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Abstract: Protocatechuic aldehyde (PCA) is a natural phenolic acid compound with pharmacological
effects such as anti-oxidative stress, antibacterial, anti-apoptotic, anti-inflammatory, anti-platelet
aggregation, and anti-tumor. Despite the favorable therapeutic effects of PCA, it is imperative to
recognize that adverse drug reactions can arise even with satisfactory quality assurance measures
and during standard clinical application and dosing. Additionally, the acute toxicity and cardiotoxic
sequelae of PCA are frequently under reported in the available documentation. To investigate the
acute toxicity and cardiotoxic effects of PCA, the present study comprehensively assessed the acute
toxicity and cardiotoxic effects of PCA by administering different concentrations of PCA and by
monitoring the phenotypic changes in zebrafish, using AB wild-type Tg(cmlc2:EGFP) zebrafish as the
experimental model organism. Meanwhile, the target genes of PCA that may cause cardiotoxicity
were predicted and validated using a network pharmacology approach. Our findings indicated that
PCA exhibited severe acute toxicity and cardiotoxic effects in zebrafish at 70 µg/mL and 80 µg/mL.
Furthermore, PIK3CA, PARP1, and GSK3β may be involved in the mechanism of action of the
cardiotoxicity-inducing effects of this compound. The present investigation has afforded a deeper
insight into the acute toxicity and cardiotoxic impacts of PCA on zebrafish and has established a
significant theoretical foundation for the evaluation of toxicity in pharmaceuticals incorporating PCA.

Keywords: zebrafish; PCA; acute toxicity; cardiotoxic

1. Introduction

PCA is widely found in the roots of Salvia miltiorrhiza as well as in the leaves of the
ophiopogon and hollyhock. It is a natural phenolic acid compound found in Salvia miltior-
rhiza and other traditional Chinese medicinal herbs, and consists of a benzene ring and an
acrolein moiety. Three hydroxyl groups are distributed on the benzene ring and the acrolein
group is attached to the benzene ring, and this structure makes PCA hydrophilic and ac-
tive [1,2]. Studies have shown that PCA possesses a variety of pharmacological activities
such as antioxidant, antibacterial, anti-apoptotic, anti-inflammatory, anti-platelet aggre-
gation, and anti-tumor, as well as many other pharmacological activities [3–7]. Currently,
Cao found [8] that in rat animal experiments, PCA can be converted to protocatechuic acid
in vivo, and the subsequent generation of vanillyl-CoA PCA has been a popular conjugate
that inhibits the binding of long-chain fatty acids to CoA and reduces the AcCoA/CoA
value [9–12].

In acute myocardial ischemia, the metabolism of PCA is slowed down, and the
metabolism of protocatechuic acid and vanillic acid is slowed down in vivo, resulting
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in cardiotoxicity caused by accumulation [13]. This provides a rationale for the cardiotoxi-
city of the animal model in recent years for evaluating pharmaceutical effectiveness and
safety. The zebrafish is a non-mammalian vertebrate known for its rapid development,
tiny embryos and individuals, translucent body, high spawning rates, and rapid reproduc-
tion. The benefits of using zebrafish for experiments include reduced costs, shorter cycle
times, and fewer ethical restrictions. It usually takes only about 3 days from the subject’s
exposure to zebrafish to the completion of the evaluation experiment [14]. Furthermore,
this study used transgenic fluorescently tagged zebrafish to reveal the labeled position
under the corresponding excitation light and quantitatively analyze the area of cardiac
fluorescence imaging. The zebrafish heart’s response to exogenous drugs is highly similar
to that of human hearts [15]. This helps observe damage to organ shape and target the PCA
medication.

PCA’s cardiotoxic effects in zebrafish have not been documented in any national or
international publication. We selected zebrafish as a new model organism for this study
and administered different concentrations of the drug to zebrafish larvae to thoroughly
assess the potential acute toxicity and cardiotoxicity of PCA exposure. This allowed us to
provide important theoretical references for the evaluation of the toxicity of PCA drugs.

2. Materials and Methods
2.1. Instrumentation

A zebrafish aquaculture system (Beijing Aisheng Technology Co., Ltd., Beijing, China),
Leica M205FA stereo fluorescence microscope (Leica Microsystems, Wetzlar, Germany),
Zeiss LSM880 + Fast Airyscan Laser Confocal Microscope (with Live Cell Workstation),
Leica RM2255 Paraffin Slicer, water bath LWB-24, pathological tissue processing staining
system (YB-6LF, YR-19, ZT-12M), Gradient PCR Instrument T100, LongGene Real-Time Flu-
orescence PCR Instrument Q200B, Zebrafish Behavior Analyzer (ZebraLab), and ViewPoint
Microscope ZEB6202 were used.

2.2. Medicines and Reagents

Procatechaldehyde (batch No. S30202-5g), xylene (batch No. W14278), hematoxylin
anhydrous ethanol solution (batch No. R20587), and neutral gum (batch No. S30509)
were acquired from Yuanye Biotechnology Co. (Shanghai, China). Tricine MS-222 (batch
No. M14788) was bought from Jinan Anxia Biotechnology Co. Ltd, AbMole (Jinan, China).
Fish fixative sodium carboxy methyl cellulose (CMC-Na, lot 419281) was bought from
Sigma-Aldrich, St. Louis, MO, USA. Paraformaldehyde (batch No. CR2209049) was bought
from Sevier (Wuhan, China). Biotechnology Co. 2xSYBR Green qPCR Mix (with ROX)
(batch No. C13720975) was acquired from Ciscojet Biotechnology Co. A SPARKscript
II RT Plus Kit (with a gDNA eraser) (batch No. AG0304-B) was bought from Cisco Jie
Biotechnology Co. (San Jose, CA, USA).

2.3. Animals

AB wild-type zebrafish Tg(cmlc2:EGFP) were acquired courtesy of Zebrafish Labora-
tory, New Animal Centre, Shandong University of Traditional Chinese Medicine, China.
In a zebrafish culture system, every adult male and female zebrafish were kept apart and
maintained at 28 ◦C, pH 7.2 ± 0.2, with a photoperiod of 14 h/10 h (light/dark) and
twice-daily feedings of penaeid shrimp.

3. Methodology
3.1. Breeding and Culture of Zebrafish

Zebrafish reach sexual maturity at three months of age. Four to six pairs of mature
fish were chosen from the tanks and put in a spawning device one night beforehand. The
male and female fish were arranged in a 1:1 ratio, with an insert plate between them. To
select high-quality embryos for zebrafish spawning, the lights were turned on and the
transparent inserts were taken out the next morning.
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3.2. Zebrafish Drug Delivery Solution Preparation

For this experiment, the PCA concentration gradient group (50 µg/mL, 60 µg/mL,
70 µg/mL, and 80 µg/mL) was chosen. One milligram of PCA was precisely weighed, put
in a 1.5 mL EP tube, and dissolved in one milliliter of purified water to create a master
batch with a drug mass concentration of one mg/mL. Next, 100 µL, 120 µL, 140 µL, and
160 µL of the masterbatch were taken from each tube and added to another 15 mL EP
tube. Finally, 1900 µL, 1800 µL, 1600 µL, and 1400 µL of the masterbatch were added to the
zebrafish embryo culture and diluted with water to the equivalent drug mass concentration
of 50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL. The dispensed solution was diluted
with water to an equivalent drug mass concentration of 50 µg/mL, 60 µg/mL, 70 µg/mL,
and 80 µg/mL for further experimental drug delivery. The drug mass concentration drug
delivery system was then formulated in each well of the total fish culture water of 2 mL in
a 24-well plate. One liter of clean water included 0.633 g of KCl, 2.452 g of CaCl2, 14.658 g
of NaCl, and 4.06 g of MgSO4·7H2O for zebrafish embryo culture. The anesthetic was a
0.4mg/mL tricaine solution prepared in purified water.

3.3. Grouping Interventions for Zebrafish

Five groups of experimental zebrafish per Section 2.3 were created: control and
50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL drug concentration groups for PCA. The
drug concentration groups of 50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL PCA were
immersed in drug preparation concentrations based on the experimental requirements, as
determined by the method of Section 3.2. Meanwhile, the control group was maintained in
zebrafish culture water without any intervention.

3.4. Zebrafish with Acute Exposure to PCA Exhibit Teratogenic Toxicity and Epimorphological
Alterations

Normal zebrafish embryos were chosen under a somatic microscope upon spawning
and placed onto 24-well plates, with ten embryos per well. The subjects had exposure
to three duplicate wells in each of the following groups: the control group, the PCA
concentration gradient group (50 µg/L, 60 µg/L, 70 µg/L, and 80 µg/mL), and soak-in
drugs. To enable the embryos to continue developing, each well was filled to a total amount
of 2 mL of embryo culture water, sealed, and kept in a fish room with a thermostat set at
28 ◦C. Per FET guidelines [16] and OECD guidelines [17], all developmental endpoints
were identified. Every 24 h, the exposure solution was replaced at 24 hpf (hours after the
hour after fertilization), 48 hpf, 72 hpf, and 96 hpf, respectively. The mortality of each
group was recorded for four days in a row. Thirty zebrafish were fixed under a somatotopic
microscope in 0.3% methylcellulose solution after being anesthetized with 0.4 mg/mL
of tricaine as needed for observation. The zebrafish were then positioned sideways on
slides with their eyes facing opposite directions to observe the embryos with aberrant
development at various times. Every 24 h, hatchability and mortality were carefully tallied.
At 96 h, the malformation rate was computed.

3.5. Acute Exposure to PCA’s Effects on Zebrafish Larvae’s Behavioral Alterations

Similar to the grouping under Section 3.3, zebrafish embryos subjected to a gradient
concentration of 120 hpf PCA were placed in a Zebrabox, a Zebrafish ViewPoint Behaviore
Analyzer, with one larval fish per well, on a 96-well plate. As soon as the analytical setup
was complete, the behaviors of the zebrafish were investigated.

3.6. Acute Exposure to PCA and Its Impact on the Zebrafish Heart’s Sinus Venosus–Arteriolar
Bulb (SV-BA) Distance

Zebrafish with 96hpf Tg(cmlc2:EGFP) were chosen and followed Section 3.3. Under
a stereo microscope, thirty zebrafish were fixed in 0.3% methylcellulose solution after
being anesthetized with 0.4 mg/mL tricaine. The fish were then placed sideways on slides
across from their eyes, and the heart’s fluorescence was recorded and captured on camera.
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Confocal imaging analysis measured the area of PCA on the fluorescent heart, measured
the distance between the sinus venous (SV) and the bulb of the artery (BA) to quantify
the cardiac tube ring, and photographed the zebrafish fluorescent heart under excitation
light [18].

3.7. Morphological Alterations in the Heart of Zebrafish Exposed to PCA

In vivo imaging of the heart of zebrafish at the macroscopic and histological levels
was observed under excitation light using the 96 hpf Tg(cmlc2:EGFP) zebrafish line of
EGFP-labeled cardiomyocytes, as described in Section 3.3 Calculation of the effect of PCA
on the fluorescence morphology area of the zebrafish heart at gradient concentrations and
confocal imaging was carried out to analyze differences in cardiac morphology. The study
used confocal imaging to examine variations in heart morphology.

3.8. Acute Exposure to PCA: Effects on the Heart Function of Zebrafish

The AB zebrafish were chosen and arranged in Section 3.3. Following a 96 h drug
administration period, 30 zebrafish were anesthetized with 0.4 mg/mL tricaine, fixed in
0.3% methylcellulose solution under a somatotrope, and arranged sideways on slides with
their eyes facing opposite directions. Heart rates were then counted every 20 s using
the ViewPoint system’s photos and videos, which allow for the visual analysis of animal
behavior. Zebrafish embryo heart rates were recorded at 20 s intervals in pictures and
movies. To evaluate PCA-induced cardiotoxicity, the pericardial area was measured and
drawn to determine the degree of pericardial edema [19].

3.9. The Impact of Brief Exposure to PCA on the Zebrafish Heart’s Histological Composition

After fixation with a gradient of ethanol, alcohol benzene, and xylene in an embedding
machine in paraffin embedding, 4 µm sections were cut, deparaffinized to water, rinsed in
pure water, and stained with hematoxylin–eosin (HE). The 96 hpf AB wild-type zebrafish,
which are the same as the Section 3.3 grouping drug modeling for 96 h, were taken in the
appropriate amount of 0.4 mg/mL tricaine anesthesia. Sections were cleaned, sealed with
neutral gum, dried by air, and then put in gradient ethanol xylene and dehydrated until
transparent before being photographed.

3.10. Prediction and Enrichment Analysis of Target Genes for PCA-Induced Cardiotoxicity

Using the SwissTarget website prediction (https://swisstargetprediction.ch, accessed
on 1 January 2024) for PCA, possible target genes for the agent’s action were found. You
may discover targets of cardiotoxic effects by searching for the word “cardiotoxicity” at
https://www.genecards.org/Sitesearch, accessed on 1 January 2024. The 84 proteins that
were obtained from SwissTarget and Gene Cards were entered into the String database
(https://cn.string-db.org, accessed on 1 January 2024) to identify the corresponding ze-
brafish target genes. Utilizing the Microbiotics Online Analysis Network (https://www.
bioinformatics.com.cn, accessed on 1 January 2024), the target genes identified by screening
were imported. Figure 1 depicts the network pharmacological flow. The GO functional
classification and KEGG enrichment analysis were performed based on the gene identifica-
tions for MF (molecular function), BP (biological process), and CC (cellular components).
PIK3CA, PARP1, and GSK3β were identified as the main target genes of PCA cardiotoxicity
using network pharmacogenomics. By using RT-PCR, this identity was verified. Using
96 hpf AB wild-type zebrafish (the same as Section 3.3), which were split into groups and
immersed in the drug for 96 h, each group’s 50 zebrafish underwent two rounds of rinsing
in pure water to remove any leftover water. The fish tissue was then extracted in its entirety
to prepare the total RNA and transferred to 1.5 mL of non-enzymatic sterilization of EP
tubes, and reverse transcription was carried out according to the instructions provided
by the RNA Reverse Transcription Kit. The cDNA was reverse transcribed following the
directions included with the RNA Reverse Transcription Kit, using β-actin as an internal
reference throughout the PCR process. Reaction conditions: 95 ◦C for 3 min; 94 ◦C for 10 s;

https://swisstargetprediction.ch
https://www.genecards.org/Sitesearch
https://cn.string-db.org
https://www.bioinformatics.com.cn
https://www.bioinformatics.com.cn
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65 ◦C for 30 s; 40 cycles. The 2-∆∆Ct method was used to ascertain the mRNA’s relative
expression. The primer sequences are shown in Table 1.
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Table 1. Primer sequences (5′–3′).

β-Actin F: AGAGCTATGAGCTGCCTGACG R: CCGCAAGATTCCATACCCA

Pik3ca F: GATCGCCGAAGCCATCAGGAAG R: GTCACAGCCGCAGACCTTCAG
Parp1 F: CATTTGGGTCCCTGAAGCCT R: ACCCAGTCTTTGCGATCAGG
Gsk3β F: AACTCTGCGACTTTGGCAGT R:CGGTGGCTCCAAAGATGAGT

3.11. Statistical Analysis

All experiments were carried out at least three times, and all data are presented as
mean ± S.D. Statistical significance and correlation between the groups were performed by
SPSS 25.0 software (SPSS, Inc., Chicago, IL, USA). All data were analyzed with one-way
analysis of variance (ANOVA) followed by Duncan’s multiple range tests. Values of p < 0.05
were considered statistically significant.

4. Results
4.1. Examination of the Morphological Alterations and Teratogenic Effects of Acute Exposure to
PCA in Zebrafish

PCA gradient concentrations of 50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL
were selected for observation and photographed at 24 hpf, 48 hpf, 72 hpf, and 96 hpf,
respectively (Figure 2a–c). The figure shows that the zebrafish in the 60 µg/mL exposure
group exhibited noticeable deformities at 72 h. Zebrafish showed spine curvature as the
length of exposure to PCA increased. Zebrafish in the 60 µg/mL exposure group also
showed swim bladder closure, loss, and pericardial edema in addition to yolk cysts. At
96 h, the zebrafish in the 80 µg/mL exposure group had the most prominent exhibition of
the previously indicated phenomena, and their mortality rate significantly increased as
the exposure concentration increased. This suggests that acute exposure to PCA affects
zebrafish larval development in a concentration-dependent manner.
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of 120 hpf zebrafish at a gradient concentration of PCA. Comparison with the blank control group:
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.001 (n = 30). The circles, squares, triangles, inverted
triangles, and diamonds in the diagram represent the data in the histogram. Concentrations of PCA
are expressed in µg/mL.

4.2. An Examination of the Behavior of Zebrafish Larvae Exposed to PCA Acutely

Using a video monitoring and behavioral analysis system, the activity process of
zebrafish exposed to different doses of PCA was recorded in this work. Before filming, the
fish were allowed ten minutes to become used to their new environment. Behavioral data
including speed, distance traveled, and duration of activity were then extracted from the
video recordings. The overall decrease in the three previously indicated behavioral traits of
the juvenile fish in the exposure group of 70 µg/mL is shown in Figure 2d–g. Conversely,
in zebrafish at 120 hpf, the 80 µg/mL exposure group suppressed the mean rate and
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distance traveled and significantly reduced activity time and distance traveled. Therefore,
PCA significantly reduced the zebrafish larvae’s ability to move their locomotor system
at dosages of 70 µg/mL and 80 µg/mL. Meanwhile, PCA led to behavioral limitations in
zebrafish, indicating the occurrence of some neurotoxicity.

4.3. Evaluation of the Acute Exposure of Zebrafish Larvae Heart SV-BA Distance to PCA

Zebrafish cardiac SV-BA distance may be used to gauge the extent of heart injury. A
decrease in the heart stroke volume, per pulse output, ejection fraction, and short axis
shortening rate, is linked to an increase in this distance [20]. Thus, the SV-BA distance was
the main indication used in this experiment to evaluate the toxicity of PCA to zebrafish. The
effects of gradient PCA concentrations at 50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL
on morphological changes in the Tg(cmlc2:EGFP) heart after 96 h were seen using a confocal
imaging system. As compared to the control group, Figure 3a,b shows that the 80 µg/mL
exposed group saw an increase in pericardial enlargement and SV-BA distance (p < 0.01).
There was a discernible decrease in cardiac output and output per beat, along with a
significant delay in the zebrafish yolk sac’s absorption, in the 70 µg/mL and 80 µg/mL
exposure groups. It has been shown that the drug PCA may induce severe cardiotoxicity in
zebrafish larvae at doses of 70 µg/mL and 80 µg/mL.
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bright and fluorescent fields of view. (b) Statistical analysis graph (SV-BA distance). (c) Morphology
of zebrafish larvae heart in bright and fluorescent fields of view in the confocal imaging: the control
group and PCA gradient concentration group of Tg(cmlc2:EGFP). (d) Graph of statistical analysis of the
fluorescence area of the heart. (e) Schematic diagram of zebrafish heartbeat frequency observed under
the ViewPoint system. (f) Statistical graph of the heartbeat frequency (HZ). (g) Statistical graph of the
heartbeat frequency (bpm). (h) Effect of PCA gradient concentration on the histopathological structure
of the heart of zebrafish larvae. White arrows represent V-A: ventricle–atrium. Note: comparison
with blank control group: ** p < 0.01; *** p < 0.001; **** p < 0.001(n = 30). The circles, squares, triangles,
inverted triangles, and diamonds in the diagram represent the data in the histogram.

4.4. Examination of the Morphological Alterations in the Heart of Zebrafish Exposed to PCA

Zebrafish cardiotoxicity from PCA may be seen right away in the atypical changes
in their cardiac anatomy. Therefore, after 96 h, experiments were conducted using con-
focal imaging equipment to determine the effects of gradient concentrations of PCA of
50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL on the changes in heart shape of Tg(cmlc2:
EGFP). Figure 3c,d show that the zebrafish heart shape was not altered substantially in the
50 µg/mL and 60 µg/mL exposure groups compared to the control group. On the other
hand, the zebrafish heart morphology in the 70 µg/mL exposure group exhibited longi-
tudinal malformation, whereas the heart ventricle in the 80 µg/mL exposure group had
distinct alterations, such as pericardial edema and longitudinal deformity of the atria and
ventricles. According to these results, cardiac damage in PCA was seen at concentration
of 70 µg/mL and 80 µg/mL. This implies that cardiac damage occurred at 70 µg/mL and
80 µg/mL of PCA.

4.5. Evaluation of Zebrafish Heart Function after Acute PCA Exposure

An excessive heart rate causes the coronary artery flow to decrease and the myocardial
diastolic period to shorten, results in inadequate filling, and even causes the compensatory
significance to disappear because of the decrease in output per minute. Blood enters the
zebrafish heart via the venous sinus and leaves the ventricle through the arterial bulb.
Since the zebrafish heart rate reflects the heart’s pumping function [21], it is employed as
a supplemental indicator to assess the zebrafish heart function. The effects of gradient
concentrations of PCA at 50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL on changes in
zebrafish larval heart function at 96 hpf were identified using the Zebrafish ViewPoint
system. As shown in Figure 3e, a deeper black line denotes a regular and powerful heartbeat,
whereas a lighter black line with short intervals suggests a rapid, feeble, and irregular
heartbeat. As shown in Figure 3f,g, compared to the control group, the heartbeat frequencies
of the exposed groups at 70 µg/mL and 80 µg/mL were weak, rapid, irregular, and
dysfunctional. The phenotypic traits were also more prominent in the 80 µg/mL exposed
group. At concentrations of 70 µg/mL and 80 µg/mL, PCA was shown to affect zebrafish
heart function, leading to abnormalities in heart rate and rhythm, cardiac insufficiency, and
a reduction in the pumping capacity.

4.6. Analysis of the Histopathological Slice of the Heart of a Zebrafish Exposed to PCA

After 96 h, HE staining was used to investigate the effects of gradient concentrations of
PCA (50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL) on histopathological alterations in
the heart of zebrafish larvae. As per Figure 3h, there was no discernible difference between
the 50 µg/mL and 60 µg/mL exposure groups and the control group in the histopatholog-
ical sections of the heart. Conversely, the zebrafish heart tissues subjected to 70 µg/mL
and 80 µg/mL had pronounced intercellular vacuoles, damaged nuclei, inflammatory
infiltration, and hazy cell-to-cell borders, indicating serious structural abnormalities and
impairments in the heart cellular structure.
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4.7. Cardiotoxic Target Gene Prediction and Enrichment Analysis Triggered by Acute PCA Exposure
4.7.1. Potential Targets for PCA-Induced Cardiotoxicity

The SwissTarget database was used to determine the 100 active component targets
of PCA. The active ingredient targets were retrieved from the SwissTarget database, and
100 drug targets were acquired after duplicates were removed. As shown in Figure 4a,
9179 cardiotoxic illness targets were retrieved using GeneCards, and 84 common targets
were produced by crossing drug targets with disease targets. These common targets are
probable targets of cardiotoxicity induced by PCA.
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4.7.2. Networks of Protein Interactions

Figure 4b shows the PPI network of possible targets of cardiotoxicity induced by PCA
dispersions by (https://string-db.org/, accessed on 1 January 2024). The top 10 target genes
of PIK3CA, PARP1, HDAC1, GSK3β, EGFRA, ESR1, BAL211, BCL2A, AR, and PTPRC
were selected based on the degree of significance targeting values by using Cytoscape 3.9.1
software, as shown in Figure 4e.

4.7.3. GO and KEGG Pathway Enrichment Analysis Results

To investigate the potential cardiotoxicity mechanisms of PCA, we used network
pharmacology to predict the target genes that PCA might act on and performed KEGG
and GO functional enrichment analyses of these target genes. As shown in Table 2, the
target genes were found to be enriched in multiple pathways, including “phosphory-
lation, phosphatidyli-n-ositol-3-phosphatebiosynthesis, phosphatidylinositol-mediated,
signaling, cytoplasmic, axonal, phosphatidylinositol-3-kinase, complexclasslA, ATPbind-
ing, 1-phosphatidylinositol-4-ph-osp-hate, 1-phosphatidylinositol-3-kinase, or phosphate
action”. Entries were filtered by p ≤ 0.05 and plotted as an enrichment analysis circle dia-
gram in Figure 4c. We found that PCA may act on zebrafish cardiotoxicity through biological
processes. The results of KEGG analysis showed that these biological processes mainly include
“ErbB signaling pathway, apoptosis and inositol phosphate metabolism” (Table 3, Figure 4d).
Combining the results of the enrichment analyses, we found that the mechanism of action
of PCA-induced cardiotoxicity in zebrafish may be related to the core targets of PIK3CA,
PARP 1, HDAC 1, GSK3β, EGFRA, ESR 1, BAL211, BCL 2A, AR, and PTPRC. Based on the
existing reports, we selected three key target genes (PIK3CA, PARP1, and GSK3β), which
are closely related to cardiotoxicity, from which we performed mRNA validation.

Table 2. GO enrichment analysis including molecular function (MF), cellular composition (CC), and
biological process (BP).

GO Term Subgroup Count

Phosphatidylinositol-3-phosphate biosynthetic process Biological Processes 3
Extrinsic apoptotic signaling pathway in the absence of ligand Biological Processes 3

Protein kinase B signaling Biological Processes 3
Phosphatidylinositol-mediated signaling Biological Processes 3

Phosphorylation Biological Processes 5
Negative regulation of intrinsic apoptotic signaling pathway Biological Processes 2

Cell migration Biological Processes 3
Intrinsic apoptotic signaling pathway in response to DNA damage Biological Processes 2

Phosphatidylinositol 3-kinase complex, class lA Cellular Components 2
Phosphatidylinositol3-kinase complex, class lB Cellular Components 2

axon Cellular Components 3
Cytoplasm Cellular Components 10

Nuclear membrane Cellular Components 2
1-Phosphatidylinositol-4-phosphate 3-kinase activity Molecular Functions 3

1-Phosphatidylinositol-3-kinase activity Molecular Functions 3
Dopamine neurotransmitter receptor activity Molecular Functions 2

ATP binding Molecular Functions 7

Table 3. Analysis of KEGG enrichment.

Number Pathway Enrichment p-Value Count

zab00140 ErbB signaling pathway 26.31292517 0.000364195 4
zab04210 Apoptosis 10.96371882 0.000778384 5
zab04140 Inositol phosphate metabolism 8.05028305 0.002457148 5
zab04012 FoxO signaling pathway 12.44530245 0.003254212 4
zab04510 Autophagy-animal 6.692967885 0.004793276 5
zab04068 Insulin signaling pathway 8.372294372 0.009852925 4

https://string-db.org/
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Table 3. Cont.

Number Pathway Enrichment p-Value Count

zab04910 Herpes simplex virus 1 infection 7.804681195 0.011931379 4
zab01100 Salmonella infection 2.030969565 0.017097321 11
zab05168 Human cytomegalovirus infection 6.771708683 0.017480242 4
zab00562 Metabolic pathways 10.62637363 0.028938037 3

4.7.4. Acute Exposure to PCA’s Effects on the mRNA Expression of the Main Target Genes
for Cardiotoxicity in Zebrafish

We exposed zebrafish larvae to gradient concentrations of PCA (50 µg/mL, 60 µg/mL,
70 µg/mL, and 80 µg/mL) for 96 h. RT-PCR validation revealed a decreasing trend in the
expression of PIK3CA, PARP1, and GSK3β in the gradient concentrations of PCA with
the increase in drug concentration. As shown in Figure 4f, compared with the control,
at PCA concentrations of 50 µg/mL and 60 µg/mL, there was no significant change in
the mRNA expression of the PIk3CA gene. However, at 60 µg/mL and 70 µg/mL, the
expression of the gene PIk3CA showed a decreasing trend compared with the control. There
was no significant change in the mRNA expression of the PARP1 gene at 50 µg/mL PCA
concentration compared with the control group, but the expression showed a decreasing
trend at 60 µg/mL, 70 µg/mL, and 80 µg/mL, as shown in Figure 4g. As shown in
Figure 4h, the mRNA expression of gene GSK3β decreased with the increase in PCA
concentration, and the difference was statistically significant. This suggests that PCA may
cause cardiotoxicity by inducing the expression of PIK3CA, PARP1, and GSK3β, especially
the GSK3β gene; however, further systematic validation is needed to illustrate this.

5. Discussion

PCA has a wide range of pharmacological activities, and its pharmacological effects
have been mainly focused on cardioprotective effects [22]. Several studies have reported
that acute/chronic exposure to PCA may lead to toxic effects. In the present study, we
used zebrafish as a sensitive and susceptible biological model for evaluating the toxicity
of PCA drugs. Acute toxicity in zebrafish embryos is commonly manifested as behavioral
changes such as the closure of the swim bladder, yolk cysts, loss of swim bladder, bending
of the zebrafish trunk, and abnormal motor trajectories, suggesting the manifestation of
neurotoxicity [23,24]. Pericardial edema and abnormal ring formation are frequently ob-
served in zebrafish embryos as morphological changes of cardiac defects [25,26], and these
changes can be reported on the basis of quantification of the pericardial area and SV-BA
distance [27,28]. In addition, the most common dysfunction of the zebrafish cardiovascular
system is abnormal heart rhythms, including tachycardia, bradycardia, atrioventricular
block, premature beats, or fibrillation [29]. Miao Wenyu [30] showed that the Pearson
correlation coefficient between zebrafish embryonic LC50 values and rodent LD50 values
was 0.9271, showing a very strong positive correlation, and a one-way regression was fitted
to the equation y = 0.4525x. Combined with previous studies [22], the LD50 of PCA in
rodents was 1627 ± 115 mg/kg. The LD50 equation was used to calculate the LD50 of PCA
on zebrafish as 57.297 ± 5.02 µg/mL. In addition, in an attempt to further investigate the
degree of toxicity of PCA to zebrafish at the lethal concentration, we combined the pre-test
with a simultaneous selection of concentrations exceeding the upper limit of the PCA
(LD50) concentration to observe the maximal toxicity of PCA to zebrafish. On this basis, the
doses of 50 µg/mL, 60 µg/mL, 70 µg/mL, and 80 µg/mL were selected for the phenotypic
observation of 96 hpf zebrafish. At these dose-induced doses, we observed severe acute
toxic injury and cardiac morphological changes in zebrafish, including pericardial edema,
structural deformities, altered cardiac function, and pathological structural damage. Based
on this, in the present study, we observed the acute toxicity of wild-type zebrafish by count-
ing the acute toxicity after the administration of a gradient concentration of PCA, including
observation of the overall morphological deformity changes, and monitoring the behavioral
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ability and cardiotoxicity by observing the cardiotoxicity in Tg(cmlc2: EGFP) zebrafish,
including the area of cardiac fluorescence, cardiac function, and cardiac pathology slides
for comprehensive evaluation of the intensity of the acute and cardiotoxicity of the gradient
concentration of PCA. It was found that the concentration of PCA at 70 µg/mL resulted
in irregular growth patterns, restricted behavioral function, led to cardiac malformation,
and caused abnormal cardiac function in zebrafish, and this abnormality increased with
the increase in exposure concentration. In order to investigate the locomotor behavior
of zebrafish under acute exposure to PCA, an autonomous locomotion experiment was
conducted in this study, and the results showed that zebrafish larvae exposed to PCA
at the concentrations of 70 µg/mL and 80 µg/mL showed a significant decrease in the
distance and speed of locomotion. These abnormal behaviors indicated that the exposure
to PCA at 70 µg/mL and 80 µg/mL resulted in acute toxicity and abnormal behavioral
functions in zebrafish. Based on this, the present study was the first to comprehensively
and systematically evaluate the effects of PCA on acute toxicity and cardiotoxicity and
to preliminarily elucidate the mechanism of action of PCA-induced cardiotoxicity using
a combination of phenotypic observation, network pharmacology, and experimental val-
idation using zebrafish of the AB and Tg(cmlc2:EGFP) strains. It provides an important
theoretical reference for the evaluation of the drug toxicity of PCA.

In the follow-up experiments, combined with enrichment analysis, three key genes,
PIK3CA, PARP1, and GSK3β, were selected. Among the key target genes, we enriched the
KEGG pathway and further analyzed it by combining it with the existing literature. The
PI3K-AKT signaling pathway in the signaling pathway enrichment results has been proven
to be related to a variety of cardiovascular diseases [31–34]. The phosphatidylinositol-45-
bisphosphate 3-kinase catalytic subunit alpha PIK3CA gene consists of multiple exons and
is expressed in a variety of tissues and organs, and is widely involved in cell proliferation,
survival, and cell cycle regulation, as well as other cellular functional activities [35]. Studies
have shown that PIK3CA can activate PI3K, mediate the phosphorylation of Akt, and
then regulate mTOR and GSK3β, which are involved in the regulation of cell prolifera-
tion, differentiation, and apoptosis [36–38]. PIK3CA is a key initiator of the PI3K-AKT
signaling pathway, which has an important role in regulating biological signaling and
pathway activation. He Yazhou [39] found that miR-320a could promote myocardial fibro-
sis through its target gene PIK3CA in protein interaction analysis of PI3K-AKT pathway
target genes. PARP-1 (poly-ADP-ribose polymerase-1) is an important member of the PARP
family whose main role is DNA damage repair and regulation of apoptosis [40]. Some
studies have found that single nucleotide polymorphism changes in PARP-1 are associated
with genetic susceptibility to many diseases [41]. Rumei Men [42] found that metoprolol
reduces cardiomyocyte apoptosis and thus ameliorates MI/R injury mainly by inhibiting
PARP-1 protein expression levels. GSK3β (glycogen synthase kinase 3β) is a class of highly
structurally conserved serothreonine protein kinases that are prevalent in organisms and
eukaryotes and play an important role in the regulation of cellular functions, such as cellular
structure regulation, intracellular signaling, cell division, apoptosis, microtubule movement,
and determination of the fate of cells in the process of embryonic development [43–47].
In recent years, many studies have confirmed that GSK3β is an important factor in the
regulation of apoptosis [48]. Some studies have confirmed that the PI3K/AKT/GSK3β
pathway promotes fibrosis in myocardial tissues, and its upregulation damages cardiomy-
ocytes and participates in the pathogenesis of acute myocardial infarction [49–51]. Huang
Jing [52] found that downregulation of miR-208 could inhibit PI3K/AKt/GSK3β signaling
pathway-related proteins, which in turn inhibited cardiomyocyte apoptosis, alleviated
the body’s inflammatory response, protected the body’s cardiomyocytes, and ultimately
slowed down the degree of cardiac muscle damage. Combined with the above studies,
it is hypothesized that the three key target genes, PIK3CA, PARP1, and GSK3β, are all
associated with cardiomyocyte apoptosis. Apoptosis is a form of programmed cell death
regulated by the exogenous death receptor pathway and the endogenous mitochondrial
pathway, and it is essential for the normal development of the cardiovascular system in
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zebrafish [53]. However, the relevance of PIK3CA, PARP1, and GSK3β to PCA and their
regulatory mechanisms to induce cardiotoxicity in PCA have rarely been reported [54,55].
Therefore, we performed RT-PCR to validate the expression of PIK3CA, PARP1, and GSK3β
and found that the expression of PIK3CA, PARP1, and GSK3β decreased in a concentration-
dependent manner with the PCA concentration gradient. It can be preliminarily speculated
that the mechanism of PCA-induced cardiotoxicity may be related to the apoptosis of
cardiomyocytes caused by the three core target genes, PIK3CA, PARP1, and GSK3β. This
still needs further investigation and research.

In this experiment, we found that PCA produced severe acute toxicity and cardiotoxic
effects in zebrafish at concentrations of 70 µg/mL and 80 µg/mL. In addition, PIK3CA,
PARP1, and GSK3β may be involved in the mechanism of action of this compound to
induce cardiotoxic effects. In addition, more biological model experiments are needed to
help avoid the toxic side effects and improve the safety of drug use.

6. Conclusions

For the first time, we observed the acute toxicity and cardiotoxic effects of PCA in
wild-type and transgenic zebrafish models and initially explored the mechanism of toxicity
of PCA, with the aim of better understanding the potential toxicity of PCA in order to
achieve the purpose of reducing the adverse effects of PCA and enhancing the medicinal
value of PCA, to provide strong evidence for accelerating the development of new highly
efficient and low-toxicity drugs containing PCA, and also to provide a valuable theoretical
framework for assessing the toxicity of PCA containing drugs. This study provides strong
evidence for accelerating the development of new efficient and low-toxicity drugs for
PCA and provides a valuable theoretical framework for assessing the toxicity of PCA-
containing drugs.
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