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Abstract: In order to validate the applicability of pXRF for rapid in situ detection of heavy metals in
urban soils and to accurately obtain an assessment of soil quality in Changchun, a city in northeast
China, 164 soil samples from within the main urban area of Changchun were collected for pXRF
analysis. The main stable elements Si and Ti were used to establish a matrix effect correction model,
and the values of Cr (64.2 mg·kg−1), Cu (43.8 mg·kg−1), Zn (96.2 mg·kg−1), As (20.9 mg·kg−1), and
Pb (57.4 mg·kg−1) were predicted. The empirical findings indicate that the quality of soil data from
the pXRF was improved to different degrees under the correction model, and it became a relatively
reliable dataset; the order of improvement was Cu > Pb > Cr > Zn > As. A comprehensive assessment
indicated that Changchun City is primarily contaminated by the heavy metals As, Pb, and Cu, with
the main sources being automobile manufacturing and pharmaceutical chemical production. These
findings align with previous studies and have produced favorable outcomes in practical applications.
This rapid, non-destructive and economical detection method is very applicable and economical for
the sustainable monitoring and control of heavy metals in large cities. This study provides a basis for
rapid large-scale prediction of urban soil safety and protection of local human health.

Keywords: portable instruments; correction quality; soil investigation of quality; pollution index;
Leopold Matrix

1. Introduction

Urban soil is an organic component of the urban ecological system and the part of the
pedosphere most affected by human activities. Large urban populations and community
activities result in heavy metal contaminants entering the ground from various sources [1].
These sources include industrial activities, the use of wastewater for irrigation, vehicle emis-
sions, and the extraction of metallic mineral resources [1–3]. In addition to these sources,
the heavy metal content in urban areas is also influenced by background sedimentation
and soil-forming matrices [4]. Soil organic matter exhibits a strong capacity for adsorb-
ing heavy metals [5]. In general, heavy metal concentrations are higher in roadside soils
compared to urban parks, and in urban areas compared to agricultural soils of the same
parent material in remote suburban regions. Numerous studies have indicated that Cu and
Zn levels are particularly significant in residential and mixed-use areas, while Pb and Cd
levels tend to be elevated near industries and businesses associated with heavy metals [6].
Various human activities, such as heating and waste disposal, exert differing impacts on
the concentrations of these heavy metals. Solid particulate matter from industrial activities
enters the atmosphere, where it can be deposited and subsequently migrate to water bodies
through rainfall runoff [7]. This process facilitates the accumulation of heavy metals in
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urban environments. The limited capacity of urban soils, combined with the slow rate of
internal material cycling, further impedes the degradation of heavy metals, thereby posing
significant risks to human health. Exposure can occur through oral ingestion, skin contact,
and inhalation, leading to a range of health issues. For instance, As and Cr are highly
carcinogenic, while Pb, Cu, and Zn are associated with blood disorders and nervous system
diseases [8]. This presents a significant risk to the well-being and existence of the urban
community. Given its central role in the population and that it is closely related to human
survival and health, it is crucial to promptly detect and address soil contamination in urban
regions [9,10].

However, traditional laboratory analyses, such as Inductively Coupled Plasma Mass
Spectrometry (ICP-MS), have long detection times, complicated operations, and require
experimental consumables such as acid reagents [3]. This not only incurs high economic
costs but also easily leads to further pollution. Portable energy dispersive X-ray fluorescence
(pXRF) instruments are known for their rapid detection and low-cost, non-destructive
analysis, making them suitable for in situ heavy metal detection in the field and real-time
acquisition of soil geochemical data [11–14]. The accuracy of pXRF analysis is limited by
matrix effects that are inherent and cannot be completely eradicated, making it challenging
to directly compare its accuracy to that of conventional laboratory analysis techniques [15,16].
By increasing the sample size and implementing rigorous calibration methods, the precision
of pXRF analysis technology can be enhanced to fulfil the requirements of large-scale urban
pollution assessment [17]. Currently, there are two main types of calibration method: one
involves experimental operations, such as the standard built-in method and dilution method
for suppression, while the other utilizes mathematical modelling, including linear regression
and neural network methods [18]. The practical implementation of the experimental method
is complex and time-consuming, especially when working with a large number of samples.
Accordingly, a new matrix effect correction mathematical model method for calibration has
been developed, which is more suitable and convenient for the timely implementation of
experimental decisions, such as the design of an encrypted sampling grid and the conducting
of repeated experiments.

PXRF technology has significant potential for application in alloy analysis, archaeo-
logical research, and mining ore detection [19]. Although urban soils have been studied
by experts in the past, they tend to be mostly in suburban areas and forested farmland
near cities, etc., and there are relatively few examples of rapid contamination monitoring
using pXRF in medium- to large-scale major built-up areas of cities [20]. In the last five
decades, Changchun, an important city in northeast China in terms of its urbanized area,
has experienced urbanization fueled by industrial development [21]. Many factories have
been established that may discharge a large number of heavy metals, among which the
main pollutants associated with urbanization are chromium (Cr), copper (Cu), zinc (Zn),
arsenic (As), and lead (Pb) in Changchun, and these five metals pollute the soil more
commonly than other heavy metals [22,23]. We hypothesized that pXRF data after cor-
rection could accurately represent the heavy metal content in the soil, with an accuracy
comparable to that of traditional elemental measurements, thereby meeting the standards
for quantitative analysis. Changchun, a typical industrialized city in China, is affected by
various urban activities, which may lead to heavy metal concentrations in the soil that
exceed safety standards and potentially jeopardize the health of residents. Therefore, timely
monitoring to detect contamination is essential. The use of pXRF effectively addresses
these monitoring needs, making it an appropriate solution for this purpose. To test this
hypothesis, we applied pXRF in situ analysis, predicted the estimates under the constructed
correction model, and used multiple evaluation factors to judge the accumulation level of
elements. Additionally, the research provides a reference for analyzing other heavy metal
elements and includes technical details on implementing this method in fieldwork. This
was conducted with the objective of ensuring the safety and health of the local population.
In light of the aforementioned findings, recommendations have been formulated pertaining
to this matter. Therefore, the objectives of this paper are 1. to assess the applicability of
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pXRF for analyzing heavy metal content in urban soils; and 2. to evaluate the soil quality
of Changchun City based on the precise data obtained.

2. Materials and Methods
2.1. Overview of the Study Area

This research was conducted in the urban area of Changchun (124◦18′–127◦02′ E,
43◦05′–45◦15′ N), which is the capital city of Jilin province, located in the hinterland of the
Songnen Plain and which serves as the geographical core of northeast China (Figure 1) [24].
Changchun has a temperate continental semi-humid climate, with an average annual
temperature of 4.8 ◦C, annual precipitation ranging from 600–700 mm, and a freeze period
lasting for 5 months annually [25,26]. According to the WRB standards and the China Soil
Database, the main inherent soil types in Changchun are black soils and meadow black
soils. According to the National Standard of the People’s Republic of China (HJ962-2018),
the potentiometric method is mainly used for the determination of soil pH, and the water–
soil ratio is 2.5:1, while the method for the determination of soil organic matter is mainly
the potassium dichromate oxidation method [27–29]. The soil type in the eastern part
of Changchun City is alfisol, primarily characterized by a clay loam texture, a pH level
generally around 7.0, and low organic matter content. In the central area of Changchun,
the soil is phaeozem, which has a loamy clay texture, with a pH range of 7.1 to 7.5 and an
organic matter content exceeding 2.0%. In the western region, the soil type is Chernozem,
featuring an organic matter content greater than 2.0% in the topsoil. This soil typically
exhibits weak alkalinity, with a topsoil pH of approximately 7.0, and has a texture of either
loamy clay or sandy clay. Before the development of the urban area, the predominant
soil types included black soil, meadow soil, and meadow black soil. The soil pH in the
Changchun urban area ranged from 7.5 to 8.1, indicating a weakly alkaline condition.
Additionally, the soil texture was primarily medium loamy, characterized by a deficiency
in organic matter. The city covers an area of built districts of approximately 551.38 km2. It
has a permanent population of 9,087,200, consisting of 3,575,300 urban inhabitants, with an
urbanization rate of 66.8% in 2022. Changchun, recognized as the cradle of the automobile
manufacturing industry, has produced and assembled a total of 1.56 million automobiles
as of 2023. Additionally, it serves as a biomedical hub, boasting an industrial scale of
97.8 billion yuan and a comprehensive industrial chain encompassing medical devices and
chemical pharmaceuticals [30]. The city boasts a comprehensive array of industrial facilities,
including machinery manufacturing, biomedical equipment, chemical manufacturing, bus
manufacturing, power and heat production, and other related sectors [31,32].

2.2. Sampling and Analysis
2.2.1. Sampling and Analysis with Sensors (pXRF)
Quality Assurance and Quality Control (QA/QC)

To ensure the usability of the data for decision-making purposes, this study conducted
tests on international standard samples to verify the accuracy and precision of the data.
The international standard geochemical analysis sample number used for this analysis is
the GSS for Soil Geochemical Standard. A total of 18 international standard geochemical
samples were used in this study for quality control purposes (Table 1). In order to ensure
temporal and spatial consistency in the data analyses, standards are analyzed concurrently
with the soil samples. The calibration of these standards is conducted approximately
every ten soil samples. The standard samples are placed in a slightly flattened cylindrical
container, covered with a film, and subsequently tested using pXRF.
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Figure 1. Map of the study area and distribution of soil sampling points. (a): Map of Administra-
tive Areas in China, (b): Map of Administrative Areas in Jilin Province, (c): Changchun main ur-
ban area map. 
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Figure 1. Map of the study area and distribution of soil sampling points. (a): Map of Administrative Areas
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Table 1. Results of certified values of national standard soil geochemical samples (St) and test values
of pXRF (pXRF).

Cr
(pXRF)

Cr
(St)

Cu
(pXRF)

Cu
(St)

Zn
(pXRF)

Zn
(St)

As
(pXRF)

As
(St)

Pb
(pXRF)

Pb
(St)

Si %
(pXRF)

Si
(St)

Ti
(pXRF)

Ti%
(St)

GSS-1a 51.2 44.00 55.0 42.00 677.0 475.00 48.6 33.00 421.8 339.00 30.62 26.46 3956.4 0.326
GSS-1 45.0 47.00 21.60 21 863.8 680 44.4 34 102.6 98 30.47 29.263 5885.2 0.483
GSS-2 370.8 410.00 30.0 16.30 45.2 42.00 16.6 13.70 - 20.00 33.87 34.29 2954.2 0.271
GSS-3 70.8 70.00 14.00 11.4 19.6 31 - 4.4 20.0 26 34.88 34.929 2378.2 0.224
GSS-4 31.6 25.00 18.00 40 214.4 210 73.0 58 62.8 58 23.42 23.817 13,798.2 1.080
GSS-5 36.8 43.00 118.0 144 605.4 494 530.8 412 690.6 552 24.04 24.575 7633.4 0.629
GSS-6 50.4 57.00 478.60 390 101.2 97 302.2 220 371.0 314 25.09 26.613 5556. 0.439
GSS-7 63.4 82.00 91.4 97.00 149.6 142.00 - 4.80 18.8 14.00 16.25 15.28 25,629.0 2.020
GSS-8 61.0 62.00 18.00 24.3 60.4 68 17.0 12.7 - 21 28.65 27.398 4510.20 0.380

GSS-14 51.2 66.00 29.0 27.40 109.4 96.00 - 6.50 32.6 31.00 30.28 30.16 4700.0 0.406
GSS-17 45.0 61.00 20.4 12.60 28.2 29.00 11.6 6.20 - 17.40 36.17 36.60 1874.0 0.191
GSS-20 80.0 92.00 25.4 28.00 54.6 61.00 11.2 8.70 - 13.40 24.09 22.10 3392.6 0.330
GSS-22 62.4 62 19.8 18.30 65.6 59.00 13.8 7.80 25.0 26.00 32.61 31.90 4395.8 0.380
GSS-23 28.20 32 40.4 32.00 122.4 97.00 20.8 11.80 - 28.00 29.954 27.95 5946.4 0.500
GSS-24 351.40 370 31.6 28.00 96.2 81.00 24.0 15.80 30.2 40.00 32.130 32.31 5361.4 0.450
GSS-25 166.40 118 24.0 23.60 75.8 66.00 17.6 12.90 - 22.00 30.894 28.48 4494.2 0.390
GSS-26 122.20 75 21.8 19.10 68.2 62.00 12.5 8.90 - 21.00 32.830 30.92 4539.0 0.410
GSS-27 64.60 68 52.8 54.00 153.4 127.00 17.7 13.30 44.0 41.00 29.324 27.52 7457.8 0.640

Notes: Unless otherwise indicated, units are in mg·kg−1.

For the testing, a portable energy-dispersive X-ray fluorescence spectrometer (X-Met
7500) manufactured by the Oxford Instruments Group in the UK was used. The device
operated at a voltage of 40 KV, a current of 60 mA, and possessed a maximum power output
of 2.4 kW [13]. Additionally, the instrument was equipped with a fourth-generation Silicon
Drift Detector (SDD) and a Rhodium (Rh) anode target [33,34]. It also offered the option to



Toxics 2024, 12, 798 5 of 20

select the soil test modes Soil-Mining_fp and Mining_LE_FP, which were based on the basic
parameter method and empirical coefficient method (they are usually inbuilt algorithms
carried out by the manufacturer). The standard sample was placed in the pXRF scan 5 times;
each time the analysis duration was 60 s, and the final average value was obtained as the
pXRF analysis result. We performed a simple linear fit using the standard values of the
standard samples (quality guaranteed by the quality analysis of the national production
unit) and the results of the pXRF test and found that the fit was in accordance with the test
(R2 > 0.95). The results of the analyses of the international standard geochemical samples
are shown in Table 1 below. The calculated R2 values for the elements Cr, Cu, Zn, As, and
Pb are 0.963, 0.978, 0.992, 0.999, and 0.999, respectively. The recovery rate is 100%, except
Pb, which is also 62%. This is considered an acceptable level of reporting rate for general
research [33]. This quality control and assurance demonstrate that the pXRF data from
this study are credible and comparable to studies by other researchers in our experimental
group for both conventional laboratory XRF and the pXRF used in the experiments [35].
The detection limit and RSD of portable XRF is Cu (10 mg·kg−1, 6.3%), Cr (10 mg·kg−1,
8.6%), Zn (5 mg·kg−1, 15.4%), As (4 mg·kg−1, 12.5%), and Pb (5 mg·kg−1, 7.4%).

Analysis of Soil Samples

During the sample collection process, sampling points were systematically distributed
based on a grid pattern, with each point spaced at 2 km intervals. Surface soil within the
study area was excavated, and soil samples were obtained at a depth of 0–20 cm using
a stainless-steel spade. Additionally, soil specimens were gathered from 3 to 5 different
locations surrounding each sampling point, combined, and thoroughly mixed to create a
composite sample after the removal of any extraneous materials such as branches, twigs,
and leaves. A total of 164 samples were acquired for this study, consisting of 156 samples
from the primary urban zone and 8 samples as the background soil from Ring Express
(Figure 1c).

For the pXRF test, after removing stones, wood splinters, or some extraneous matter,
placing it in a cloth bag and tapping it evenly with a wooden stick, and air-drying it in the
sun for about ten minutes, then the air-dried sample was placed into a short cylindrical
plastic cup with a diameter of 50 mm and a depth of 20 mm and flattened evenly with
paper to facilitate scanning [36]. The experiment was replicated five times at distinct and
uniformly distributed locations within a sample. Each test lasted for 60 s, resulting in a
total of 600 s for one sample measurement. Finally, the mean value of the five times was
calculated as the final result. Based on previous data-processing experience, we filled in the
missing data for undetected samples with half the minimum value of the test [37]. To obtain
the necessary data, we stored the remaining soil samples and sent them to a laboratory
for conventional testing, which included ICP-MS test methods. The study measured the
Cr, Cu, Zn, As, and Pb contents using pXRF, in addition to the major elements selected
based on element correlation analysis, which included Si and Ti. The experimental data
satisfy the precision criteria for data adequacy. The findings from the study of variance
(ANOVA) revealed a statistically significant disparity (p < 0.05) between the in situ portable
XRF measurements and the conventional laboratory data obtained (ICP-MS).

2.2.2. Data Processing and Methods
Calculation of the Correction for Matrix Effects

In theory, the matrix effect arises from various factors. In the context of chemical
analysis, the matrix effect refers to the influence on an analytical method caused by all other
components of the sample except the specific compound being quantified; the content of
an element is affected by all elements except the element being measured [38]. In the actual
calculation process, due to the problems of calculation workload and accuracy, it is compli-
cated to calculate all elements one by one. Simplification of the original Sherman equation
can help minimize spectral noise and address spectral interferences when analyzing the
multi-variable XRF spectra (Equation (1)).
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According to the stability tested by the instrument, the main elements such as Si and
Ti could be selected as the primary correction indicators in this paper. They have a high
content, are minimally influenced by other elements, and are relatively stable in the crust.
Multivariate linear matrix effect correction was then carried out on the remaining elements
to be measured. On one hand, the impact of the outlier on the correction results diminished
compared to the traditional linear regression method (LR); on the other hand, the calculated
quantity was simplified.

C′
i = αiCi + β jSi + γzTi + µi (1)

where C′
i is the corrected content of heavy metals, (element i) is the predicted value, Ci is

the content of elements established by pXRF, Si and Ti is the test content established by
pXRF, αi is the regression coefficient of heavy metal element i, βj and γz are the influence
coefficients of the major element Si and element Ti, and µi is the regression intercept of
heavy metal element i (Equations (2)–(5)) [39,40], all of which are employed by multivariate
partial least squares regression and multiple linear regression.

Mi = Ci − ∑k
Cik
k

(2)

αi =
(∑k M′

ikMik)
(

∑k M2
jk

)
− (∑k M′

ikMjk)(∑k MikMjk)

(∑k C2
ik)(∑k Cjk)− (∑k CikCjk)

2 (3)

βj =

(
∑k M′

ikMjk

)
(∑k M2

ik)− (∑k M′
ikMik)(∑k MikMjk)

(∑k C2
ik)(∑k C2

jk)− (∑k CikCjk)
2 (4)

µi =
(∑k C′

ik)− αi(∑k Cik)− βj(∑k Cjk)

k
(5)

where n is the number of samples and Cik and Cjk are the testing values of elements i and j
in sample k, respectively [41]. The testing values of i and j are zero-centered to Mik and Mjk
(Equations (6) and (7)) [42]. Correlation coefficients can be calculated by testing standard
samples before testing due to instrument commissioning. Given the complexity of these
calculations, this study employs software (such as IBM SPSS Statistics 21.0) that provides
such analyses through a streamlined one-step process, as opposed to manual calculations.
This approach not only alleviates computational challenges but also enhances accuracy.

Mik = Cik −
∑n

k=1 Cik

k
(6)

Mij = Cjk −
∑n

k=1 Cjk

k
(7)

Performance statistics were used to evaluate the correction results, which included the
coefficient of determination (R2), mean absolute error (MAE) and root mean squared error
(RMSE), the ratio of performance to interquartile distance (RPIQ) (Formulas (8)–(11)). Both
the RMSE and R2 metrics evaluate the performance of the linear regression model on the
dataset. MAE and RMSE assess the regression model’s capability to predict the absolute
value of the response variable. In addition, R2 assesses the predictor’s ability to elucidate
the change in the response variable [43]. The relationship between the pXRF testing value
and an element’s predicted value (corrected value) could be estimated using the R2 values.
A stronger correlation is indicated by a larger R2 value. As R2 approaches 1, it indicates that
the regression model is better fitted. In general, a higher RPIQ indicates a better predictive
ability for the model.

R2 =
∑N(Cm − Cn)

2

∑N(Cn − Cn)
2 (8)
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RPIQ =
Q3 − Q1

RMSE
(9)

RMSE =

√
∑N (Cm − CN)

2

N
(10)

MAE =
∑N|Cm − Cn|

N
(11)

where N is the number of samples, Cm is the predicted values, Cn is the ICP-MS value
(represented true values), Cn is the mean value of Cn, Q3 is the third quartile, and Q1 is the
first quartile distance.

Pollution Evaluation Methods

The overall concentration of heavy metals and the statistical methods do not provide
comprehensive information on the extent of soil contamination. They only give a rough
indication of the potential for contamination [44]. The pollution index can be used as a
tool for comprehensive geochemical assessment of soil environmental status [45]. Single
contamination indices may occasionally overestimate the level of contamination at a site
due to the methodologies employed in calculations and the selection of background values.
Conversely, more aggregated contamination factors may be influenced by varying choices
of contaminant element types or may neglect the impact of natural geochemical variability,
resulting in inaccurate evaluation outcomes. Therefore, this study employs a diverse array
of pollution indicators, encompassing both traditional metrics such as single pollution
factors and more comprehensive methodologies for pollution assessment [46] (Table 2). The
geochemical background values used in this paper are the soil geochemical background
of Jilin province (Table 3). Pollution evaluation is essential for understanding the extent
of pollution. This paper employs absolute principal component analysis–multiple linear
regression to identify the contributions of various pollution sources [47]. The analysis was
primarily conducted using relevant software for calculations.

Table 2. Pollution indices used and description of the corresponding parameters.

Index Formula Explain

Single pollution index (PI) PI = Cn/Bn

Cn—the content of the heavy mental
element [48]. Bn—the geochemical
background value of Jilin province.

Geo-accumulation index (I-geo) Igeo = Log(Cn/k × Bn)

Cn—the measured levels of the heavy metal
“n” in the soil sample, Bn—used the same

way as PI, and K is the correction factor,
which was chosen as 1.5 [44].

Contamination factor (CF) CF = Ci
n/Ci

p

Cn—the content of heavy metal from at least
five samples of individual metals,

Cp—pre-industrial reference value for the
substances [49].

Enrichment factor (EF)
EF = (Cn/Cref)/(Bn/Bref)

Cn—content of analyzed heavy metal,
Cref—one of the following metals, Ti [50].

Bn—reference content of the analyzed heavy
metal, Bref—one of the following metals, Ti in

the background [51].

The pollution load index (PLI) CFn—the contamination factors of the
element n [52].

Risk factor (RI)
PLI = (CF1 + CF2 + · · ·+ CFn)

1
n

Ei
r = Ti

r × Ci
f

RI = Σn
i=1Ei

r

n—the number of heavy metals, Tr—the
toxicity response coefficient of an individual
metal, Cf—contamination factor, Er—single

index of the ecological risk factor [53].
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Table 2. Cont.

Index Formula Explain

Degree of contamination (C-deg) Cdeg = Σn
i=1CFi

CFi—the contamination factor for each
element [54].

Nemerow pollution index
(PI-Nemerow) PINemerow =

√
( 1

n Σn
i−1PI)

2
+(PImax)

2

n

n—the total number of elements, PI—the
value of the single index, PImax—the

maximum value of the PI [55].

Notes: The corresponding soil contamination classifications are given in Appendix A.

Table 3. Soil background values and toxicity factors for Jilin province were used in the calculations.

Elements Soils Background Values (mg·kg−1) Toxicity Factor

Cr 46.7 2
Cu 17.1 1
Zn 80.4 5
As 8.38 10
Pb 28.8 5

Environmental Impacts

Determining the sources of pollution is essential for conducting a thorough and
accurate environmental impact assessment [56]. The impact assessment tool utilized in
this study is the Leopold Matrix. This is a two-dimensional interactive matrix, where the
horizontal axis represents the environmental factors affected by pollution, including the
physical environment and the social environment, among others [8]. The vertical axis
denotes the environmental impact factors, which primarily consist of activities that may
cause pollution, such as industrial processes and human activities [57]. To present the
results more effectively, we utilized a fractional representation (M/I), where M denotes
the magnitude of the change in the impacting activity (with values ranging from −5 to +5;
positive values indicate positive impacts, while negative values signify negative impacts)
and I represents the importance of the change to the environment (on a scale from 1 to
10) [58]. Ultimately, the environmental impact is quantified as the product of M and I,
resulting in the environmental impact score [59].

3. Results and Discussion
3.1. Evaluation of Matrix Effect Correction

The Si–Ti matrix effect correction method and the traditional linear regression (LR)
method were used to correct the test results and fit the image linearly. A black diagonal line
going through the origin is a 1:1 line as we assumed that the ICP-MS data represented the
true values (Tables 4 and 5 and Figures 2 and 3). The mean concentrations of five element
concentrations determined by in situ pXRF which were relatively lower than data obtained
by ICP-MS data. It is noteworthy that the mean of the in situ Zn pXRF (90.1 mg·kg−1) is
very close to the mean of the ICP-MS (91.12 mg·kg−1) analyses. These results show that
pXRF underestimates soil metal concentrations. Validation indices of MAE and RMSE are
shown in Figure 2. The traditional LR generated a lower correction quality than the Si–Ti
matrix effect correction method. Although the values for MAE and RMSE remain high
within reasonable limits, a significant improvement is evident in the corrected data, which
may be due to outliers and model fitness [60].

To better demonstrate the applicability of the model, we also performed validation.
The RPIQ values of the element Cr (RPIQ = 1.572) and As (RPIQ = 1.168) are all greater
than 1, showing excellent accuracy reliability, and the RPIQs of Cu (RPIQ = 0.968) and Pb
(RPIQ = 0.828) are both greater than 0.8, with high accuracy, but the RPIQ of Zn (RPIQ = 0.792)
is less than 0.8 but greater than 0.7, which is still in the acceptable range. The above shows
that the calibration results for the five heavy metal elements are reasonable and reliable.
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Table 4. Basic statistics of the concentrations measured by in situ pXRF, ICP-MS, and corrected pXRF
in the urban area of Changchun City, China.

In Situ pXRF (mg·kg−1) Mean Max Min

Cr 38.9 203.6 5.3
Cu 21.3 136.6 5.0
Pb 15.8 302.2 6.0
Zn 90.1 1511.6 27.8
As 11.2 21.8 4.0

ICP-MS (mg·kg−1)
Cr 49.00 146.85 15.20
Cu 56.95 592.16 22.45
Pb 43.94 653.32 16.98
Zn 91.12 758.25 18.77
As 18.80 48.13 5.17

The corrected PXRF (mg·kg−1)
Cr 64.22 167.68 38.93
Cu 43.78 392.10 3.90
Pb 57.43 565.72 13.44
Zn 96.23 795.20 39.66
As 20.90 39.86 6.40

Table 5. Correction equations and comparison of R-square before and after calibration.

Elements Multiple Linear Regression Equations R2 Before
Correcting R2 After Correcting

Degree of
Advancement

Cr Y = 0.652X + 0.001Ti + 0.954Si − 8.381 0.612 0.755 23.37%
Cu Y = 1.196X + 0.009Ti − 15.030Si + 399.033 0.355 0.768 116.64%
Zn Y = 0.493X − 0.017Ti − 9.932Si + 395.925 0.688 0.803 16.77%
As Y = 1.785X + 0.001Ti − 0.569Si + 16.283 0.699 0.761 8.87%
Pb Y = 1.795X − 0.008Ti − 4.254Si + 179.420 0.586 0.863 47.29%

Notes: where X denotes the content of pXRF of the element to be tested. Y represents the regression values of the
element to be corrected. Silicon (Si) in units of 10−2 (%) and elemental titanium (Ti) in mg·kg−1.
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We can see that the corrected data for the elements Cu and Pb are better fitted to the
true values (ICP-MS test values) than the uncorrected ones. Element Zn tests higher than
the true value at data points with high content, but elements Cu and Zn test lower than
the true values. The corrections are closer to the actual values for the high-value ranges of
elemental As, but for elemental Cr, the predictions are slightly larger than the true values,
but still within reasonable limits, which may be related to the instrumental detection limits
(Figure 3).

Compared to traditional and linear regression corrections, the R2 values for the Cr,
Cu, Pb, and Zn elements significantly increased. Cu showed the most significant improve-
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ment, followed by Pb, Cr, Zn, and finally As. The R2 values were greater than 0.75 after
calibration, indicating a strong correlation with laboratory testing values obtained through
ICP-MS. These corrections have improved the data quality to some extent and weakened
the influence of the matrix effect. The comprehensive comparison of elements should
be ranked as Cu > Pb > Cr > Zn > As (Table 4). This ranking could be attributed to the
constituents’ amalgamation or their intrinsic characteristics.

3.2. Assessment of Pollution Degree

The pollution index statistics for the built-up area of Changchun City are shown in
Figure 4 below. These box plots illustrate the distribution of the final calculated values
for each evaluation method. Additionally, various levels of contamination can be inferred
based on the different ranges of contamination value divisions. In the box plot illustrating
the distribution of the PI calculation results (Figure 4—Graph 01), the majority of samples
exhibit values below three, indicating slight to moderate contamination. However, a few
sample points demonstrate severe contamination. In the calculations of the enrichment
factor index (Figure 4—Graph 02), most distributions are below five, and none exceed
twenty. This indicates a slight to moderate enrichment of the element. Similarly, in the
ground accumulation index distribution (Figure 4—Graph 03), most of the samples are in
the range of 1–2, showing slight cumulative contamination, and in the final distribution of
the ecological risk factor, the data show that most of them are also below 20, but As has
a higher ecological risk compared to the other elements (Figure 4—Graph 04). However,
considering the toxicity of As and the background level of soils in Jilin province, this could
be linked to the selection of background values for the element, which may amplify its
contamination effects. The average value of the Nemerow index is equal to 1.20, indicating
that the soil standards in the built-up area of Changchun are mildly polluted (Table 6).
When calculating the PLI, it can be observed that As has the greatest contribution among
the five elements, followed by Cu, Pb, Cr, and Zn.

Table 6. Statistical results of the comprehensive pollution index for the urban area of Changchun.

Index Cr Cu Zn As Pb

PI-Max 3.59 22.93 9.89 5.02 19.64
PI-avg 1.38 2.56 1.20 2.68 1.99

CF 0.71 0.88 0.55 1.39 0.82
Nemerow index 1.20

Figure 5 illustrates the spatial distribution of heavy metal pollution in the built-up
area of Changchun. Each small square in the figure represents the evaluation value of a
specific pollution assessment method, with the degree of pollution indicated by a gradient
of red colors. Four squares together form a larger square that represents the pollution level
at a given sampling point. The greater the number of red squares at a sampling point, the
higher the degree of pollution [61]. The distribution of significant contamination for the
elements lead, copper, and zinc are similar in the southeast corner, with contamination in
this area showing large areas of red color, representing significant contamination regardless
of the method of calculation, while the distribution of elemental copper in the northwest
corner changes. The combination of several evaluation methods indicates that the level
of Cr contamination was low and that the background values of Cr in the soil were not
significantly elevated compared to the test values. However, it is important to note that Cr
is relatively toxic and requires careful monitoring even at low levels of contamination [62].
The evaluations conducted using various methods indicate differing levels of pollution,
which must be assessed carefully and comprehensively. Notably, most heavily polluted
sample sites are concentrated around residential areas and industrial parks.
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The correlation heat map of heavy metal concentrations in Changchun soil indicates
that, at a significance level of p = 0.05, the concentrations of Cu, Pb, and Zn are highly
correlated, with correlation coefficients exceeding 0.8 [63]. In contrast, the elements of
As and Cr show a weak correlation, approximately 0.5 (Figure 6). Combined with the
contour plots of these elements, it is evident that there may be homology between these
subgroups [64]. Principal component analysis similarly showed that a total of two principal
components emerged between the five elements [65]. By employing Kaiser’s standard
orthogonal rotation method, the eigenvalues of the two factors were determined to be 2.68
and 1.44, respectively [66]. Analyzing the coefficients of the rotated component matrices
revealed that Source 1 exhibited higher loadings for Cu, Pb, and Zn, while Source 2
showed greater loadings for As and Cr. These findings were consistent with the results of
the correlation analyses (Table 7). The cumulative variance contribution of the principal
components reached 82.37%, with the first two principal components explaining 53.59% and
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28.77% of the total variance, respectively [67,68]. An absolute principal component multiple
linear regression analysis was conducted, revealing that all R-squared values exceeded
0.65, indicating the model’s applicability. The identified pollution sources comprised two
known sources and one unidentified source.
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Figure 5. Spatial distribution of point pollution in Changchun City based on four pollution assessment
methods. The subplot represents the degree of heavy metal contamination at each sampling site
in the main urban area of Changchun, (a) the pollution index level of element Cr; (b) the pollution
index level of element Cu; (c) the pollution index level of element Zn; (d): the pollution index level of
element As; (e): the pollution index level of element Pb.
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Table 7. Heavy metal element principal component analysis matrix and contribution of pollution
sources.

Elements

Composition Matrix Rotated Composition Matrix Pollution Contribution

Component 1 Component 2 Component 1 Component 2 Source 1 Source 2 Unknown
Source (s)

Cr 0.192 0.816 0.015 0.838 0.16% 69.37% 30.47%
Cu 0.916 0.081 0.878 0.273 30.89% 37.50% 31.61%
Zn 0.941 −0.253 0.974 −0.049 50.64% 13.17% 36.19%
As 0.257 0.809 0.081 0.845 2.30% 83.20% 14.50%
Pb 0.923 −0.217 0.948 −0.017 67.65% 8.26% 24.09%

Source 1 primarily contributes to the levels of Pb and Zn, while Source 2 has a greater
impact on As and Cr. Additionally, the unknown sources show some correlation with Cu,
Pb, Zn, and Cr. Notably, Cu is significantly associated with all three sources of pollution. We
scrutinized the descriptive records at the time of sampling, as well as the views of satellite
maps and the site. The contour map indicates that high concentrations of Cu, Pb, and Zn are
present in the lower reaches of the river (Figure 7). Our sampling records reveal multiple
sewage pipes in these areas, as well as metal product manufacturing facilities that discharge
wastewater, including from electroplating processes, into the watershed. This has resulted
in soil pollution in the surrounding regions [22]. Notably, these contaminated sites overlap
with several transportation routes, such as Line 2 of the underground system and railway
stations. Previous studies have demonstrated that traffic contributes to the accumulation
of Pb and Zn content in the soil [23]. Therefore, the primary source of pollution can be
attributed to metal product manufacturing activities. Source 2 primarily contributes to the
levels of As and Cr. In the spatial distribution map of As, this coincides with numerous
residential areas. In the vicinity of the high-concentration zones, our records reveal the
presence of several abandoned factories [5]. Changchun City experiences severe winters,
often relying on coal or electric heating. The combustion of coal releases atmospheric soot
that contains heavy metals such as As, Cr, Pb, etc., which accumulate in the soil through
atmospheric deposition, resulting in a broad area of impact [27]. Therefore, Source 2 is
predominantly a coal-fired heating source. Similarly, the unidentified Source 3 contributes
to the levels of a comprehensive assessment suggesting that these elements are primarily
associated with the chemical manufacturing industry [65]. The production of chemical
raw materials or products generates complex chemical products, which not only produce
wastewater but also result in significant emissions and residual waste [32]. Consequently,
this unidentified source is mainly for chemical pollution.
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3.3. Assessment of Leopold Matrix

The Leopold Matrix was evaluated mainly by several environmental experts associated
with Changchun City (Table 8). In the Leopold Matrix, our list of environmental activities
with the highest impact on the soil are the waste recycling activities of the automotive
industry and the manufacturing of pharmaceutical and chemical products, with negative
impact evaluation scores of twelve and nine, respectively. The chemical–pharmaceutical
industry has the highest score (20.10) for each environmental factor, representing a signifi-
cant negative impact. The average value of the impact on soil for each activity is 2.67 less
than 3.0, which indicates that the activities are all still within the acceptable range. The
impact value for all activities is 32.04 for soil, and the total impact values for water and air
are 27.88 and 28.36, respectively. Activity factors such as automobile manufacturing and
chemical–pharmaceutical industries currently have a relatively large negative impact on
the environment, but all are still within the alert range and require treatment activities.

Table 8. Environmental impact analysis based on the Leopold Matrix.

Physiological
Environment

Social
Environment

Economic
Environment

Impact Activities Soil Water Air Infrastructure Health Employment Value of
Land

Raw materials for metal production −2/3 −2/3 −1/3 −2/2 −1/3 1/3 −1/2

Vehicle manufacturing and assembly −2/3 −2/2 −1/3 −1/2 −2/3 4/3 −1/2
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Table 8. Cont.

Physiological
Environment

Social
Environment

Economic
Environment

Impact Activities Soil Water Air Infrastructure Health Employment Value of
Land

Recycling and disposal of abandoned cars −4/3 −2/2 −2/3 −1/2 −2/3 2/3 −2/2

Input of chemical raw materials −3/2 −3/3 −1/3 - −3/3 1/3 -

Product manufacturing −4/3 −3/3 −2/3 −1/2 −3/3 4/3 −1/2

Treatment of waste biological products −3/3 −2/3 −1/3 - −3/3 3/3 −2/2

Fossil fuel usage −3/3 −1/2 −4/3 −1/1 −3/3 1/2 -

Waste gas and waste residue emissions −2/3 −3/3 −4/3 - −3/3 1/2 −1/2

Fertilizer and pesticide usage −1/2 −3/3 −1/3 −2/2 −3/3 - −3/3

Vehicle exhaust emission −2/2 −1/3 −2/3 - −1/3 - −1/3

Sewage disposal −2/3 −3/3 −1/2 −1/2 −3/3 −1/2 -

Solid waste emissions −3/3 −2/3 −1/2 −2/2 −3/3 −1/2 −1/3

4. Conclusions

The conclusions we can draw are as follows:

1. The Changchun built-up area as a whole is slightly to moderately polluted, but it needs
to be alerted to the contamination of elemental As, as well as Cu and Pb, with the main
sources of pollution being metal-related industrial manufacturing, the manufacturing
of chemical products, and coal-fired heating. The environmental impacts of activities
in the urban areas of Changchun are all within manageable limits and soil remediation
should be carried out for the corresponding response sites immediately.

2. The on-site test data obtained by pXRF can be considered as a reliable dataset after
processing by the correction model. The order of correction for each element under
this simple correction model is as follows: Cu > Pb > Cr > Zn > As. This exploratory
correction method can be extended to the correction of other elements, which also
provides a valuable reference for the correction of in situ measurements of other
potential soil pollutants.

3. The pXRF is efficiently calibrated for real-time scanning of regional soil contamination
and large-scale sustainable rapid assessment. Therefore, we advocate that calibrated
pXRF data from proximal sensors can be used by government agencies or monitor-
ing organizations as complementary information to enhance spatial monitoring of
potentially contaminated sites at the local and regional levels to ensure the safety and
health of populations in urban environments.
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Appendix A. Pollution Index Classification Scale

Index Numerical Range Classes

Single pollution index (PI)

PI < 1 non-polluting
1−2 lightly polluted
2−3 moderately polluted

PI > 3 heavily polluting

Geo-accumulation index (I-geo)

I−geo < 0 non-polluted
0−1 Uncontaminated to moderately contaminated
1−2 Moderately contaminated
2−3 Moderately to strongly contaminated
3−4 Strongly contaminated
4−5 Strongly to extremely contaminated

I-geo > 5 Extremely high contaminated

Contamination Factor (CF)

CF < 1 non-polluting
1−3 lightly polluted
3−6 moderately polluted

CF > 6 heavily polluted

Enrichment factor (EF)

EF < 2 Minimal enrichment
EF = 2−5 Moderate enrichment
EF = 5−20 Significant enrichment

EF = 20−40 Very high enrichment
EF > 40 Extremely high enrichment

The pollution load index (PLI) PLI < 1 Clearly
PLI > 1 Polluted

Risk factor (RI)

RI < 20 Low ecological risk
20−40 Moderate ecological risk
40−80 Considerable ecological risk
80−160 High ecological risk

>160 Serious ecological risk

Degree of contamination (C-deg)

C−deg < 8 non-polluting
8−16 lightly polluted

16−32 moderately polluted
C−deg >32 heavily polluted

Nemerow pollution Index (PI-Nemerow)

PIN < 0.7 Class I soils (unpolluted)
0.7−1 Class II soils (Safety)
1−2 Class III soils (Mild pollution)
2−3 Super tertiary soils (Moderated)

PIN > 3 Severe pollution

References
1. Tang, S.; Wang, C.; Song, J.; Ihenetu, S.C.; Li, G. Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis.

Sustainability 2024, 16, 860. [CrossRef]
2. Zhao, M.; Zhao, Y.; Shen, T.; Li, S. Co-Kriging Interpolation of Mn and Zn Pollution Distribution and High-Score Mapping Based

on in situ PXRF Data. Res. Environ. Sci. 2023, 36, 600–609. [CrossRef]
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54. Plak, A.; Telecka, M.; Charzyński, P.; Hanaka, A. Evaluation of hazardous element accumulation in urban soils of Cracow, Lublin
and Torun (Poland): Pollution and ecological risk indices. J. Soils Sediments 2024, 24, 3286–3296. [CrossRef]

55. Gong, C.; Quan, L.; Chen, W.; Tian, G.; Zhang, W.; Xiao, F.; Zhang, Z. Ecological risk and spatial distribution, sources of heavy
metals in typical purple soils, southwest China. Sci. Rep. 2024, 14, 11342. [CrossRef] [PubMed]

56. Arani, M.H.; Mohammadzadeh, M.; Kalantary, R.R.; Rad, S.H.; Moslemzadeh, M.; Jaafarzadeh, N. Environmental impact
assessment of a steel industry development plan using combined method involving Leopold matrix and RIAM. J. Environ. Health
Sci. Eng. 2021, 19, 1997–2011. [CrossRef]

57. Hnin, H.W.; Bonnet, S.; Gheewala, S.H. Environmental impact assessment of electricity production from municipal solid waste in
Yangon, Myanmar. Environ. Dev. Sustain. 2024, 1–36. [CrossRef]

https://doi.org/10.3390/s16111950
https://www.ncbi.nlm.nih.gov/pubmed/27869774
https://doi.org/10.1016/j.apgeochem.2022.105461
https://doi.org/10.1016/j.gexplo.2017.11.016
https://doi.org/10.37190/ppmp/193187
https://doi.org/10.3390/app12020568
https://doi.org/10.1007/s00704-024-04862-5
https://doi.org/10.3390/rs16183402
https://doi.org/10.1016/j.biosystemseng.2024.09.011
https://doi.org/10.1016/j.ecoinf.2024.102520
https://doi.org/10.1016/j.geoderma.2020.114712
https://doi.org/10.1016/j.jhazmat.2022.129891
https://www.ncbi.nlm.nih.gov/pubmed/36103763
https://doi.org/10.24425/aep.2024.149432
https://doi.org/10.1016/j.ecolind.2024.112568
https://doi.org/10.1016/j.jhazmat.2021.126144
https://doi.org/10.1016/j.teac.2022.e00169
https://doi.org/10.1016/j.jhazmat.2023.131982
https://doi.org/10.1016/0012-821X(79)90049-9
https://doi.org/10.3390/app14041435
https://doi.org/10.1007/s13530-024-00234-8
https://doi.org/10.1007/s10661-024-12893-8
https://www.ncbi.nlm.nih.gov/pubmed/39073501
https://doi.org/10.1007/s11368-024-03864-0
https://doi.org/10.1038/s41598-024-59718-9
https://www.ncbi.nlm.nih.gov/pubmed/38762588
https://doi.org/10.1007/s40201-021-00752-4
https://doi.org/10.1007/s10668-024-05260-7


Toxics 2024, 12, 798 20 of 20

58. Ayiwouo, M.N.; Sriram, S.; Ngounouno, F.Y.; Rajagopal, K.; Ngounouno, I. Assessment of the environmental impacts of gold
mining activities at Gankombol (Adamawa-Cameroon) using Leopold matrix, Fecteau grid and remote sensing approach. J. Afr.
Earth Sci. 2023, 207, 105050. [CrossRef]

59. Valizadeh, S.; Hakimian, H. Evaluation of waste management options using rapid impact assessment matrix and Iranian Leopold
matrix in Birjand, Iran. Int. J. Environ. Sci. Technol. 2018, 16, 3337–3354. [CrossRef]

60. Xu, D.; Chen, S.; Xu, H.; Wang, N.; Zhou, Y.; Shi, Z. Data fusion for the measurement of potentially toxic elements in soil using
portable spectrometers. Environ. Pollut. 2020, 263, 114649. [CrossRef]

61. Zhao, M.; Chen, Z.; Qian, C.; Zhao, Y.; Xu, Y.; Liu, Y. Correcting correlation quality of portable X-ray fluorescence to better map
heavy metal contamination by spatial co-kriging interpolation. Ecotoxicol. Environ. Saf. 2024, 271, 115962. [CrossRef]

62. Shahab, A.; Hui, Z.; Rad, S.; Xiao, H.; Siddique, J.; Huang, L.L.; Ullah, H.; Rashid, A.; Taha, M.R.; Zada, N. A comprehensive
review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across
different cities of the world. Environ. Geochem. Health 2022, 45, 585–606. [CrossRef]

63. Ma, M.; Fang, L.; Zhao, N.; Ma, X. Detection of Cadmium and Lead Heavy Metals in Soil Samples by Portable Laser-Induced
Breakdown Spectroscopy. Chemosensors 2024, 12, 40. [CrossRef]

64. Mugudamani, I.; Oke, S.A.; Gumede, T.P. Influence of Urban Informal Settlements on Trace Element Accumulation in Road Dust
and Their Possible Health Implications in Ekurhuleni Metropolitan Municipality, South Africa. Toxics 2022, 10, 253. [CrossRef]
[PubMed]

65. Ren, Z.; Christakos, G.; Lou, Z.; Xu, H.; Lv, X.; Fei, X. Contamination Assessment and Source Apportionment of Metals and
Metalloids Pollution in Agricultural Soil: A Comparison of the APCA-MLR and APCA-GWR Models. Sustainability 2022, 14, 783.
[CrossRef]

66. Li, Y.; Zhou, S.; Liu, K.; Wang, G.; Wang, J. Application of APCA-MLR receptor model for source apportionment of char and soot
in sediments. Sci. Total. Environ. 2020, 746, 141165. [CrossRef]

67. Zhou, Y.; Du, S.; Liu, Y.; Yang, T.; Liu, Y.; Li, Y.; Zhang, L. Source identification and risk assessment of trace metals in surface
sediment of China Sea by combining APCA-MLR receptor model and lead isotope analysis. J. Hazard. Mater. 2024, 465, 133310.
[CrossRef]

68. Zhu, Y.; Liu, B.; Jin, G.; Wu, Z.; Wang, D. Identifying the Local Influencing Factors of Arsenic Concentration in Suburban Soil: A
Multiscale Geographically Weighted Regression Approach. Toxics 2024, 12, 229. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jafrearsci.2023.105050
https://doi.org/10.1007/s13762-018-1713-z
https://doi.org/10.1016/j.envpol.2020.114649
https://doi.org/10.1016/j.ecoenv.2024.115962
https://doi.org/10.1007/s10653-022-01255-3
https://doi.org/10.3390/chemosensors12030040
https://doi.org/10.3390/toxics10050253
https://www.ncbi.nlm.nih.gov/pubmed/35622666
https://doi.org/10.3390/su14020783
https://doi.org/10.1016/j.scitotenv.2020.141165
https://doi.org/10.1016/j.jhazmat.2023.133310
https://doi.org/10.3390/toxics12030229

	Introduction 
	Materials and Methods 
	Overview of the Study Area 
	Sampling and Analysis 
	Sampling and Analysis with Sensors (pXRF) 
	Data Processing and Methods 


	Results and Discussion 
	Evaluation of Matrix Effect Correction 
	Assessment of Pollution Degree 
	Assessment of Leopold Matrix 

	Conclusions 
	Appendix A
	References

