Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation
Abstract
:1. Introduction
2. Biological Basis of a Regulatory T Cell Test
3. Available T Cell-Based Assays
3.1. Detection of Naïve T Cells
3.2. Detection of Memory T Cells
3.2.1. Lymphocyte Proliferation Test (LPT)
3.2.2. Cytokine-Based Tests
3.3. Detection of Both Naïve and Memory T Cells
3.3.1. Peptide-Major Histocompatibility Complex Class I and II Oligomers
3.3.2. Amplified T Cell Libraries
3.3.3. Autologous Skin Explant Test
3.3.4. Activation-Induced Marker (AIM) Assays
4. Critical Steps for T Cell Assay Development
4.1. Generation of T Cell Epitopes
4.2. Determination of Suitable In Vitro Assay Conditions
4.3. Confirmation of Chemical-Specific T Cell Responses
4.4. T Cell Test as Diagnostic Tool
5. Remaining Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kimber, I.; Basketter, D.A.; Gerberick, G.F.; Dearman, R.J. Allergic contact dermatitis. Int. Immunopharmacol. 2002, 2, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.F. Contact dermatitis: From pathomechanisms to immunotoxicology. Exp. Dermatol. 2012, 21, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Scheinman, P.L.; Vocanson, M.; Thyssen, J.P.; Johansen, J.D.; Nixon, R.L.; Dear, K.; Botto, N.C.; Morot, J.; Goldminz, A.M. Contact dermatitis. Nat. Rev. Dis. Primers 2021, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Johansen, J.D.; Menne, T. Contact allergy epidemics and their controls. Contact Dermat. 2007, 56, 185–195. [Google Scholar] [CrossRef]
- Uter, W.; Aalto-Korte, K.; Agner, T.; Andersen, K.E.; Bircher, A.J.; Brans, R.; Bruze, M.; Diepgen, T.L.; Foti, C.; Gimenez Arnau, A.; et al. The epidemic of methylisothiazolinone contact allergy in Europe: Follow-up on changing exposures. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 333–339. [Google Scholar] [CrossRef]
- Alinaghi, F.; Bennike, N.H.; Egeberg, A.; Thyssen, J.P.; Johansen, J.D. Prevalence of contact allergy in the general population: A systematic review and meta-analysis. Contact Dermat. 2019, 80, 77–85. [Google Scholar] [CrossRef]
- Uter, W.; Werfel, T.; Lepoittevin, J.P.; White, I.R. Contact Allergy-Emerging Allergens and Public Health Impact. Int. J. Environ. Res. Public. Health 2020, 17, 2404. [Google Scholar] [CrossRef]
- Buehler, E.V. Delayed Contact Hypersensitivity in the Guinea Pig. Arch. Dermatol. 1965, 91, 171–177. [Google Scholar] [CrossRef]
- Magnusson, B.; Kligman, A.M. The identification of contact allergens by animal assay. The guinea pig maximization test. J. Investig. Dermatol. 1969, 52, 268–276. [Google Scholar] [CrossRef]
- Kimber, I.; Weisenberger, C. A murine local lymph node assay for the identification of contact allergens. Assay development and results of an initial validation study. Arch. Toxicol. 1989, 63, 274–282. [Google Scholar] [CrossRef]
- Strickland, J.; Haugabrooks, E.; Allen, D.G.; Balottin, L.B.; Hirabayashi, Y.; Kleinstreuer, N.C.; Kojima, H.; Nishizawa, C.; Prieto, P.; Ratzlaff, D.E.; et al. International regulatory uses of acute systemic toxicity data and integration of new approach methodologies. Crit. Rev. Toxicol. 2023, 53, 385–411. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M.J.; Smiljanic, A. Procedure for evaluating skin-sensitizing power of new materials. AMA Arch. Derm. Syphilol. 1952, 66, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Bialas, I.; Zelent-Kraciuk, S.; Jurowski, K. The Skin Sensitisation of Cosmetic Ingredients: Review of Actual Regulatory Status. Toxics 2023, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Basketter, D.A. The human repeated insult patch test in the 21st century: A commentary. Cutan. Ocul. Toxicol. 2009, 28, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Politano, V.T.; Api, A.M. The Research Institute for Fragrance Materials’ human repeated insult patch test protocol. Regul. Toxicol. Pharmacol. 2008, 52, 35–38. [Google Scholar] [CrossRef]
- Miller, A.E.; Levis, W.R. Lymphocyte transformation during dinitrochlorobenzene contact sensitization. An in vitro and in vivo evaluation of the primary immune response in man. J. Clin. Investig. 1973, 52, 1925–1930. [Google Scholar] [CrossRef]
- Moulon, C.; Peguet-Navarro, J.; Courtellemont, P.; Redziniak, G.; Schmitt, D. Human in vitro T cell sensitization using hapten-modified epidermal Langerhans cells. Adv. Exp. Med. Biol. 1993, 329, 209–212. [Google Scholar] [CrossRef]
- Richter, A.; Schmucker, S.S.; Esser, P.R.; Traska, V.; Weber, V.; Dietz, L.; Thierse, H.J.; Pennino, D.; Cavani, A.; Martin, S.F. Human T cell priming assay (hTCPA) for the identification of contact allergens based on naive T cells and DC--IFN-gamma and TNF-alpha readout. Toxicol. Vitr. 2013, 27, 1180–1185. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Riedel, F.; Leddermann, M.; Bacher, P.; Scheffold, A.; Kuhl, H.; Timmermann, B.; Chudakov, D.M.; Molin, S.; Worm, M.; et al. TCRs with segment TRAV9-2 or a CDR3 histidine are overrepresented among nickel-specific CD4+ T cells. Allergy 2020, 75, 2574–2586. [Google Scholar] [CrossRef]
- Zaunbrecher, V.; Beryt, E.; Parodi, D.; Telesca, D.; Doherty, J.; Malloy, T.; Allard, P. Has Toxicity Testing Moved into the 21st Century? A Survey and Analysis of Perceptions in the Field of Toxicology. Environ. Health Perspect. 2017, 125, 087024. [Google Scholar] [CrossRef]
- Carnesecchi, E.; Langezaal, I.; Browne, P.; Batista-Leite, S.; Campia, I.; Coecke, S.; Dagallier, B.; Deceuninck, P.; Dorne, J.L.C.; Tarazona, J.V.; et al. OECD harmonised template 201: Structuring and reporting mechanistic information to foster the integration of new approach methodologies for hazard and risk assessment of chemicals. Regul. Toxicol. Pharmacol. 2023, 142, 105426. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.E.; Goodman, J.M.; Gutsell, S.; Russell, P.J. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment. Chem. Res. Toxicol. 2014, 27, 2100–2112. [Google Scholar] [CrossRef] [PubMed]
- Stucki, A.O.; Barton-Maclaren, T.S.; Bhuller, Y.; Henriquez, J.E.; Henry, T.R.; Hirn, C.; Miller-Holt, J.; Nagy, E.G.; Perron, M.M.; Ratzlaff, D.E.; et al. Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of industrial chemicals and pesticides for effects on human health. Front. Toxicol. 2022, 4, 964553. [Google Scholar] [CrossRef] [PubMed]
- Gadarowska, D.; Kalka, J.; Daniel-Wojcik, A.; Mrzyk, I. Alternative Methods for Skin-Sensitization Assessment. Toxics 2022, 10, 740. [Google Scholar] [CrossRef] [PubMed]
- OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins; Part 1: Scientific Evidence. ENV/JM/MONO(2012)10/PART1; OECD: Paris, France, 2012. [Google Scholar]
- Esser, P.R.; Kimber, I.; Martin, S.F. Correlation of contact sensitizer potency with T cell frequency and TCR repertoire diversity. Exp. Suppl. 2014, 104, 101–114. [Google Scholar] [CrossRef]
- Strickland, J.; Zang, Q.; Kleinstreuer, N.; Paris, M.; Lehmann, D.M.; Choksi, N.; Matheson, J.; Jacobs, A.; Lowit, A.; Allen, D.; et al. Integrated decision strategies for skin sensitization hazard. J. Appl. Toxicol. 2016, 38, 432. [Google Scholar] [CrossRef]
- MacKay, C.; Davies, M.; Summerfield, V.; Maxwell, G. From pathways to people: Applying the adverse outcome pathway (AOP) for skin sensitization to risk assessment. ALTEX 2013, 30, 473–486. [Google Scholar] [CrossRef]
- Gilmour, N.; Kimber, I.; Williams, J.; Maxwell, G. Skin sensitization: Uncertainties, challenges, and opportunities for improved risk assessment. Contact Dermat. 2019, 80, 195–200. [Google Scholar] [CrossRef]
- Martin, S.F.; Esser, P.R.; Schmucker, S.; Dietz, L.; Naisbitt, D.J.; Park, B.K.; Vocanson, M.; Nicolas, J.F.; Keller, M.; Pichler, W.J.; et al. T-cell recognition of chemicals, protein allergens and drugs: Towards the development of in vitro assays. Cell Mol. Life. Sci. 2010, 67, 4171–4184. [Google Scholar] [CrossRef]
- Kimber, I.; Maxwell, G.; Gilmour, N.; Dearman, R.J.; Friedmann, P.S.; Martin, S.F. Allergic contact dermatitis: A commentary on the relationship between T lymphocytes and skin sensitising potency. Toxicology 2012, 291, 18–24. [Google Scholar] [CrossRef]
- van Vliet, E.; Kuhnl, J.; Goebel, C.; Martinozzi-Teissier, S.; Alepee, N.; Ashikaga, T.; Blomeke, B.; Del Bufalo, A.; Cluzel, M.; Corsini, E.; et al. State-of-the-art and new options to assess T cell activation by skin sensitizers: Cosmetics Europe Workshop. Altern. Anim. Exp. 2018, 35, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.M.; Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 1988, 334, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Dash, P.; Fiore-Gartland, A.J.; Hertz, T.; Wang, G.C.; Sharma, S.; Souquette, A.; Crawford, J.C.; Clemens, E.B.; Nguyen, T.H.O.; Kedzierska, K.; et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 2017, 547, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Robins, H.S.; Campregher, P.V.; Srivastava, S.K.; Wacher, A.; Turtle, C.J.; Kahsai, O.; Riddell, S.R.; Warren, E.H.; Carlson, C.S. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 2009, 114, 4099–4107. [Google Scholar] [CrossRef] [PubMed]
- Riedel, F.; Aparicio-Soto, M.; Curato, C.; Thierse, H.J.; Siewert, K.; Luch, A. Immunological Mechanisms of Metal Allergies and the Nickel-Specific TCR-pMHC Interface. Int. J. Environ. Res. Public. Health 2021, 18, 10867. [Google Scholar] [CrossRef]
- Sewell, A.K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 2012, 12, 669–677. [Google Scholar] [CrossRef]
- Baker, B.M.; Scott, D.R.; Blevins, S.J.; Hawse, W.F. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Immunol. Rev. 2012, 250, 10–31. [Google Scholar] [CrossRef]
- Su, L.F.; Davis, M.M. Antiviral memory phenotype T cells in unexposed adults. Immunol. Rev. 2013, 255, 95–109. [Google Scholar] [CrossRef]
- Bacher, P.; Scheffold, A. Flow-cytometric analysis of rare antigen-specific T cells. Cytom. A 2013, 83, 692–701. [Google Scholar] [CrossRef]
- Williams, M.A.; Bevan, M.J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 2007, 25, 171–192. [Google Scholar] [CrossRef]
- Britanova, O.V.; Shugay, M.; Merzlyak, E.M.; Staroverov, D.B.; Putintseva, E.V.; Turchaninova, M.A.; Mamedov, I.Z.; Pogorelyy, M.V.; Bolotin, D.A.; Izraelson, M.; et al. Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians. J. Immunol. 2016, 196, 5005–5013. [Google Scholar] [CrossRef] [PubMed]
- Poon, M.M.L.; Caron, D.P.; Wang, Z.; Wells, S.B.; Chen, D.; Meng, W.; Szabo, P.A.; Lam, N.; Kubota, M.; Matsumoto, R.; et al. Tissue adaptation and clonal segregation of human memory T cells in barrier sites. Nat. Immunol. 2023, 24, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.G.; Stanfield, R.L.; Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 2006, 24, 419–466. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Soto, M.; Curato, C.; Riedel, F.; Thierse, H.J.; Luch, A.; Siewert, K. In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals-A Systematic Review. Cells 2021, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Weltzien, H.U.; Moulon, C.; Martin, S.; Padovan, E.; Hartmann, U.; Kohler, J. T cell immune responses to haptens. Structural models for allergic and autoimmune reactions. Toxicology 1996, 107, 141–151. [Google Scholar] [CrossRef]
- Sullivan, A.; Watkinson, J.; Waddington, J.; Park, B.K.; Naisbitt, D.J. Implications of HLA-allele associations for the study of type IV drug hypersensitivity reactions. Expert. Opin. Drug. Metab. Toxicol. 2018, 14, 261–274. [Google Scholar] [CrossRef]
- Ndreu, L.; Erber, L.N.; Tornqvist, M.; Tretyakova, N.Y.; Karlsson, I. Characterizing Adduct Formation of Electrophilic Skin Allergens with Human Serum Albumin and Hemoglobin. Chem. Res. Toxicol. 2020, 33, 2623–2636. [Google Scholar] [CrossRef]
- Pichler, W.J. Immune pathomechanism and classification of drug hypersensitivity. Allergy 2019, 74, 1457–1471. [Google Scholar] [CrossRef]
- Vileno, B.; Port-Lougarre, Y.; Gimenez-Arnau, E. Electron paramagnetic resonance and spin trapping to detect free radicals from allergenic hydroperoxides in contact with the skin: From the molecule to the tissue. Contact Dermat. 2022, 86, 241–253. [Google Scholar] [CrossRef]
- Riedel, F.; Aparicio-Soto, M.; Curato, C.; Munch, L.; Abbas, A.; Thierse, H.J.; Peitsch, W.K.; Luch, A.; Siewert, K. Unique and common TCR repertoire features of Ni2+-, Co2+-, and Pd2+-specific human CD154 + CD4+ T cells. Allergy 2023, 78, 270–282. [Google Scholar] [CrossRef]
- Curato, C.; Aparicio-Soto, M.; Riedel, F.; Wehl, I.; Basaran, A.; Abbas, A.; Thierse, H.J.; Luch, A.; Siewert, K. Frequencies and TCR Repertoires of Human 2,4,6-Trinitrobenzenesulfonic Acid-specific T Cells. Front. Toxicol. 2022, 4, 827109. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Delattre, V.; Leicht, C.; Weltzien, H.U.; Simon, J.C. A high frequency of allergen-specific CD8+ Tc1 cells is associated with the murine immune response to the contact sensitizer trinitrophenyl. Exp. Dermatol. 2003, 12, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Ruh, H.; Hebbelmann, S.; Pflugfelder, U.; Rude, B.; Weltzien, H.U. Carrier-reactive hapten-specific cytotoxic T lymphocyte clones originate from a highly preselected T cell repertoire: Implications for chemical-induced self-reactivity. Eur. J. Immunol. 1995, 25, 2788–2796. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.J.; Douek, D.C.; Price, D.A. Bias in the alphabeta T-cell repertoire: Implications for disease pathogenesis and vaccination. Immunol. Cell Biol. 2011, 89, 375–387. [Google Scholar] [CrossRef]
- Ronel, T.; Harries, M.; Wicks, K.; Oakes, T.; Singleton, H.; Dearman, R.; Maxwell, G.; Chain, B. The clonal structure and dynamics of the human T cell response to an organic chemical hapten. Elife 2021, 10, e54747. [Google Scholar] [CrossRef]
- Li, H.; Ye, C.; Ji, G.; Han, J. Determinants of public T cell responses. Cell Res. 2012, 22, 33–42. [Google Scholar] [CrossRef]
- Ruiz Ortega, M.; Spisak, N.; Mora, T.; Walczak, A.M. Modeling and predicting the overlap of B- and T-cell receptor repertoires in healthy and SARS-CoV-2 infected individuals. PLoS Genet. 2023, 19, e1010652. [Google Scholar] [CrossRef]
- Esser, P.; Sautier, L.; Sarkar, S.; Schilling, G.; Bokemeyer, C.; Koch, U.; Rose, M.; Friedrich, M.; Nolte, S.; Walter, O.; et al. Correction to: Evaluation of an electronic psycho-oncological adaptive screening program (EPAS) with immediate patient feedback: Findings from a German cluster intervention study. J. Cancer Surviv. 2023, 17, 859. [Google Scholar] [CrossRef]
- Bonefeld, C.M.; Nielsen, M.M.; Rubin, I.M.; Vennegaard, M.T.; Dabelsteen, S.; Gimenez-Arnau, E.; Lepoittevin, J.P.; Geisler, C.; Johansen, J.D. Enhanced sensitization and elicitation responses caused by mixtures of common fragrance allergens. Contact Dermat. 2011, 65, 336–342. [Google Scholar] [CrossRef]
- Bonefeld, C.M.; Nielsen, M.M.; Vennegaard, M.T.; Johansen, J.D.; Geisler, C.; Thyssen, J.P. Nickel acts as an adjuvant during cobalt sensitization. Exp. Dermatol. 2015, 24, 229–231. [Google Scholar] [CrossRef]
- Cumberbatch, M.; Scott, R.C.; Basketter, D.A.; Scholes, E.W.; Hilton, J.; Dearman, R.J.; Kimber, I. Influence of sodium lauryl sulphate on 2,4-dinitrochlorobenzene-induced lymph node activation. Toxicology 1993, 77, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Basketter, D. Nickel: Intrinsic Skin Sensitization Potency and Relation to Prevalence of Contact Allergy. Dermatitis 2021, 32, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Höper, T.; Siewert, K.; Dumit, V.I.; von Bergen, M.; Schubert, K.; Haase, A. The Contact Allergen NiSO(4) Triggers a Distinct Molecular Response in Primary Human Dendritic Cells Compared to Bacterial LPS. Front. Immunol. 2021, 12, 644700. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Raghavan, B.; Muller, V.; Vogl, T.; Fejer, G.; Tchaptchet, S.; Keck, S.; Kalis, C.; Nielsen, P.J.; Galanos, C.; et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol. 2010, 11, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhong, Q.; Tian, T.; Dubin, K.; Athale, S.K.; Kupper, T.S. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat. Med. 2010, 16, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Schuttelaar, M.L.A.; Ofenloch, R.F.; Bruze, M.; Cazzaniga, S.; Elsner, P.; Goncalo, M.; Naldi, L.; Svensson, A.; Diepgen, T.L. Prevalence of contact allergy to metals in the European general population with a focus on nickel and piercings: The EDEN Fragrance Study. Contact Dermat. 2018, 79, 1–9. [Google Scholar] [CrossRef]
- Guironnet, G.; Dalbiez-Gauthier, C.; Rousset, F.; Schmitt, D.; Peguet-Navarro, J. In vitro human T cell sensitization to haptens by monocyte-derived dendritic cells. Toxicol. Vitr. 2000, 14, 517–522. [Google Scholar] [CrossRef]
- Vocanson, M.; Cluzel-Tailhardat, M.; Poyet, G.; Valeyrie, M.; Chavagnac, C.; Levarlet, B.; Courtellemont, P.; Rozieres, A.; Hennino, A.; Nicolas, J.F. Depletion of human peripheral blood lymphocytes in CD25+ cells allows for the sensitive in vitro screening of contact allergens. J. Investig. Dermatol. 2008, 128, 2119–2122. [Google Scholar] [CrossRef]
- Dietz, L.; Esser, P.R.; Schmucker, S.S.; Goette, I.; Richter, A.; Schnolzer, M.; Martin, S.F.; Thierse, H.J. Tracking human contact allergens: From mass spectrometric identification of peptide-bound reactive small chemicals to chemical-specific naive human T-cell priming. Toxicol. Sci. 2010, 117, 336–347. [Google Scholar] [CrossRef]
- Gibson, A.; Kim, S.H.; Faulkner, L.; Evely, J.; Pirmohamed, M.; Park, K.B.; Naisbitt, D.J. In Vitro Priming of Naïve T-cells with p-Phenylenediamine and Bandrowski’s Base. Chem. Res. Toxicol. 2015, 28, 2069–2077. [Google Scholar] [CrossRef]
- Summer, B.; Stander, S.; Thomas, P. Cytokine patterns in vitro, in particular IL-5/IL-8 ratio, to detect patients with nickel contact allergy. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Schopf, E.; Schulz, K.H.; Isensee, I. Lymphocyte transformation in mercury hypersensitivity. Non-specific transformation due to mercury compounds. Arch. Klin. Exp. Dermatol. 1969, 234, 420–433. [Google Scholar] [PubMed]
- Pichler, W.J.; Tilch, J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 2004, 59, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Koponen, M.; Pichler, W.J.; de Weck, A.L. T cell reactivity to penicillin: Phenotypic analysis of in vitro activated cell subsets. J. Allergy Clin. Immunol. 1986, 78, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Coulter, E.M.; Jenkinson, C.; Wu, Y.; Farrell, J.; Foster, B.; Smith, A.; McGuire, C.; Pease, C.; Basketter, D.; King, C.; et al. Activation of T-cells from allergic patients and volunteers by p-phenylenediamine and Bandrowski’s base. J. Investig. Dermatol. 2008, 128, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Coulter, E.M.; Jenkinson, C.; Farrell, J.; Lavergne, S.N.; Pease, C.; White, A.; Aleksic, M.; Basketter, D.; Williams, D.P.; King, C.; et al. Measurement of CD4+ and CD8+ T-lymphocyte cytokine secretion and gene expression changes in p-phenylenediamine allergic patients and tolerant individuals. J. Investig. Dermatol. 2010, 130, 161–174. [Google Scholar] [CrossRef]
- Bordignon, V.; Palamara, F.; Altomonte, G.; Sperduti, I.; Pietravalle, M.; Cavallotti, C.; Cordiali-Fei, P.; Fuggetta, M.P.; Cristaudo, A.; Ensoli, F. A laboratory test based on determination of cytokine profiles: A promising assay to identify exposition to contact allergens and predict the clinical outcome in occupational allergic contact dermatitis. BMC Immunol. 2015, 16, 4. [Google Scholar] [CrossRef]
- Jung, T.; Schauer, U.; Heusser, C.; Neumann, C.; Rieger, C. Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods 1993, 159, 197–207. [Google Scholar] [CrossRef]
- Saxena, A.; Dagur, P.K.; Desai, A.; McCoy, J.P., Jr. Ultrasensitive Quantification of Cytokine Proteins in Single Lymphocytes From Human Blood Following ex-vivo Stimulation. Front. Immunol. 2018, 9, 2462. [Google Scholar] [CrossRef]
- Campbell, J.D. Detection and enrichment of antigen-specific CD4+ and CD8+ T cells based on cytokine secretion. Methods 2003, 31, 150–159. [Google Scholar] [CrossRef]
- Altman, J.D.; Moss, P.A.; Goulder, P.J.; Barouch, D.H.; McHeyzer-Williams, M.G.; Bell, J.I.; McMichael, A.J.; Davis, M.M. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996, 274, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Geiger, R.; Duhen, T.; Lanzavecchia, A.; Sallusto, F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J. Exp. Med. 2009, 206, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.S.; Wang, X.N.; Fielding, M.; Kerry, A.; Dickinson, I.; Munuswamy, R.; Kimber, I.; Dickinson, A.M. An in vitro human skin test for assessing sensitization potential. J. Appl. Toxicol. 2016, 36, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.S.; Whritenour, J.; Ahmed, M.M.; Bibby, L.; Darby, L.; Wang, X.N.; Watson, J.; Dickinson, A.M. Evaluation of a human in vitro skin test for predicting drug hypersensitivity reactions. Toxicol. Appl. Pharmacol. 2019, 369, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Croft, M.; Dubey, C. Accessory Molecule and Costimulation Requirements for CD4 T Cell Response. Crit. Rev. Immunol. 2017, 37, 261–290. [Google Scholar] [CrossRef]
- Dubey, C.; Croft, M.; Swain, S.L. Naive and effector CD4 T cells differ in their requirements for T cell receptor versus costimulatory signals. J. Immunol. 1996, 157, 3280–3289. [Google Scholar] [CrossRef]
- Bour-Jordan, H.; Esensten, J.H.; Martinez-Llordella, M.; Penaranda, C.; Stumpf, M.; Bluestone, J.A. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol. Rev. 2011, 241, 180–205. [Google Scholar] [CrossRef]
- Kunzli, M.; Masopust, D. CD4+ T cell memory. Nat. Immunol. 2023, 24, 903–914. [Google Scholar] [CrossRef]
- Martin-Fontecha, A.; Sebastiani, S.; Hopken, U.E.; Uguccioni, M.; Lipp, M.; Lanzavecchia, A.; Sallusto, F. Regulation of dendritic cell migration to the draining lymph node: Impact on T lymphocyte traffic and priming. J. Exp. Med. 2003, 198, 615–621. [Google Scholar] [CrossRef]
- Vocanson, M.; Achachi, A.; Mutez, V.; Cluzel-Tailhardat, M.; Varlet, B.L.; Rozieres, A.; Fournier, P.; Nicolas, J.F. Human T cell priming assay: Depletion of peripheral blood lymphocytes in CD25+ cells improves the in vitro detection of weak allergen-specific T cells. Exp. Suppl. 2014, 104, 89–100. [Google Scholar] [CrossRef]
- Sallusto, F.; Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994, 179, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Sarkany, I. Lymphocyte transformation in drug hypersensitivity. Lancet 1967, 1, 743–745. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, N.; Ronsmans, S.; Hoet, P. Methods to Assess Proliferation of Stimulated Human Lymphocytes In Vitro: A Narrative Review. Cells 2023, 12, 386. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, P.S.; Haddadeen, C.; Lai, C.; Healy, E. In vitro human T cell responses to diphencyprone. Contact Dermat. 2017, 76, 251–253. [Google Scholar] [CrossRef]
- Kneilling, M.; Caroli, U.; Grimmel, C.; Fischer, J.; Eichner, M.; Wieder, T.; Maier, F.C.; Rocken, M.; Biedermann, T. Para-phenylenediamine-specific lymphocyte activation test: A sensitive in vitro assay to detect para-phenylenediamine sensitization in patients with severe allergic reactions. Exp. Dermatol. 2010, 19, 435–441. [Google Scholar] [CrossRef]
- Martin, S.; Barbaud, A.; Schmutz, J.L.; Gobert, B.; Faure, G.; Bene, M.C. Polyclonal T lymphocyte proliferation in drug lymphocyte activation test. Ann. Dermatol. Venereol. 2000, 127, 268–272. [Google Scholar]
- Sachs, B.; Fatangare, A.; Sickmann, A.; Glassner, A. Lymphocyte transformation test: History and current approaches. J. Immunol. Methods 2021, 493, 113036. [Google Scholar] [CrossRef]
- Popple, A.; Williams, J.; Maxwell, G.; Gellatly, N.; Dearman, R.J.; Kimber, I. The lymphocyte transformation test in allergic contact dermatitis: New opportunities. J. Immunotoxicol. 2016, 13, 84–91. [Google Scholar] [CrossRef]
- Rustemeyer, T.; von Blomberg, B.M.; van Hoogstraten, I.M.; Bruynzeel, D.P.; Scheper, R.J. Analysis of effector and regulatory immune reactivity to nickel. Clin. Exp. Allergy 2004, 34, 1458–1466. [Google Scholar] [CrossRef]
- Kretschmer, L.; Flossdorf, M.; Mir, J.; Cho, Y.L.; Plambeck, M.; Treise, I.; Toska, A.; Heinzel, S.; Schiemann, M.; Busch, D.H.; et al. Differential expansion of T central memory precursor and effector subsets is regulated by division speed. Nat. Commun. 2020, 11, 113. [Google Scholar] [CrossRef]
- Tanguay, S.; Killion, J.J. Direct comparison of ELISPOT and ELISA-based assays for detection of individual cytokine-secreting cells. Lymphokine Cytokine Res. 1994, 13, 259–263. [Google Scholar] [PubMed]
- Masjedi, K.; Ahlborg, N.; Gruvberger, B.; Bruze, M.; Karlberg, A.T. Methylisothiazolinones elicit increased production of both T helper (Th)1- and Th2-like cytokines by peripheral blood mononuclear cells from contact allergic individuals. Br. J. Dermatol. 2003, 149, 1172–1182. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, P.; Maecker, H.T. Multiparameter Intracellular Cytokine Staining. Methods Mol. Biol. 2018, 1678, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Poloni, C.; Schonhofer, C.; Ivison, S.; Levings, M.K.; Steiner, T.S.; Cook, L. T-cell activation-induced marker assays in health and disease. Immunol. Cell Biol. 2023, 101, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, P.K.; Yu, J.; Roederer, M. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat. Med. 2005, 11, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Anderson, K.; Novikov, A.; Liu, Z.; Pacheco, K.; Dai, S. Using DR52c/Ni2+ mimotope tetramers to detect Ni2+ reactive CD4+ T cells in patients with joint replacement failure. Toxicol. Appl. Pharmacol. 2017, 331, 69–75. [Google Scholar] [CrossRef]
- Adair, K.; Meng, X.; Naisbitt, D.J. Drug hapten-specific T-cell activation: Current status and unanswered questions. Proteomics 2021, 21, e2000267. [Google Scholar] [CrossRef]
- Pastore, G.; Carraro, M.; Pettini, E.; Nolfi, E.; Medaglini, D.; Ciabattini, A. Optimized Protocol for the Detection of Multifunctional Epitope-Specific CD4+ T Cells Combining MHC-II Tetramer and Intracellular Cytokine Staining Technologies. Front. Immunol. 2019, 10, 2304. [Google Scholar] [CrossRef]
- Vollers, S.S.; Stern, L.J. Class II major histocompatibility complex tetramer staining: Progress, problems, and prospects. Immunology 2008, 123, 305–313. [Google Scholar] [CrossRef]
- Dileepan, T.; Malhotra, D.; Kotov, D.I.; Kolawole, E.M.; Krueger, P.D.; Evavold, B.D.; Jenkins, M.K. MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells. Nat. Biotechnol. 2021, 39, 943–948. [Google Scholar] [CrossRef]
- Pan, Y.G.; Su, L.F. Identification of Human Antigen-Specific T Cells Using Class II MHC Tetramer Staining and Enrichment. Methods Mol. Biol. 2022, 2574, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Newell, E.W. Higher throughput methods of identifying T cell epitopes for studying outcomes of altered antigen processing and presentation. Front. Immunol. 2013, 4, 430. [Google Scholar] [CrossRef] [PubMed]
- Christophersen, A. Peptide-MHC class I and class II tetramers: From flow to mass cytometry. HLA 2020, 95, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Kwok, W.W.; Tan, V.; Gillette, L.; Littell, C.T.; Soltis, M.A.; LaFond, R.B.; Yang, J.; James, E.A.; DeLong, J.H. Frequency of epitope-specific naive CD4+ T cells correlates with immunodominance in the human memory repertoire. J. Immunol. 2012, 188, 2537–2544. [Google Scholar] [CrossRef] [PubMed]
- Nepom, G.T. MHC class II tetramers. J. Immunol. 2012, 188, 2477–2482. [Google Scholar] [CrossRef]
- Theaker, S.M.; Rius, C.; Greenshields-Watson, A.; Lloyd, A.; Trimby, A.; Fuller, A.; Miles, J.J.; Cole, D.K.; Peakman, M.; Sewell, A.K.; et al. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones. J. Immunol. Methods 2016, 430, 43–50. [Google Scholar] [CrossRef]
- Ogura, H.; Preston-Hurlburt, P.; Perdigoto, A.L.; Amodio, M.; Krishnaswamy, S.; Clark, P.; Yu, H.; Egli, D.; Fouts, A.; Steck, A.K.; et al. Identification and Analysis of Islet Antigen-Specific CD8+ T Cells with T Cell Libraries. J. Immunol. 2018, 201, 1662–1670. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Ahmed, M.M.; Ishaq, A.; Freer, M.; Stebbings, R.; Dickinson, A.M. An In Vitro Human Skin Test for Predicting Skin Sensitization and Adverse Immune Reactions to Biologics. Toxics 2024, 12, 401. [Google Scholar] [CrossRef]
- Lerner, K.G.; Kao, G.F.; Storb, R.; Buckner, C.D.; Clift, R.A.; Thomas, E.D. Histopathology of graft-vs.-host reaction (GvHR) in human recipients of marrow from HL-A-matched sibling donors. Transpl. Proc. 1974, 6, 367–371. [Google Scholar]
- Bacher, P.; Schink, C.; Teutschbein, J.; Kniemeyer, O.; Assenmacher, M.; Brakhage, A.A.; Scheffold, A. Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire. J. Immunol. 2013, 190, 3967–3976. [Google Scholar] [CrossRef]
- Lemieux, A.; Sannier, G.; Nicolas, A.; Nayrac, M.; Delgado, G.G.; Cloutier, R.; Brassard, N.; Laporte, M.; Duchesne, M.; Sreng Flores, A.M.; et al. Enhanced detection of antigen-specific T cells by a multiplexed AIM assay. Cell Rep. Methods 2024, 4, 100690. [Google Scholar] [CrossRef] [PubMed]
- Reiss, S.; Baxter, A.E.; Cirelli, K.M.; Dan, J.M.; Morou, A.; Daigneault, A.; Brassard, N.; Silvestri, G.; Routy, J.P.; Havenar-Daughton, C.; et al. Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen-specific CD4 T cells. PLoS ONE 2017, 12, e0186998. [Google Scholar] [CrossRef] [PubMed]
- Elias, G.; Ogunjimi, B.; Van Tendeloo, V. Activation-induced surface proteins in the identification of antigen-responsive CD4 T cells. Immunol. Lett. 2020, 219, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wolfl, M.; Kuball, J.; Ho, W.Y.; Nguyen, H.; Manley, T.J.; Bleakley, M.; Greenberg, P.D. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 2007, 110, 201–210. [Google Scholar] [CrossRef]
- Bremser, A.; Brack, M.; Izcue, A. Higher Sensitivity of Foxp3+ Treg Compared to Foxp3- Conventional T Cells to TCR-Independent Signals for CD69 Induction. PLoS ONE 2015, 10, e0137393. [Google Scholar] [CrossRef]
- Evans, R.L.; Faldetta, T.J.; Humphreys, R.E.; Pratt, D.M.; Yunis, E.J.; Schlossman, S.F. Peripheral human T cells sensitized in mixed leukocyte culture synthesize and express Ia-like antigens. J. Exp. Med. 1978, 148, 1440–1445. [Google Scholar] [CrossRef]
- Munoz, P.; Mittelbrunn, M.; de la Fuente, H.; Perez-Martinez, M.; Garcia-Perez, A.; Ariza-Veguillas, A.; Malavasi, F.; Zubiaur, M.; Sanchez-Madrid, F.; Sancho, J. Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 2008, 111, 3653–3664. [Google Scholar] [CrossRef]
- Ghosh, A.; Khanam, A.; Ray, K.; Mathur, P.; Subramanian, A.; Poonia, B.; Kottilil, S. CD38: An ecto-enzyme with functional diversity in T cells. Front. Immunol. 2023, 14, 1146791. [Google Scholar] [CrossRef]
- Frentsch, M.; Stark, R.; Matzmohr, N.; Meier, S.; Durlanik, S.; Schulz, A.R.; Stervbo, U.; Jurchott, K.; Gebhardt, F.; Heine, G.; et al. CD40L expression permits CD8+ T cells to execute immunologic helper functions. Blood 2013, 122, 405–412. [Google Scholar] [CrossRef]
- Skov, S.; Bonyhadi, M.; Odum, N.; Ledbetter, J.A. IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells. J. Immunol. 2000, 164, 3500–3505. [Google Scholar] [CrossRef]
- Frentsch, M.; Arbach, O.; Kirchhoff, D.; Moewes, B.; Worm, M.; Rothe, M.; Scheffold, A.; Thiel, A. Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat. Med. 2005, 11, 1118–1124. [Google Scholar] [CrossRef] [PubMed]
- Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 2005, 23, 23–68. [Google Scholar] [CrossRef] [PubMed]
- Cannons, J.L.; Lau, P.; Ghumman, B.; DeBenedette, M.A.; Yagita, H.; Okumura, K.; Watts, T.H. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J. Immunol. 2001, 167, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Schoenbrunn, A.; Frentsch, M.; Kohler, S.; Keye, J.; Dooms, H.; Moewes, B.; Dong, J.; Loddenkemper, C.; Sieper, J.; Wu, P.; et al. A converse 4-1BB and CD40 ligand expression pattern delineates activated regulatory T cells (Treg) and conventional T cells enabling direct isolation of alloantigen-reactive natural Foxp3+ Treg. J. Immunol. 2012, 189, 5985–5994. [Google Scholar] [CrossRef]
- Cohen, G.B.; Kaur, A.; Johnson, R.P. Isolation of viable antigen-specific CD4 T cells by CD40L surface trapping. J. Immunol. Methods 2005, 302, 103–115. [Google Scholar] [CrossRef]
- Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 1984, 133, 1710–1715. [Google Scholar] [CrossRef]
- Santamaria Babi, L.F.; Picker, L.J.; Perez Soler, M.T.; Drzimalla, K.; Flohr, P.; Blaser, K.; Hauser, C. Circulating allergen-reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen. J. Exp. Med. 1995, 181, 1935–1940. [Google Scholar] [CrossRef]
- Cavani, A.; Mei, D.; Guerra, E.; Corinti, S.; Giani, M.; Pirrotta, L.; Puddu, P.; Girolomoni, G. Patients with allergic contact dermatitis to nickel and nonallergic individuals display different nickel-specific T cell responses. Evidence for the presence of effector CD8+ and regulatory CD4+ T cells. J. Investig. Dermatol. 1998, 111, 621–628. [Google Scholar] [CrossRef]
- Bacher, P.; Scheffold, A. New technologies for monitoring human antigen-specific T cells and regulatory T cells by flow-cytometry. Curr. Opin. Pharmacol. 2015, 23, 17–24. [Google Scholar] [CrossRef]
- Saggau, C.; Scheffold, A.; Bacher, P. Flow Cytometric Characterization of Human Antigen-Reactive T-Helper Cells. Methods Mol. Biol. 2021, 2285, 141–152. [Google Scholar] [CrossRef]
- Cavani, A.; Nasorri, F.; Ottaviani, C.; Sebastiani, S.; De Pita, O.; Girolomoni, G. Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J. Immunol. 2003, 171, 5760–5768. [Google Scholar] [CrossRef] [PubMed]
- Cook, L.; Munier, C.M.L.; Seddiki, N.; Hardy, M.Y.; Anderson, R.P.; Zaunders, J.; Tye-Din, J.A.; Kelleher, A.D.; van Bockel, D. Circulating gluten-specific, but not CMV-specific, CD39+ regulatory T cells have an oligoclonal TCR repertoire. Clin. Transl. Immunol. 2020, 9, e1096. [Google Scholar] [CrossRef] [PubMed]
- Toholka, R.; Nixon, R. Allergic contact dermatitis to chlorhexidine. Australas J. Dermatol. 2013, 54, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Weltzien, H.U.; Hebbelmann, S.; Pflugfelder, U.; Ruh, H.; Ortmann, B.; Martin, S.; Iglesias, A. Antigen contact sites in class I major histocompatibility complex-restricted, trinitrophenyl-specific T cell receptors. Eur. J. Immunol. 1992, 22, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Rock, K.L.; Reits, E.; Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends. Immunol. 2016, 37, 724–737. [Google Scholar] [CrossRef]
- Pishesha, N.; Harmand, T.J.; Ploegh, H.L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 2022, 22, 751–764. [Google Scholar] [CrossRef]
- Ortmann, B.; Martin, S.; von Bonin, A.; Schiltz, E.; Hoschutzky, H.; Weltzien, H.U. Synthetic peptides anchor T cell-specific TNP epitopes to MHC antigens. J. Immunol. 1992, 148, 1445–1450. [Google Scholar] [CrossRef]
- Fontenot, A.P.; Falta, M.T.; Kappler, J.W.; Dai, S.; McKee, A.S. Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation. J. Immunol. 2016, 196, 22–27. [Google Scholar] [CrossRef]
- Griem, P.; Panthel, K.; Kalbacher, H.; Gleichmann, E. Alteration of a model antigen by Au(III) leads to T cell sensitization to cryptic peptides. Eur. J. Immunol. 1996, 26, 279–287. [Google Scholar] [CrossRef]
- Thierse, H.J.; Moulon, C.; Allespach, Y.; Zimmermann, B.; Doetze, A.; Kuppig, S.; Wild, D.; Herberg, F.; Weltzien, H.U. Metal-protein complex-mediated transport and delivery of Ni2+ to TCR/MHC contact sites in nickel-specific human T cell activation. J. Immunol. 2004, 172, 1926–1934. [Google Scholar] [CrossRef]
- Budinger, L.; Hertl, M. Immunologic mechanisms in hypersensitivity reactions to metal ions: An overview. Allergy 2000, 55, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Jenkins, R.E.; Aleksic, M.; Pirmohamed, M.; Naisbitt, D.J.; Park, B.K. Characterization of p-phenylenediamine-albumin binding sites and T-cell responses to hapten-modified protein. J. Investig. Dermatol. 2010, 130, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Pickard, C.; Smith, A.M.; Cooper, H.; Strickland, I.; Jackson, J.; Healy, E.; Friedmann, P.S. Investigation of mechanisms underlying the T-cell response to the hapten 2,4-dinitrochlorobenzene. J. Investig. Dermatol. 2007, 127, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Thierse, H.J.; Gamerdinger, K.; Junkes, C.; Guerreiro, N.; Weltzien, H.U. T cell receptor (TCR) interaction with haptens: Metal ions as non-classical haptens. Toxicology 2005, 209, 101–107. [Google Scholar] [CrossRef]
- Oakes, T.; Popple, A.L.; Williams, J.; Best, K.; Heather, J.M.; Ismail, M.; Maxwell, G.; Gellatly, N.; Dearman, R.J.; Kimber, I.; et al. The T Cell Response to the Contact Sensitizer Paraphenylenediamine Is Characterized by a Polyclonal Diverse Repertoire of Antigen-Specific Receptors. Front. Immunol. 2017, 8, 162. [Google Scholar] [CrossRef]
- Wicks, K.; Stretton, C.; Popple, A.; Beresford, L.; Williams, J.; Maxwell, G.; Gosling, J.P.; Kimber, I.; Dearman, R.J. T lymphocyte phenotype of contact-allergic patients: Experience with nickel and p-phenylenediamine. Contact Dermat. 2019, 81, 43–53. [Google Scholar] [CrossRef]
- Eilstein, J.; Gimenez-Arnau, E.; Duche, D.; Rousset, F.; Lepoittevin, J.P. Mechanistic studies on the lysine-induced N-formylation of 2,5-dimethyl-p-benzoquinonediimine. Chem. Res. Toxicol. 2007, 20, 1155–1161. [Google Scholar] [CrossRef]
- Parkinson, E.; Aleksic, M.; Cubberley, R.; Kaur-Atwal, G.; Vissers, J.P.C.; Skipp, P. Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol. Sci. 2018, 162, 429–438. [Google Scholar] [CrossRef]
- Cortial, A.; Nosbaum, A.; Rozieres, A.; Baeck, M.; de Montjoye, L.; Grande, S.; Briancon, S.; Nicolas, J.F.; Vocanson, M. Encapsulation of hydrophobic allergens into nanoparticles improves the in vitro immunological diagnosis of allergic contact dermatitis. Nanomedicine 2015, 11, 1029–1033. [Google Scholar] [CrossRef]
- Di Felice, G.; Colombo, P. Nanoparticle-allergen complexes for allergen immunotherapy. Int. J. Nanomed. 2017, 12, 4493–4504. [Google Scholar] [CrossRef]
- Pateiro, M.; Gomez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovacevic, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef] [PubMed]
- Hulspas, R.; O’Gorman, M.R.; Wood, B.L.; Gratama, J.W.; Sutherland, D.R. Considerations for the control of background fluorescence in clinical flow cytometry. Cytom. B Clin. Cytom. 2009, 76, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Sober, S.A.; Darmani, H.; Alhattab, D.; Awidi, A. Flow cytometric characterization of cell surface markers to differentiate between fibroblasts and mesenchymal stem cells of different origin. Arch. Med. Sci. 2023, 19, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.P.; Ostafe, R.; Iyengar, S.N.; Rajwa, B.; Fischer, R. Flow Cytometry: The Next Revolution. Cells 2023, 12, 1875. [Google Scholar] [CrossRef] [PubMed]
- Timm, M.; Saaby, L.; Moesby, L.; Hansen, E.W. Considerations regarding use of solvents in in vitro cell based assays. Cytotechnology 2013, 65, 887–894. [Google Scholar] [CrossRef]
- Holthaus, L.; Lamp, D.; Gavrisan, A.; Sharma, V.; Ziegler, A.G.; Jastroch, M.; Bonifacio, E. CD4+ T cell activation, function, and metabolism are inhibited by low concentrations of DMSO. J. Immunol. Methods 2018, 463, 54–60. [Google Scholar] [CrossRef]
- Cederbrant, K.; Anderson, C.; Andersson, T.; Marcusson-Stahl, M.; Hultman, P. Cytokine production, lymphocyte proliferation and T-cell receptor Vbeta expression in primary peripheral blood mononuclear cell cultures from nickel-allergic individuals. Int. Arch. Allergy Immunol. 2003, 132, 373–379. [Google Scholar] [CrossRef]
- Al-Tawil, N.G.; Marcusson, J.A.; Moller, E. Lymphocyte transformation test in patients with nickel sensitivity: An aid to diagnosis. Acta. Derm. Venereol. 1981, 61, 511–515. [Google Scholar] [CrossRef]
- Bacher, P.; Heinrich, F.; Stervbo, U.; Nienen, M.; Vahldieck, M.; Iwert, C.; Vogt, K.; Kollet, J.; Babel, N.; Sawitzki, B.; et al. Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans. Cell 2016, 167, 1067–1078.e16. [Google Scholar] [CrossRef]
- Sieben, S.; Kawakubo, Y.; Al Masaoudi, T.; Merk, H.F.; Blomeke, B. Delayed-type hypersensitivity reaction to paraphenylenediamine is mediated by 2 different pathways of antigen recognition by specific alphabeta human T-cell clones. J. Allergy Clin. Immunol. 2002, 109, 1005–1011. [Google Scholar] [CrossRef]
- Uter, W.; Wilkinson, S.M.; Aerts, O.; Bauer, A.; Borrego, L.; Brans, R.; Buhl, T.; Dickel, H.; Dugonik, A.; Filon, F.L.; et al. Patch test results with the European baseline series, 2019/20-Joint European results of the ESSCA and the EBS working groups of the ESCD, and the GEIDAC. Contact Dermat. 2022, 87, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Brans, R.; Skudlik, C. Patch testing in occupational dermatology: Practical aspects in relation to the conditions in Germany. Allergol. Select. 2024, 8, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Simon, K.; Reichardt, P.; Luch, A.; Roloff, A.; Siewert, K.; Riedel, F. Less efficient skin penetration of the metal allergen Pd2+ compared to Ni2+ and Co2+ from patch test preparations. Contact Dermat. 2024, 91, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Serup, J.; Hutton Carlsen, K. Patch test study of 90 patients with tattoo reactions: Negative outcome of allergy patch test to baseline batteries and culprit inks suggests allergen(s) are generated in the skin through haptenization. Contact Dermat. 2014, 71, 255–263. [Google Scholar] [CrossRef]
- Stander, S.; Oppel, E.; Thomas, P.; Summer, B. Evaluation of lymphocyte transformation tests as compared with patch tests in nickel allergy diagnosis. Contact Dermat. 2017, 76, 228–234. [Google Scholar] [CrossRef]
- Walker, J.M.; Slifka, M.K. Longevity of T-cell memory following acute viral infection. Adv. Exp. Med. Biol. 2010, 684, 96–107. [Google Scholar] [CrossRef]
- Hammarlund, E.; Lewis, M.W.; Hansen, S.G.; Strelow, L.I.; Nelson, J.A.; Sexton, G.J.; Hanifin, J.M.; Slifka, M.K. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 2003, 9, 1131–1137. [Google Scholar] [CrossRef]
- Minervina, A.A.; Komech, E.A.; Titov, A.; Bensouda Koraichi, M.; Rosati, E.; Mamedov, I.Z.; Franke, A.; Efimov, G.A.; Chudakov, D.M.; Mora, T.; et al. Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T-cell memory formation after mild COVID-19 infection. eLife 2021, 10, e63502. [Google Scholar] [CrossRef]
- Clark, R.A.; Chong, B.; Mirchandani, N.; Brinster, N.K.; Yamanaka, K.; Dowgiert, R.K.; Kupper, T.S. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 2006, 176, 4431–4439. [Google Scholar] [CrossRef]
- Renz, H.; Biedermann, T.; Bufe, A.; Eberlein, B.; Jappe, U.; Ollert, M.; Petersen, A.; Kleine-Tebbe, J.; Raulf-Heimsoth, M.; Saloga, J.; et al. In-vitro-Allergiediagnostik—Leitlinie der Deutschen Gesellschaft für Allergologie und klinische Immunologie (DGAKI) unter Beteiligung des Ärzteverbandes Deutscher Allergologen (ÄDA), der Gesellschaft für Pädiatrische Allergologie und Umweltmedizin (GPA) und der Deutschen Dermatologische Gesellschaft (DDG). Allergo J. Int. 2010, 19, 110–128. [Google Scholar]
- Watanabe, R.; Gehad, A.; Yang, C.; Scott, L.L.; Teague, J.E.; Schlapbach, C.; Elco, C.P.; Huang, V.; Matos, T.R.; Kupper, T.S.; et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 2015, 7, 279ra39. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, C.; Meyer, T.; Durek, P.; Maul, J.; Preiss, J.; Jacobs, J.F.M.; Thiel, A.; Radbruch, A.; Ullrich, R.; Dorner, T. Simultaneous Presence of Non- and Highly Mutated Keyhole Limpet Hemocyanin (KLH)-Specific Plasmablasts Early after Primary KLH Immunization Suggests Cross-Reactive Memory B Cell Activation. J. Immunol. 2018, 200, 3981–3992. [Google Scholar] [CrossRef] [PubMed]
- Hudson, D.; Fernandes, R.A.; Basham, M.; Ogg, G.; Koohy, H. Can we predict T cell specificity with digital biology and machine learning? Nat. Rev. Immunol. 2023, 23, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Haase, A.; Barroso, J.; Bogni, A.; Bremer-Hoffmann, S.; Fessard, V.; Gutleb, A.C.; Mast, J.; McVey, E.; Mertens, B.; Oomen, A.G.; et al. Proposal for a qualification system for New Approach Methodologies (NAMs) in the food and feed sector: Example of implementation for nanomaterial risk assessment. EFSA Support. Publ. 2024, 21, 9008E. [Google Scholar] [CrossRef]
- Bas, A.; Burns, N.; Gulotta, A.; Junker, J.; Drasler, B.; Lehner, R.; Aicher, L.; Constant, S.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding the Development, Standardization, and Validation Process of Alternative In Vitro Test Methods for Regulatory Approval from a Researcher Perspective. Small 2021, 17, e2006027. [Google Scholar] [CrossRef]
- Hartung, T.; Bremer, S.; Casati, S.; Coecke, S.; Corvi, R.; Fortaner, S.; Gribaldo, L.; Halder, M.; Hoffmann, S.; Roi, A.J.; et al. A modular approach to the ECVAM principles on test validity. Altern. Lab. Anim. 2004, 32, 467–472. [Google Scholar] [CrossRef]
- van der Valk, J.; Brunner, D.; De Smet, K.; Fex Svenningsen, A.; Honegger, P.; Knudsen, L.E.; Lindl, T.; Noraberg, J.; Price, A.; Scarino, M.L.; et al. Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. Toxicol. Vitr. 2010, 24, 1053–1063. [Google Scholar] [CrossRef]
- Duarte, A.C.; Costa, E.C.; Filipe, H.A.L.; Saraiva, S.M.; Jacinto, T.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P. Animal-derived products in science and current alternatives. Biomater. Adv. 2023, 151, 213428. [Google Scholar] [CrossRef]
- Herzler, M.; Abedini, J.; Allen, D.G.; Germolec, D.; Gordon, J.; Ko, H.S.; Matheson, J.; Reinke, E.; Strickland, J.; Thierse, H.J.; et al. Use of human predictive patch test (HPPT) data for the classification of skin sensitization hazard and potency. Arch. Toxicol. 2024, 98, 1253–1269. [Google Scholar] [CrossRef]
- Irizar, A.; Bender, H.; Griem, P.; Natsch, A.; Vey, M.; Kimber, I. Reference Chemical Potency List (RCPL): A new tool for evaluating the accuracy of skin sensitisation potency measurements by New Approach Methodologies (NAMs). Regul. Toxicol. Pharmacol. 2022, 134, 105244. [Google Scholar] [CrossRef]
- Donthamsetty, S.; Forreryd, A.; Sterchele, P.; Huang, X.; Gradin, R.; Johansson, H.; Mattson, U.; Lee, I.; Api, A.M.; Ladics, G. GARDskin dose-response assay and its application in conducting Quantitative Risk Assessment (QRA) for fragrance materials using a Next Generation Risk Assessment (NGRA) framework. Regul. Toxicol. Pharmacol. 2024, 149, 105597. [Google Scholar] [CrossRef] [PubMed]
- Artik, S.; Haarhuis, K.; Wu, X.; Begerow, J.; Gleichmann, E. Tolerance to nickel: Oral nickel administration induces a high frequency of anergic T cells with persistent suppressor activity. J. Immunol. 2001, 167, 6794–6803. [Google Scholar] [CrossRef] [PubMed]
- Cavani, A. Breaking tolerance to nickel. Toxicology 2005, 209, 119–121. [Google Scholar] [CrossRef] [PubMed]
Assay | Main Read-Out | Remarks and Example References | Limitations | Example Chemicals |
---|---|---|---|---|
Naïve T cells | ||||
Priming assays | proliferation | phenotyping is possible (CD4/CD8) | requires professional APCs to overcome activation threshold of naïve T cells, time-intensive | BB, DNCB, DNBS, Eugenol, FITC, HCA, Isoeugenol, PPD, TNBS |
APCs: cultured LCs [17] | ||||
APCs: MoDCs [68] | ||||
● hTCPA | depletion of CD25+ regulatory T cells [69] | |||
cytokine detection (IFN-γ, TNF-α) [18,70] | ||||
clone characterization [71] | ||||
Memory T cells | ||||
LPT | proliferation | cytokines (inverse relation of IL-5 and IL-8) [72] | radioactivity is the most sensitive read-out but prevents down-stream analysis [73,74] | Mercury, Nickel |
phenotyping is possible (CD4/CD8) [75] | ||||
Cytokine-based assays | production of cytokines | frequently analyzed cytokines: IFN-γ, IL-10 | not all specific T cells produce a given cytokine | BB, Nickel, PPD |
● ELISA ● Bead assays | in supernatant | single cytokines (ELISA) or multiple soluble analytes (multiplex-bead assays) [76,77] | no resolution at single-cell level | |
● ELISpot | cytokine detection on single-cell level [78], quantitative | prevents down-stream analysis, no phenotyping possible | ||
● ICS | cell-based | Parallel analysis of multiple cytokines and phenotyping of responsive cells on single cell level, quantitative | fixation and permeabilization required, thus preventing down-stream analysis of living cells [79] | |
● Capture assays | viable single cell analysis enables down-stream analysis [80] | limited cytokine analysis [81] | ||
Naïve and memory T cells | ||||
pMHC oligomers | phenotyping and downstream analysis of viable, antigen-specific cells [82] | epitope knowledge required for (chemically modified) peptide-MHC, oligomer production | Nickel (mimotope) | |
Amplified T cells libraries | proliferation | identification of low frequency clones, HTS possible [83] | work- and time intensive, amplification of single clones may deviate from real-life conditions | |
Autologous skin explant test | histo-pathological analysis of human skin | histopathological score for damage induced in skin explants added to chemical-treated MoDCs—T cell co-cultures [84,85] | time intensive, limited availability of skin samples | Cinnamic alcohol, oxazolone |
AIM assay | activation- induced surface protein expression | fast, sensitive, quantitative, downstream analysis of life specific T cells (further phenotyping, TCR repertoire analysis) [19,51,52] | less established for antigen-specific CD8 T cells, fluorescence interferences may limit analysis of high chemical concentrations | TNBS, Nickel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritsch, N.; Aparicio-Soto, M.; Curato, C.; Riedel, F.; Thierse, H.-J.; Luch, A.; Siewert, K. Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation. Toxics 2024, 12, 802. https://doi.org/10.3390/toxics12110802
Fritsch N, Aparicio-Soto M, Curato C, Riedel F, Thierse H-J, Luch A, Siewert K. Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation. Toxics. 2024; 12(11):802. https://doi.org/10.3390/toxics12110802
Chicago/Turabian StyleFritsch, Nele, Marina Aparicio-Soto, Caterina Curato, Franziska Riedel, Hermann-Josef Thierse, Andreas Luch, and Katherina Siewert. 2024. "Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation" Toxics 12, no. 11: 802. https://doi.org/10.3390/toxics12110802
APA StyleFritsch, N., Aparicio-Soto, M., Curato, C., Riedel, F., Thierse, H. -J., Luch, A., & Siewert, K. (2024). Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation. Toxics, 12(11), 802. https://doi.org/10.3390/toxics12110802