [43]
(2024) China 2017 to 2018 834 pregnant

women 30.3 ± 4.8 a 100 Cohort study Model
estimation High 6 m average PM2.5 12.92 0.08 (0.04, 0.13)

Chuang et al. [44]
(2011) China 2000 1022

General
population 69.2 ± 8.7 a 42.3

Cross-sectional
study

Fixed-site
monitoring Moderate 1 y average

PM2.5 48 22.88 (14.93, 30.82)
PM10 20.42 36.55 (19.20, 53.90)
SO2 19.18 21.10 (12.03, 30.17)
NO2 26.35 17.03 (10.37, 23.69)
O3 9.09 4.95 (−7.05, 16.95)

Curto et al. [45]
(2019) India 2010 to 2012 5065 General

population 37.5 ± 13.4 a 46 Cross-sectional
study

Model
estimation Moderate 1 y average PM2.5 1 0.48 (−0.78, 1.76)

Du et al. [46]
(2021) China 2017 to 2019 5852 General

population 64.6 ± 13.6 a 50.5 Cross-sectional
study

Model
estimation Moderate 1 y average PM2.5 28.8 0.35 (0.25, 0.46)

Erqou et al. [47]
(2018)

North
America 2012 to 2013 1499 General

population 59 ± 8 a 66 Cohort study Model
estimation High 1 y average PM2.5 1.5 3.71 (0.99, 6.42)

Feizi et al. [24]
(2023) Iran 2012 to 2018 3826

General
population 43.1 ± 6.3 a 70.4 Cohort study Fixed-site

monitoring High 1 y average

PM2.5 1 0.060 (0.051, 0.070)
PM10 1 0.010 (0.008, 0.012)
SO2 1 0.056 (0.046, 0.067)
NO2 1 0.050 (0.040, 0.063)
O3 1 0.102 (0.088, 0.120)

Holliday et al. [25]
(2019) America 1993 to 2004 3915

General
population 62.7 b 100 Cohort study Model

estimation
High 1 y average PM10 10 −0.7 (−1.8, 0.4)

PM2.5 10 −1.1 (−2.1, −0.1)

Kang et al. [48]
(2020) China 2013 to 2015 4783 Pregnant

women 28.5 ± 3.3 a 100 Cohort study Model
estimation High 6 m average PM2.5 10 0.382 (0.179, 0.586)

Kang et al. [49]
(2023) d China 2015 to 2017 38,442 General

population 55.6 ± 12.2 a 61 Cohort study Model
estimation High 3 y average PM2.5 1 0.01 (0.01, 0.02)

Knobel et al. [50]
(2024) America 2004 to 2019 81,599 General 51.9 ± 9.3 15 Cohort study Model

estimation High 6 m average PM2.5 3.09 0.78 (0.30, 1.26)

Li et al. [51]
(2018) America 2003 5958 General

population 51 b 55 Cohort study Model
estimation High 1 y average PM2.5 1.5 −0.08 (−0.28, 0.12)
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Table 1. Cont.

Author Study
Area

Study
Period

Sample
Size

Participant
Type Age

Female
Proportion
(%)

Study
Design

Exposure
Assessment
Method

Study
Quality

Exposure
Window Pollutants Incremental

Scale (µg/m3)
Percent Changes
(%) and 95% CIs

Lin et al. [27]
(2020) China 2015 to 2019 12,842 Pregnant

women 18–45 100 Cohort study Fixed-site
monitoring High 6 m average

PM2.5 10 0.18 (0.13, 0.24)
PM10 10 0.12 (0.08, 0.15)
SO2 10 0.13 (−0.24, 0.50)
NO2 10 −0.15 (−0.19, −0.10)
O3 10 −0.12 (−0.16, −0.07)

Liu C et al. [52]
(2016) China 2011 to 2012 11,847 General

population 59.3 ± 10.6 a 52 Cross-sectional
study

Model
estimation Moderate 1 y average PM2.5 41.1 0.26 (0.20, 0.32)

Liu F et al. [10]
(2019) d China 2015 to 2017 39,191 General

population 55.6 ± 12.2 a 60.6 Cohort study Model
estimation

High 3 y average
PM1 1 0.020 (0.014, 0.026)
PM2.5 1 0.036 (0.030, 0.042)
NO2 1 0.030 (0.026, 0.034)

Liu F et al. [53]
(2022) China 2009 to 2011 9638

General
population 60.3 ± 9.7 a 54.1

Cross-sectional
study

Model
estimation Moderate 2 y average

PM2.5 10 0.061 (0.028, 0.096)
PM10 10 0.025 (0.007, 0.044)
NO2 10 0.044 (−0.009, 0.097)

Liu R et al. [26]
(2022) China 2016 to 2017 113 Pregnant

women 31.2 ± 3.1 a 100 Cohort study Model
estimation High 6-m average PM2.5 10 −4.43 (−12.92, 4.07)

Liu X et al. [54]
(2022) China 2015 to 2017 39,192 General

population 18–79 61.95 Cross-sectional
study

Model
estimation Moderate 3 y average O3 4.04 0.286 (0.257, 0.315)

Lu et al. [55]
(2017) e China 2006 to 2014 3589 Pregnant

women
31.4 ± 4.5 a 100

Cross-sectional
study

Fixed-site
monitoring Moderate

6 m average PM2.5
14.45 5.87 (4.40, 7.34)

1 y average 6.1 3.35 (2.42, 4.28)

Mei et al. [12]
(2023) China 2018 to 2020 4235

General
population 54.2 ± 14.6 a 50.32

Cross-sectional
study

Model
estimation Moderate 1 y average

PM1 10 4.89 (1.54, 8.35)
PM2.5 10 0.12 (−2.21, 2.49)
PM10 10 0.68 (−0.86, 2.26)
SO2 10 3 (−2.67, 9.01)
NO2 10 4.13 (0.06, 8.36)
O3 10 7.67 (1.75, 13.92)

Najafi et al. [56]
(2020) Iran 2019 250 Pregnant

women
28 ± 9 c 100

Cross-sectional
study

Model
estimation Moderate 1 y average

PM1 40.8 0.69 (0.38, 1.00)
PM2.5 47.4 0.61 (0.29, 0.93)
PM10 52.9 0.19 (0.01, 0.37)

Riant et al. [57]
(2018) France 2011 to 2013 2741 General

population 40–65 >50 Cross-sectional
study

Model
estimation Moderate 1 y average NO2 5 0.0046 (−0.0024, 0.0115)

Shen et al. [58]
(2024) e China 2010 to 2015 20,076,032 General

population 27.0 ± 4.8 a 100 Cross-sectional Model
estimation Moderate

1 y average
PM2.5

26 0.075 (0.074, 0.076)
2 y average 27 0.077 (0.076, 0.078)
3 y average 27 0.078 (0.077, 0.079)

PM10 2 0.0073 (−0.0003, 0.0150)
SO2 2 0.006 (−0.0047, 0.0166)

Wang et al. [59]
(2020) China 2007 to 2013 16,489 General

population 6–17 48.9 Cross-sectional
study

Model
estimation Moderate 7 y average PM2.5 10 0.049 (0.038, 0.060)

Wolf et al. [60]
(2016)

Germany 2006 to 2008 2944
General
population 56.2 ± 13.1 a 51.6 Cohort study Model

estimation
High 1 y average

PM2.5 2.8 1.6 (0.0, 3.3)
PM10 7.9 1.0 (0.7, 2.6)
NO2 11.9 1.7 (0.1, 3.3)



Toxics 2024, 12, 792 8 of 18

Table 1. Cont.

Author Study
Area

Study
Period

Sample
Size

Participant
Type Age

Female
Proportion
(%)

Study
Design

Exposure
Assessment
Method

Study
Quality

Exposure
Window Pollutants Incremental

Scale (µg/m3)
Percent Changes
(%) and 95% CIs

Yang et al. [8]
(2018) China 2006 to 2008 24,845 General

population 45.0 ± 13.5 a 47.3
Cross-sectional
study

Model
estimation Moderate 3 y average

PM1 15 0·07 (0·04, 0·10)
PM2.5 26 0·08 (0·04, 0·12)
PM10 19 0·08 (0·05, 0·11)
SO2 20 0·04 (0·01, 0·07)
NO2 9 0·09 (0·06, 0·13)
O3 22 0·04 (0·01, 0·07)

Ye et al. [61]
(2020) China 2013 to 2016 3967 Pregnant

women 28.2 ± 3.5 a 100 Cohort study Model
estimation High 1 y average PM2.5 23.3 0.38 (0.07, 0.70)

Yu et al. [62]
(2020) Indonesia 2013 to 2016 469 General

population 14–18 42.6 Cross-sectional
study

Model
estimation Moderate 4 y average PM2.5 1 0.34 (0.08, 0.59)

Zhang et al. [63]
(2019) China 2012 11,814 General

population 11.7 ± 3.2 a 50.6
Cross-sectional
study

Model
estimation Moderate 1 y average

PM1 10 0.160 (0.039, 0.280)
PM2.5 10 0.150 (0.044, 0.256)
PM10 10 0.079 (−0.009, 0.167)

Zhang L et al. [64]
(2023) China 2017 to 2018 7834 Pregnant

women 18–45 100 Cohort study Model
estimation High 6 m average O3 30.42 0.162 (0.436, 2.804)

Zhang S et al. [65]
(2021)

Germany 1999 to 2014 6008
General
population 25–74 >50 Cohort study Model

estimation
High 1 y average

PM2.5 1.4 0.1 (−0.4, 0.6)
NO2 7.1 0.2 (−0.4, 0.7)
O3 3.5 0.3 (−0.3, 0.8)

Zhang Y et al. [66]
(2020) e China 2005 to 2016 1449

General
population 83 ± 12 a 52.6 Cohort study Model

estimation
High

1 y average PM2.5 10 0.146 (0.045, 0.248)
2 y average PM2.5 10 0.109 (0.023,0.195)
3 y average PM2.5 10 0.146 (0.045, 0.248)

a Mean ± standard deviation (SD). b Mean. c Median ± interquartile range (IQR). d In cases where multiple studies were conducted on the same population, the study by Liu F et al.
(2019) that investigated a higher number of ambient air pollutants was included in the main analysis, and the study by Kang et al. (2023) was included in the sensitivity analysis
(see results in the Supplemental Materials) [49]. e The effect estimate from the exposure window with the most significant effect value (smallest p-value) was selected for the main
meta-analysis, and the effect estimates for the remaining time windows were used for sensitivity analysis. Abbreviations: CI, confidence interval; NO2, nitrogen dioxide; O3, ozone; PM1,
particulate matter with an aerodynamic diameter of ≤1 µm; PM2.5, particulate matter with an aerodynamic diameter of ≤2.5 µm; PM10, particulate matter with an aerodynamic diameter
of ≤10 µm; SO2, sulfur dioxide.
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3.2. Primary Meta-Analysis

Our meta-analysis indicated that for each 10 µg/m3 increase in long-term exposure to
PM1, PM2.5, PM10, and SO2, the pooled percent changes in FBG were 2.24% (95% CI: 0.54%,
3.96%), 1.72% (95% CI: 0.93%, 2.52%), 1.19% (95% CI: 0.41%, 1.97%), and 0.52% (95% CI:
0.40%, 0.63%), respectively (Figure 2A–C and Figure 3A). However, the associations of
long-term exposures to ambient NO2 and O3 with FBG were insignificant: there were
increases of 1.24% (95% CI: −0.15%, 2.65%) and 3.52% (95% CI: −0.22%, 7.40%) in FBG per
10 µg/m3 increase in NO2 and O3, respectively (Figure 3B, C).

3.3. Subgroup Analysis and Meta-Regression Analysis

Several potential sources of inter-study heterogeneity were identified by subgroup
analysis and meta-regression analysis. For the association of long-term exposure to PM1
with FGB, the results of subgroup analysis revealed that participant type (p = 0.005) was a
potential source of heterogeneity; specifically, for every 10 µg/m3 increase in PM1, FBG
changed by 2.81% (95% CI: 1.04, 4.58) in the general population and by only 0.24% (95% CI:
0.13, 0.35) in pregnant women (Table S4, Supplementary Materials). For the association
of long-term exposure to PM10 with FBG, the study area (p < 0.001) was found to be a
source of heterogeneity in subgroup analysis; specifically, for every 10 µg/m3 increase in
PM10, FBG changed by 1.12% (95% CI: 0.24, 2.00) in Asia, by 2.42% (95% CI: 1.83, 3.01)
in Europe, and by −0.70% (95% CI: −1.81, 0.41) in America. Age (p < 0.001) was also
found to be a source of heterogeneity in subgroup analysis for PM10; specifically, for every
10 µg/m3 increase in PM10, FBG changed by 0.94% (95% CI: 0.51, 1.37) in individuals with
a mean/median age of ≤ 18 years, by 0.87% (95% CI: 0.11, 1.63) in individuals with a
mean/median age of 19–64 years, and by 4.37% (95% CI: 2.88, 5.85) in individuals with a
mean/median age of ≥ 65 years (Table S4, Supplementary Materials). Additionally, meta-
regression analysis for PM10 also indicated that age (p = 0.034) may be a contributing factor
to the observed heterogeneity. These findings align with those of the subgroup analyses,
suggesting that FBG in individuals of age 65 years and above may be more susceptible
to long-term exposure to PM10 (Table S5, Supplementary Materials). In addition, both
subgroup analyses and meta-regression analyses found that the number of controlled
confounders was a common source of heterogeneity for the effect estimates of PM2.5, PM10,
and SO2 by subgroup analyses (Tables S4 and S5, Supplementary Materials). For subgroup
analyses with the number of controlled confounders greater than or equal to 10, FBG
changed by 1.10 (0.20, 2.01), 0.25 (−0.24, 0.73), and 0.50 (0.37, 0.64) for each 10 µg/m3

increase in the long-term exposure to PM2.5, PM10, and SO2, respectively. For subgroup
analyses with the number of controlled confounders less than 10, FBG changed by 2.97 (1.37,
4.57), 1.82 (0.77, 2.87) and 3.67 (0.78, 6.55) per 10 µg/m3 increase in the long-term exposure
to PM2.5, PM10 and SO2 exposures, respectively (Table S4, Supplementary Materials).

3.4. Publication Bias and Sensitivity Analyses

There may be certain degrees of publication bias in the studies about long-term
exposure to PM10 and FBG, revealed by the funnel plot and Egger’s test, respectively,
but Begg’s tests did not detect bias (Figure S1 and Table S6, Supplementary Materials).
Meanwhile, we observed no significant publication bias among the studies examining
the association between long-term exposures to PM2.5 and NO2 and FBG (Figure S1 and
Table S6, Supplementary Materials). Considering the limited number of studies included
(<10), publication bias for long-term exposures to PM1, SO2, and O3, and FBG could
not be evaluated. Sensitivity analyses excluding individual studies each at a time did
not result in obvious changes in the effect estimates (Table S7, Supplementary Materials).
Additional sensitivity analyses for separate exposure windows showed that the pooled
effect estimates at the main exposure window with the largest number of studies (1-year)
for PM2.5, PM10, and O3 were consistent with the main results, but not for SO2 and NO2
(Table S8, Supplementary Materials). Furthermore, the results remained robust when the
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effect estimates from two different studies conducted in the same population were included
in the analysis (Table S9, Supplementary Materials).
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Figure 2. Pooled percent changes (%) and 95% confidence intervals in FBG per 10 µg/m3 increase in
long-term exposures to PM1 (A) [8,10,12,56,63], PM2.5 (B) [8,10,12,24–27,40,41,43–48,50–53,55,56,58–
63,65,66] and PM10 (C) [8,12,24,25,27,41,42,44,53,56,57,60,63]. ES represents the percent change; W
represents the weighting of each included study; I-squared describes the percentage of variation in
effect estimates due to heterogeneity rather than sampling error. The p-value is based on the Q-test.
Abbreviations: FBG, fasting blood glucose; PM1, particulate matter with an aerodynamic diameter
of ≤1 µm; PM2.5, particulate matter with an aerodynamic diameter of ≤2.5 µm; PM10, particulate
matter with an aerodynamic diameter of ≤10 µm.
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Figure 3. Pooled percent changes (%) and 95% confidence intervals in FBG per 10 µg/m3 increase
in long-term exposures to SO2 (A) [8,12,24,27,44,57], NO2 (B) [8,10,12,24,27,40,42,44,53,57,60,65] and
O3 (C) [8,12,24,27,44,54,64,65]. ES represents the percent change; W represents the weighting of each
included study; I-squared describes the percentage of variation in effect estimates due to heterogeneity
rather than sampling error. The p-value is based on the Q-test. Abbreviations: FBG, fasting blood
glucose; NO2, nitrogen dioxide; O3, ozone; SO2, sulfur dioxide.

4. Discussion

This meta-analysis evaluated the associations between long-term exposures to major
ambient air pollutants (PM1, PM2.5, PM10, SO2, NO2, and O3) and FBG based on data from
a total of 33 eligible studies. Our analysis showed that FBG had a significantly positive
association with ambient long-term exposures to ambient PMs (PM1, PM2.5, and PM10) and
SO2, among which PMs showed stronger associations with FBG compared to the gaseous
pollutant (SO2). On the other hand, our study did not reveal a statistical association of
long-term exposures to ambient NO2 and O3 with FBG, although there was evidence of
heterogeneity among the included studies. The main results underscore the potential
adverse effects of long-term exposures to ambient PMs and SO2 on FBG.

Although the adverse impact of ambient air pollution on diabetes has become a global
environmental health concern, there is less certainty about how long-term exposure to
ambient air pollution affects FBG. While studies have generally demonstrated that long-
term exposure to ambient air pollution leads to the risk of elevated FBG [8,24], there are
still inconsistent reports. For example, Holliday et al. (2019) and Liu et al. (2022) did not
observe any significant association of long-term exposures to PMs (PM2.5 and PM10) with
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FBG [25,26]. Chuang et al. (2011) and Lin et al. (2020) did not discover any association
between SO2 and FBG either [27,44]. Ma et al. (2020) had the only meta-analysis so
far reporting significant associations of long-term exposures to PM2.5 and PM10 with an
elevated FBG, which is consistent with our results [28]. However, the analysis by Ma et al.
(2020) was conducted only for PM2.5 and PM10, rather than a comprehensive meta-analysis
for multiple major air pollutants (i.e., PM1, PM2.5, PM10, SO2, NO2, and O3) [28]. In this
study, we separately investigated the potential effect of each major air pollutant long-
term exposure on FBG. Moreover, our meta-analysis showed evidence for the potential
adverse effects of long-term exposures to PM1 and SO2 on FBG, expanding the existing
understanding of the association between ambient air pollution and FBG. Previous studies
investigating the relationship between ambient air pollution and glucose metabolism have
primarily focused on PM2.5 and PM10. However, PM1, as a sub-fraction of PM2.5, has a
smaller particle size and is more likely to enter the circulatory system and exert systemic
health effects [8,12]. Furthermore, Tian et al. (2023) performed a meta-analysis for the
potential effect of ambient air pollution on HbA1c (a blood glucose indicator not affected
by the diet or individual differences) and found that exposures to PM2.5 and PM10 were
significantly associated with higher HbA1c levels, while the results for NO2 were not
statistically significant, which aligns with the results of the present study, suggesting that
exposure to air pollutants is linked to elevated glucose levels in the body [67]. To our
knowledge, this is the first meta-analysis to comprehensively assess the potential effects
of long-term exposures to both particulate and gaseous ambient air pollutants (i.e., PM1,
PM2.5, PM10, SO2, NO2, and O3) on FBG.

The pathophysiological mechanisms related to the associations of ambient air pollution
with FBG are yet to be elucidated, but a synthesis of previous studies suggests several
major potential biological pathways. One possible mechanism is that long-term exposure
to air pollution can directly induce systemic inflammation and oxidative stress, which
are linked to insulin resistance and beta-cell dysfunction, resulting in impaired glucose
homeostasis [12,65]. Endothelial dysfunction is another mechanism hypothesizing that
long-term exposure to air pollution affects endothelial function in humans and animals,
resulting in decreased insulin sensitivity, as well as reduced peripheral blood glucose
uptake [24,68]. Finally, long-term exposure to PM2.5 has been shown to down-regulate the
expressions of several brown adipocyte-specific genes at the mRNA level and uncoupling
protein 1 at the protein level in adipose depots, which may result in impaired glucose
tolerance and insulin resistance, thus affecting blood glucose levels [21,69,70].

In this meta-analysis, several potential sources of heterogeneity among studies were
identified based on subgroup and meta-regression analyses. In the analysis of the associa-
tion of FBG with long-term exposure to PM1, it was observed that the general population
exhibited a heightened susceptibility compared to pregnant women. However, previous
studies have demonstrated that pregnant women have a special metabolic status during
the mid-pregnancy period when FBG levels are measured. Due to the fast growth of the
fetus, pregnant women may have excessive energy intake during pregnancy [71]. At the
same time, pregnant women have an accelerated basal metabolic rate and are in a state of
natural insulin resistance, rendering them more susceptible to glucose metabolism disor-
ders and the hyperglycemic effects of air pollutants [26,72]. The reason for this anomalous
result may be attributed to the limited number of subgroups of participant types (only
one study of pregnant women) and the fact that no potential modification of the study
results by participant type was observed in the meta-regression analysis. In the subgroup
analysis of the association of FBG with long-term exposure to PM10, we observed that the
pooled percent changes varied among the studies conducted in different study areas. The
exposure levels of air pollutants, genetic susceptibility, lifestyle, and economic status of
the population would be different over different study areas, and these variables may be
potential factors influencing FBG levels. Nevertheless, the study area was not identified
to be a potential modifier for the observed association in the meta-regression analysis,
and such inconsistency between the subgroup and meta-regression analyses may be due
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to the limited number of subgroups of the study area. Furthermore, the association of
FBG with long-term exposure to PM10 was stronger in individuals above 65 years of age
compared to those below 65 years, which may be attributed to the fact that declines in
physiological processes such as compromised clearance of particulates along the respiratory
tract at older age, causing them to be more susceptible to glucose metabolism disturbances,
thus affecting the effect estimates of air pollutants on FBG [65,73]. In the subgroup and
meta-regression analyses of PM1 and PM10, there were limited numbers of studies in each
category of participant type, age, and study area. More studies are needed to further
validate the robustness of the results found in this study. In addition, subgroup analyses
and meta-regression analyses also showed that the number of controlled confounders was
also a source of heterogeneity. This may be because some studies adjusted for additional
confounders, including exercise, dietary factors (e.g., fruit and vegetable intakes), family
history of diabetes, or other factors that may influence the study outcome, in addition
to controlling for common confounders (e.g., sex, age, body mass index, temperature,
and relative humidity), whereas the other studies did not. In view that exercise increases
exposure to air pollutants, and family history of diabetes and sugar intake can influence
FBG measurements, it is understandable that the number of controlled confounders may
be a source of heterogeneity.

In the sensitivity analyses for different exposure windows, the pooled effect estimates
at the mostly used exposure window (i.e., 1-year) for PM2.5 and PM10 remained robust,
corroborating the associations of long-term exposures to PM2.5 and PM10 with an elevated
FBG in the main analysis. The association of SO2 with FBG became insignificant at the
1-year exposure window, which may be due to the limited number of studies (n = 4)
available for the sensitivity analysis. Notably, the association between NO2 and FBG
became significant at the 1-year exposure window in the sensitivity analysis, which is
in contrast to the insignificant association between NO2 and FBG in the main analysis.
This discrepancy could have been denoted by Lin et al. (2020) in the main analysis, which
showed that NO2 was inversely associated with FBG at 6-month exposure window [27]. The
results of the sensitivity analyses for different exposure windows warrant more research
for validity in the future.

Although this study strictly followed the requirements of meta-analysis, several limi-
tations should be considered. First, epidemiological studies on the association of long-term
exposure to ambient air pollution with FBG are still limited, especially for smaller-PM
(e.g., PM1) and gaseous pollutants (SO2, NO2, and O3). Second, although we standardized
the extracted effect estimates associated with a uniform increase of 10 µg/m3 in air pollu-
tant concentrations for the included studies, the use of different statistical methods in the
included studies may have a potential impact on the final results of the meta-analysis, but
could not be evaluated. Third, most of the eligible studies used air pollution data from
model estimation and fixed-site monitoring rather than monitoring data at the individual
level, and this may affect the accuracy of the effect estimation in the original studies, which
in turn affects the current meta-analysis. Therefore, it is recommended to increase the
number of studies with exposure monitoring at the individual level to more accurately
capture the actual air pollution exposure levels of the participants. Fourth, although we
endeavored to contact the authors of studies that did not provide complete numerical data
for quantitative transformation, several studies were still excluded because the authors
could not be reached for quantitative result data, which might introduce a certain degree of
selection bias and thus affect the results to some extent. Nevertheless, most of the included
studies did not adjust for noise or poverty level, both of which have been associated with
FBG in previous studies [74–77]. Our study was unable to evaluate whether the adjustment
for these factors may have any impact on the observed results.
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5. Conclusions

In conclusion, our study comprehensively assessed the association of long-term ex-
posure to ambient air pollution with FBG and found that FBG was positively associated
with long-term exposures to PM1, PM2.5, PM10, and SO2. Subgroup analysis identified
elderly individuals to be more vulnerable to air-pollution-associated adverse effects in FBG
levels. Sensitivity analysis showed that NO2 was positively associated with FBG at the
1-year exposure window. Our study expands the current understanding of the association
of ambient air pollution with the risk of diabetes, which could provide additional insights
for disease prevention.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12110792/s1, Figure S1: Funnel plots of publication bias for
the association between long-term exposure to ambient air pollution and FBG; Table S1: Detailed
search strategy of the meta-analysis; Table S2: Explanatory file for Effective Public Health Practice
Project (EPHPP) quality assessment tool; Table S3: Quality assessment using the EPHPP quality
assessment tool for the included studies; Table S4: Subgroup analysis for the association between
long-term exposure to ambient air pollution and FBG; Table S5: Meta-regression analysis for the
association between long-term exposure to ambient air pollution and FBG; Table S6: Publication bias
of the included studies; Table S7: Results of sensitivity analyses omitting one study each at a time;
Table S8: Results of sensitivity analyses for different exposure window; Table S9: Results of sensitivity
analyses replacing studies with the same population.

Author Contributions: T.W.: formal analysis and original draft preparation. G.L.: conceptualization
and review. K.W. and J.Z.: software and review. L.R. and Y.Y.: data collection and review. Y.L. and
S.W.: conceptualization, guidance and review. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was funded by the National Key Research and Development Program of China
(2022YFC3702604).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Burkart, K.; Causey, K.; Cohen, A.J.; Wozniak, S.S.; Salvi, D.D.; Abbafati, C.; Adekanmbi, V.; Adsuar, J.C.; Ahmadi, K.; Alahdab, F.;

et al. Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: An
analysis of data from the Global Burden of Disease Study 2019. Lancet Planet. Health 2022, 6, e586–e600. [CrossRef] [PubMed]

2. ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.;
Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46
(Suppl. S1), S19–S40. [CrossRef] [PubMed]

3. Lim, C.C.; Hayes, R.B.; Ahn, J.; Shao, Y.; Silverman, D.T.; Jones, R.R.; Garcia, C.; Thurston, G.D. Association between long-term
exposure to ambient air pollution and diabetes mortality in the US. Environ. Res. 2018, 165, 330–336. [CrossRef] [PubMed]

4. Yang, B.Y.; Fan, S.; Thiering, E.; Seissler, J.; Nowak, D.; Dong, G.H.; Heinrich, J. Ambient air pollution and diabetes: A systematic
review and meta-analysis. Environ. Res. 2020, 180, 108817. [CrossRef]

5. Azizi, S.; Hadi Dehghani, M.; Nabizadeh, R. Ambient air fine particulate matter (PM10 and PM2.5) and risk of type 2 diabetes
mellitus and mechanisms of effects: A global systematic review and meta-analysis. Int. J. Environ. Health Res. 2024, 1–20.
[CrossRef]

6. Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.;
et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic
analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [CrossRef]

7. Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan,
C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death:
Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [CrossRef]

https://www.mdpi.com/article/10.3390/toxics12110792/s1
https://www.mdpi.com/article/10.3390/toxics12110792/s1
https://doi.org/10.1016/S2542-5196(22)00122-X
https://www.ncbi.nlm.nih.gov/pubmed/35809588
https://doi.org/10.2337/dc23-S002
https://www.ncbi.nlm.nih.gov/pubmed/36507649
https://doi.org/10.1016/j.envres.2018.04.011
https://www.ncbi.nlm.nih.gov/pubmed/29778967
https://doi.org/10.1016/j.envres.2019.108817
https://doi.org/10.1080/09603123.2024.2391993
https://doi.org/10.1016/S0140-6736(23)01301-6
https://doi.org/10.1016/S0140-6736(18)31694-5


Toxics 2024, 12, 792 15 of 18

8. Yang, B.-Y.; Qian, Z.; Li, S.; Chen, G.; Bloom, M.S.; Elliott, M.; Syberg, K.W.; Heinrich, J.; Markevych, I.; Wang, S.-Q.; et al. Ambient
air pollution in relation to diabetes and glucose-homoeostasis markers in China: A cross-sectional study with findings from the
33 Communities Chinese Health Study. Lancet Planet. Health 2018, 2, E64–E73. [CrossRef]

9. HEI State of Global Air Report 2024. 2024. Available online: https://www.stateofglobalair.org/resources/report/state-global-air-
report-2024 (accessed on 20 October 2024).

10. Liu, F.; Guo, Y.; Liu, Y.; Chen, G.; Wang, Y.; Xue, X.; Liu, S.; Huo, W.; Mao, Z.; Hou, Y.; et al. Associations of long-term exposure to
PM1, PM2.5, NO2 with type 2 diabetes mellitus prevalence and fasting blood glucose levels in Chinese rural populations. Environ.
Int. 2019, 133, 105213. [CrossRef]

11. Liang, F.; Yang, X.; Liu, F.; Li, J.; Xiao, Q.; Chen, J.; Liu, X.; Cao, J.; Shen, C.; Yu, L.; et al. Long-term exposure to ambient fine
particulate matter and incidence of diabetes in China: A cohort study. Environ. Int. 2019, 126, 568–575. [CrossRef]

12. Mei, Y.; Li, A.; Zhao, J.; Zhou, Q.; Zhao, M.; Xu, J.; Li, R.; Li, Y.; Li, K.; Ge, X.; et al. Association of long-term air pollution exposure
with the risk of prediabetes and diabetes: Systematic perspective from inflammatory mechanisms, glucose homeostasis pathway
to preventive strategies. Environ. Res. 2023, 216, 114472. [CrossRef] [PubMed]

13. Bonanni, L.J.; Wittkopp, S.; Long, C.; Aleman, J.O.; Newman, J.D. A review of air pollution as a driver of cardiovascular disease
risk across the diabetes spectrum. Front. Endocrinol. 2024, 15, 1321323. [CrossRef] [PubMed]

14. Wang, X.; Bao, W.; Liu, J.; Ouyang, Y.Y.; Wang, D.; Rong, S.; Xiao, X.; Shan, Z.L.; Zhang, Y.; Yao, P.; et al. Inflammatory markers
and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2013, 36, 166–175. [CrossRef] [PubMed]

15. Devlin, R.B.; McKinnon, K.P.; Noah, T.; Becker, S.; Koren, H.S. Ozone-induced release of cytokines and fibronectin by alveolar
macrophages and airway epithelial cells. Am. J. Physiol. 1994, 266, L612–L619. [CrossRef] [PubMed]

16. Aguirre, V.; Uchida, T.; Yenush, L.; Davis, R.; White, M.F. The c-Jun NH2-terminal kinase promotes insulin resistance during
association with insulin receptor substrate-1 and phosphorylation of Ser307. J. Biol. Chem. 2000, 275, 9047–9054. [CrossRef]

17. Kulkarni, A.; Muralidharan, C.; May, S.C.; Tersey, S.A.; Mirmira, R.G. Inside the β Cell: Molecular Stress Response Pathways in
Diabetes Pathogenesis. Endocrinology 2022, 164, bqac184. [CrossRef]

18. Wang, N.; Ma, Y.; Liu, Z.; Liu, L.; Yang, K.; Wei, Y.; Liu, Y.; Chen, X.; Sun, X.; Wen, D. Hydroxytyrosol prevents PM2.5-induced
adiposity and insulin resistance by restraining oxidative stress related NF-κB pathway and modulation of gut microbiota in a
murine model. Free. Radic. Biol. Med. 2019, 141, 393–407. [CrossRef]

19. Bayo Jimenez, M.T.; Hahad, O.; Kuntic, M.; Daiber, A.; Münzel, T. Noise, Air, and Heavy Metal Pollution as Risk Factors for
Endothelial Dysfunction. Eur. Cardiol. 2023, 18, e09. [CrossRef] [PubMed]

20. Clark, M.G.; Wallis, M.G.; Barrett, E.J.; Vincent, M.A.; Richards, S.M.; Clerk, L.H.; Rattigan, S. Blood flow and muscle metabolism:
A focus on insulin action. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E241–E258. [CrossRef]

21. Rajagopalan, S.; Brook, R.D. Air pollution and type 2 diabetes: Mechanistic insights. Diabetes 2012, 61, 3037–3045. [CrossRef]
22. Brook, R.D.; Rajagopalan, S.; Pope, C.A.; 3rd Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.;

Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the
American Heart Association. Circulation 2010, 121, 2331–2378. [CrossRef] [PubMed]

23. Simon, S.A.; Liedtke, W. How irritating: The role of TRPA1 in sensing cigarette smoke and aerogenic oxidants in the airways.
J. Clin. Investig. 2008, 118, 2383–2386. [CrossRef] [PubMed]

24. Feizi, A.; Shahraki, P.K.; Najafabadi, A.M.; Iraj, B.; Abyar, M.; Amini, M.; Meamar, R.; Aminorroaya, A. The association of
exposure to air pollution with changes in plasma glucose indices, and incidence of diabetes and prediabetes: A prospective cohort
of first-degree relatives of patients with type 2 diabetes. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2023, 28, 21. [CrossRef]

25. Holliday, K.M.; Lamichhane, A.P.; Gondalia, R.; Stewart, J.D.; Madrigano, J.; Shih, R.A.; Yanosky, J.D.; Liao, D.; Wellenius, G.A.;
Whitsel, E.A. Air pollution-associated changes in biomarkers of diabetes risk. Environ. Epidemiol. 2019, 3, e059. [CrossRef]
[PubMed]

26. Liu, R.; Zhang, J.; Chu, L.; Zhang, J.; Guo, Y.; Qiao, L.; Niu, Z.; Wang, M.; Farhat, Z.; Grippo, A.; et al. Association of ambient fine
particulate matter exposure with gestational diabetes mellitus and blood glucose levels during pregnancy. Environ. Res. 2022,
214, 114008. [CrossRef]

27. Lin, Q.; Zhang, S.; Liang, Y.; Wang, C.; Wang, C.; Wu, X.; Luo, C.; Ruan, Z.; Acharya, B.K.; Lin, H.; et al. Ambient air pollution
exposure associated with glucose homeostasis during pregnancy and gestational diabetes mellitus. Environ. Res. 2020, 190, 109990.
[CrossRef]

28. Ma, R.; Zhang, Y.; Sun, Z.; Xu, D.; Li, T. Effects of ambient particulate matter on fasting blood glucose: A systematic review and
meta-analysis. Environ. Pollut. 2020, 258, 113589. [CrossRef]

29. WHO Sixty-Eighth World Health Assembly. 2015. Available online: https://apps.who.int/gb/ebwha/pdf_files/wha68-rec1/a6
8_r1_rec1-en.pdf (accessed on 20 October 2024).

30. Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen,
J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health
care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [CrossRef]

31. Rodosthenous, R.S.; Kloog, I.; Colicino, E.; Zhong, J.; Herrera, L.A.; Vokonas, P.; Schwartz, J.; Baccarelli, A.A.; Prada, D.
Extracellular vesicle-enriched microRNAs interact in the association between long-term particulate matter and blood pressure in
elderly men. Environ. Res. 2018, 167, 640–649. [CrossRef]

https://doi.org/10.1016/S2542-5196(18)30001-9
https://www.stateofglobalair.org/resources/report/state-global-air-report-2024
https://www.stateofglobalair.org/resources/report/state-global-air-report-2024
https://doi.org/10.1016/j.envint.2019.105213
https://doi.org/10.1016/j.envint.2019.02.069
https://doi.org/10.1016/j.envres.2022.114472
https://www.ncbi.nlm.nih.gov/pubmed/36209785
https://doi.org/10.3389/fendo.2024.1321323
https://www.ncbi.nlm.nih.gov/pubmed/38665261
https://doi.org/10.2337/dc12-0702
https://www.ncbi.nlm.nih.gov/pubmed/23264288
https://doi.org/10.1152/ajplung.1994.266.6.L612
https://www.ncbi.nlm.nih.gov/pubmed/8023949
https://doi.org/10.1074/jbc.275.12.9047
https://doi.org/10.1210/endocr/bqac184
https://doi.org/10.1016/j.freeradbiomed.2019.07.002
https://doi.org/10.15420/ecr.2022.41
https://www.ncbi.nlm.nih.gov/pubmed/37377448
https://doi.org/10.1152/ajpendo.00408.2002
https://doi.org/10.2337/db12-0190
https://doi.org/10.1161/CIR.0b013e3181dbece1
https://www.ncbi.nlm.nih.gov/pubmed/20458016
https://doi.org/10.1172/JCI36111
https://www.ncbi.nlm.nih.gov/pubmed/18568080
https://doi.org/10.4103/jrms.jrms_477_22
https://doi.org/10.1097/EE9.0000000000000059
https://www.ncbi.nlm.nih.gov/pubmed/31538138
https://doi.org/10.1016/j.envres.2022.114008
https://doi.org/10.1016/j.envres.2020.109990
https://doi.org/10.1016/j.envpol.2019.113589
https://apps.who.int/gb/ebwha/pdf_files/wha68-rec1/a68_r1_rec1-en.pdf
https://apps.who.int/gb/ebwha/pdf_files/wha68-rec1/a68_r1_rec1-en.pdf
https://doi.org/10.7326/M14-2385
https://doi.org/10.1016/j.envres.2018.09.002


Toxics 2024, 12, 792 16 of 18

32. Lee, H.; Myung, W.; Kim, D.K.; Kim, S.E.; Kim, C.T.; Kim, H. Short-term air pollution exposure aggravates Parkinson’s disease in
a population-based cohort. Sci. Rep. 2017, 7, 44741. [CrossRef]

33. EPHPP. Quality Assessment Tool for Quantitative Studies Dictionary. 2010. Available online: https://merst.healthsci.mcmaster.
ca/wp-content/uploads/2022/08/qualilty-assessment-dictionary_2010bb4cc44d23b4446e95ef53f3430f51c6.pdf (accessed on 20
October 2024).

34. Liang, Q.; Sun, M.; Wang, F.; Ma, Y.; Lin, L.; Li, T.; Duan, J.; Sun, Z. Short-term PM2.5 exposure and circulating von Willebrand
factor level: A meta-analysis. Sci. Total Environ. 2020, 737, 140180. [CrossRef] [PubMed]

35. Yang, B.Y.; Qian, Z.; Howard, S.W.; Vaughn, M.G.; Fan, S.J.; Liu, K.K.; Dong, G.H. Global association between ambient air
pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018, 235, 576–588. [CrossRef] [PubMed]

36. Yang, T.H.; Masumi, S.; Weng, S.P.; Chen, H.W.; Chuang, H.C.; Chuang, K.J. Personal exposure to particulate matter and
inflammation among patients with periodontal disease. Sci. Total Environ. 2015, 502, 585–589. [CrossRef]

37. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Bmj 2003, 327, 557–560.
[CrossRef]
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