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Abstract: T cell activation is the final key event (KE4) in the adverse outcome pathway (AOP) of
skin sensitization. However, validated new approach methodologies (NAMs) for evaluating this
step are missing. Accordingly, chemicals that activate an unusually high frequency of T cells, as
does the most prevalent metal allergen nickel, are not yet identified in a regulatory context. T cell
reactivity to chemical sensitizers might be especially relevant in real-life scenarios, where skin injury,
co-exposure to irritants in chemical mixtures, or infections may trigger the heterologous innate
immune stimulation necessary to induce adaptive T cell responses. Additionally, cross-reactivity,
which underlies cross-allergies, can only be assessed by T cell tests. To date, several experimental T
cell tests are available that use primary naïve and memory CD4+ and CD8+ T cells from human blood.
These include priming and lymphocyte proliferation tests and, most recently, activation-induced
marker (AIM) assays. All approaches are challenged by chemical-mediated toxicity, inefficient or
unknown generation of T cell epitopes, and a low throughput. Here, we summarize solutions and
strategies to confirm in vitro T cell signals. Broader application and standardization are necessary to
possibly define chemical applicability domains and to strengthen the role of T cell tests in regulatory
risk assessment.

Keywords: adverse outcome pathway; allergic contact dermatitis; chemical-induced T cell epitopes;
contact allergens; in vitro T cell test; key events; new approach methodologies; skin sensitization;
T cell receptor

1. Introduction

In our modern industrialized society, humans are regularly exposed to numerous
chemical compounds. Single or repeated skin contact with sensitizing chemicals may
induce contact allergies in susceptible individuals. Upon re-exposure, an inflammatory
skin condition known as allergic contact dermatitis (ACD) can develop [1–3]. Epidemic-like
occurrence of contact allergies has been reported in recent decades [4,5]. Rough estimations
claim that approximately 20% of the general population may be sensitized to at least one
contact allergen [6]. The widespread occurrence of ACD implies significant economic and
personal costs [7].

To prevent or reduce ACD, newly authorized chemicals must undergo skin sensiti-
zation testing to comply with national and international regulations on chemical safety.
For instance, in the European Union (EU), for all chemicals manufactured or imported in
quantities of ≥1 ton per year, information on skin sensitizing properties is required by the
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REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals;
Regulation (EC) No. 1907/2006).

For decades, animal-based tests have been the gold standard to assess the skin sen-
sitizing properties of chemicals (Figure 1). Guinea pig tests, which address both the
sensitization and elicitation phase of ACD, have largely been replaced by the more animal-
friendly murine local lymph node assay (LLNA) that only considers the sensitization phase
(OECD TG 406; OECD 429) [8–10]. Early human patch tests designed to induce active
sensitization have been banned under REACH [11,12]. However, human repeated insult
patch tests (HRIPTs) are still used to confirm no-effect levels, mainly in the cosmetics,
household products, and pharmaceutical sectors [13–15].
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for studying contact allergens. The terms ‘assay’ and ‘test’ are used interchangeably. Blue text indi-
cates human-based test systems, while dark gray denotes animal-based methods. EC—European 
Commission; EU—European Union; OECD—Organization for Economic Co-operation and Devel-
opment; TG—test guideline. Created in BioRender.com. Siewert, K. (2024) https://BioRen-
der.com/h57s252, accessed on 1 November 2024.

There is a growing need for alternative methods to replace or reduce in vivo testing, 
including skin sensitization assessment. In recent years, the concept of new approach 
methodologies (NAMs) has emerged to accommodate a higher throughput, reduce uncer-
tainties resulting from interspecies differences, and provide insights into molecular mech-
anisms, while adhering to improved ethical standards [20–22]. Cutting-edge NAMs for 
skin sensitization testing have been incorporated into REACH and other chemical 

Figure 1. History of tests for assessing chemical-induced T cell responses. Traditional in vivo meth-
ods for assessing T cell responses in animals are represented in the OECD test guidelines (upper
part) [8–10,12]. For a long time, these methods preceded the development of in vitro assays (lower
part). Nevertheless, T cell assays have significantly advanced over time [16–19]. The necessity of
alternative tests was demonstrated by the prohibition of animal testing for cosmetics in the EU in
2013 (red zigzag line). References were selected from among the earliest descriptions of these tests for
studying contact allergens. The terms ‘assay’ and ‘test’ are used interchangeably. Blue text indicates
human-based test systems, while dark gray denotes animal-based methods. EC—European Commis-
sion; EU—European Union; OECD—Organization for Economic Co-operation and Development;
TG—test guideline. Created in BioRender.com. Siewert, K. (2024) https://BioRender.com/h57s252,
accessed on 1 November 2024.

There is a growing need for alternative methods to replace or reduce in vivo testing,
including skin sensitization assessment. In recent years, the concept of new approach
methodologies (NAMs) has emerged to accommodate a higher throughput, reduce un-
certainties resulting from interspecies differences, and provide insights into molecular
mechanisms, while adhering to improved ethical standards [20–22]. Cutting-edge NAMs
for skin sensitization testing have been incorporated into REACH and other chemical
regulations, thereby allowing animal testing only when these alternative methods prove
inconclusive [23,24]. The EU’s implementation of a comprehensive ban on animal testing
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for cosmetics in 2013 underscores the ongoing evolution in the field of chemical regulation
(Regulation (EC) No. 1223/2009).

NAMs for skin sensitization have been developed for a series of biological key events
(KEs) considered essential to define the adverse outcome pathway (AOP) of skin sensitiza-
tion [25] (Figure 2). The molecular initiating event (MIE) covers the binding of chemicals to
endogenous skin proteins (KE1, haptenation) and can be addressed by in chemico peptide
reactivity assays (OECD TG 442C). Subsequently, keratinocytes and dendritic cells (DCs)
become activated (KE2 and 3, respectively), which can be analyzed by cellular in vitro tests
(OECD TGs 442D and 442E). Activated DCs are then thought to migrate to the draining
lymph nodes, where they present chemical-induced epitopes on their cell surface to prime
naïve T cells (KE4). Subsequently, antigen-specific proliferation and differentiation into
effector and memory T cells is induced, which terminates the sensitization phase [2,25,26].
For the final KE4, experimental assays are available, but have not yet been validated or
accepted for regulatory use (Figures 1 and 2).
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Figure 2. New approach methodologies (NAMs) address different key events (KEs) of the adverse
outcome pathway (AOP) of human skin sensitization. Currently, NAMs are available for KE1 to
3, which are also covered by OECD guidelines. KE4 describes T cell activation as the final step of
the AOP, but validated methods are still missing. This review describes approaches for measuring
chemical-induced T cell responses, which may be further developed into a regulatory accepted
predictive KE4 test method. ADRA—amino acid derivative reactivity assay; AIM—activation-
induced marker; DPRA—direct peptide reactivity assay; ELISpot—enzyme-linked immunosorbent
spot; EpiSensA—epidermal sensitization assay; GARDTM skin—genomic allergen rapid detection
for assessment of skin sensitizers; h-CLAT—human cell line activation test; hTCPA—human T cell
priming assay; IL-8 Luc—interleukin 8 reporter gene assay; kDPRA—kinetic direct peptide reactivity
assay; LPT—lymphocyte proliferation test; pMHC oligomers—peptide-major histocompatibility
complex class I and II oligomers; U-SENSTM—myeloid U937 skin sensitization test. Created in
BioRender.com. Siewert, K. (2024). https://BioRender.com/a64x125, accessed on 1 November 2024.
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So far, no individual NAM can replace in vivo testing for skin sensitization. Still,
NAM combinations for KE1 to 3 that also include in silico tools have been implemented
successfully as defined approaches (DAs) in OECD TG 497 and the related guidance docu-
ment (GD 256). These DAs can replace animal testing and allow classification according to
the globally harmonized system (GHS) of classification and labelling of chemicals within
their applicability domains. Further research to improve the available methods is ongo-
ing [27–29]. In this context, a validated T cell test is needed to fill a critical gap by resolving
discrepancies among KE1 to KE3 NAMs, LLNA, human HRIPT, and clinical data, as well
as to assess cross-reactivities. Still, T cell-mediated adaptive immunity exhibits unique
characteristics including clonal and phenotypic diversity, as well as special antigen recogni-
tion mechanisms, as outlined in Section 2. These factors have influenced and delayed T cell
test development.

In this review, we highlight key challenges due to the complexity of the underlying
biology and provide potential solutions to the technical difficulties involved in assay
development, expanding on previous work in this field [26,30–32].

2. Biological Basis of a Regulatory T Cell Test

A predictive T cell test for skin sensitizing properties is based on the assumption
that chemical-specific T cells are also present in non-sensitized individuals, even without
previous exposure. This phenomenon arises from the vast diversity of T cell receptors
(TCRs) and their polyspecificity in humans. Each T cell expresses a unique TCR consisting
of an α- and β-chain (or, more rarely, a γ- and δ-chain). The chains are generated in
the thymus through recombination of V(D)J gene segments, and random insertions and
deletions in the complementary determining region 3 (CDR3). These processes result in
a vast theoretical variability of ~1015–1061 possible TCRs [33,34]. From these theoretical
numbers, a huge and mainly unique TCR repertoire is realized in each person, estimated to
be about 100 million (108) TCRs [35].

TCR polyspecificity is also referred to as cross-reactivity. This property describes the
ability of a single TCR to react to multiple epitopes [36–38]. Consequently, the human TCR
repertoire covers virtually any epitope, but specific T cells for a certain allergen are only
available at low levels in the naïve T cell pool due to the high diversity (~1 specific among
5·104 to 107 non-specific T cells) [39,40]. A naïve T cell with a given TCR (a clonotype) is
represented by a low number of daughter cells (e.g., ~50 to 200 for murine CD8+ T cells)
that are circulating between the blood and lymphatic system [41]. Therefore, cells from one
naïve T cell clonotype are usually not detectable in several wells of an in vitro culture, a
phenomenon known as a sampling effect. In contrast, the effector and memory T cell pools
contain a broad range of individual clonotype frequencies, including some that are highly
expanded [42,43].

Epitopes recognized by TCRs consist of a peptide presented by a protein of the
highly polymorphic major histocompatibility complex (MHC), also known as human
leukocyte antigen (HLA) [44]. For most chemical-induced epitopes, the identity of the
HLA allele, the presented self-peptide, and the exact haptenation site and mechanism
remain unknown [45–48]. Covalent chemical binding via electrophile/nucleophile or
radical mechanisms (haptenation) as well as complex formation (i.e., chelation, also termed
pharmacological interaction, or p-i concept) are possible (see also Section 4.1) [3,49,50].

So far, reliable in vitro T cell signals have been observed for only a limited number
of contact allergens and drugs [45,47]. A prominent example is nickel (Ni2+ ions), which
astoundingly activates approximately ~1 in 1000 CD4+ T cells (at ~200 µM), due to the
interaction with certain common TCR antigen binding sites [19]. Similar observations
were published for cobalt (Co2+) and palladium (Pd2+) [51]. In an analogous manner, the
experimental contact allergen 2,4,6-trinitrobenzene-1-sulfonic acid (TNBS) has been shown
to activate many CD4+ and CD8+ T cells [52,53]. Here, the chemical moiety (trinitrophenyl
group) dominates the TCR interactions at specific positions, while the sequence of the
underlying MHC-presented peptides can vary. This mechanism allows the involvement of
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many TCRs, possibly with distinct CDR3 motifs [52,54]. While TCR repertoires are largely
unique among individuals, bias not only in thymic selection but also among reactive TCRs
exists. This encompasses the selection of common gene segments, amino acid motifs in the
CDR3, or a combination thereof [34,51,55–58].

A T cell test is indicated to determine the extent to which a chemical sensitizer activates
a broader range of T cells, as well as to distinguish signals from heterologous immune
stimulation. Sufficient stimulation of the innate immune system, required for an adaptive T
cell response, is thought to be mediated by the reactivity of the chemical and addressed
by KE1 to 3 methods [59]. In real-life scenarios, heterologous stimulation from skin injury,
barrier defects, infections, or co-exposure to other irritants in mixtures may contribute to
innate immune activation [60–62]. A prominent example is nickel, predicted to exhibit
a weak to moderate potency in available tests and displaying also some irritant charac-
teristics in vitro [63–65]. However, nickel allergy is strongly associated with skin injury
which is exceptionally immunogenic and could also provide the required heterologous
stimulation. Thus, broad T cell reactivity, combined with skin injury, may contribute to the
high prevalence of nickel allergy [66,67]. Heterologous immune stimulation is currently
not considered in any predictive testing. All reference data on skin sensitizing properties
are derived from human or animal models with an intact skin barrier, without the presence
of additional chemicals (mixtures) or pathogens, with the exception of sodium dodecyl
sulfate (SDS), which was used sometimes in the past. Taken together, the contribution of
heterologous immune stimulation to skin sensitization under real-life scenarios remains
unclear. However, T cell tests may help to dissect the contributions of innate and adaptive
immune activation to skin sensitization for a given sensitizing chemical.

3. Available T Cell-Based Assays

Human T cell tests use blood as a readily accessible source of primary T cells and
APCs [45]. All assays rely on autologous systems, where T cells and APCs derive from the
same donor to prevent reactions against polymorphic HLA proteins (mixed lymphocyte
reactions). This setting ensures that the detection of chemical-specific responses will not be
hindered by allogeneic stimulation. After antigen exposure, different readouts can be used
and the results are compared to cells treated with an unrelated chemical (specificity control)
and/or untreated cells (background control). The available tests can be categorized based
on their capacity to interrogate naïve, memory, or both T cell populations (Table 1).

Table 1. In vitro assays used for the identification of human chemical-specific T cells. The remark
column mentions general features and example references. In addition, variations, e.g., additional
readouts or key experimental details are listed from individual exemplary publications.

Assay Main Read-Out Remarks and Example
References

Limitations Example Chemicals

Naïve T cells
Priming assays proliferation phenotyping is possible

(CD4/CD8) requires professional
APCs to overcome
activation threshold of
naïve T cells,
time-intensive

BB, DNCB, DNBS,
Eugenol, FITC, HCA,
Isoeugenol, PPD, TNBS

APCs: cultured LCs [17]
APCs: MoDCs [68]

• hTCPA depletion of CD25+
regulatory T cells [69]
cytokine detection (IFN-γ,
TNF-α) [18,70]
clone characterization [71]

Memory T cells
LPT proliferation cytokines (inverse relation

of IL-5 and IL-8) [72]
radioactivity is the most
sensitive read-out but
prevents down-stream
analysis [73,74]

Mercury, Nickel

phenotyping is possible
(CD4/CD8) [75]
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Table 1. Cont.

Assay Main Read-Out Remarks and Example
References

Limitations Example Chemicals

Cytokine-based
assays

production of cytokines frequently analyzed
cytokines: IFN-γ, IL-10

not all specific T cells
produce a given cytokine

BB, Nickel, PPD

• ELISA
• Bead assays

in
supernatant

single cytokines (ELISA)
or multiple soluble
analytes (multiplex-bead
assays) [76,77]

no resolution at
single-cell level

• ELISpot cytokine detection on
single-cell level
[78], quantitative

prevents down-stream
analysis, no phenotyping
possible

• ICS cell-based Parallel analysis of
multiple cytokines and
phenotyping of responsive
cells on single cell level,
quantitative

fixation and
permeabilization
required, thus preventing
down-stream analysis of
living cells [79]

• Capture assays viable single cell analysis
enables down-stream
analysis [80]

limited cytokine analysis
[81]

Naïve and memory T cells
pMHC oligomers phenotyping and

downstream analysis of
viable, antigen-specific
cells [82]

epitope knowledge
required for (chemically
modified) peptide-MHC,
oligomer production

Nickel (mimotope)

Amplified T cells libraries proliferation identification of low
frequency clones, HTS
possible [83]

work- and time intensive,
amplification of single
clones may deviate from
real-life conditions

Autologous skin
explant test

histo-pathological analysis
of human skin

histopathological score for
damage induced in skin
explants added to
chemical-treated
MoDCs—T cell
co-cultures [84,85]

time intensive,
limited availability of
skin samples

Cinnamic alcohol,
oxazolone

AIM assay activation-
induced surface protein
expression

fast, sensitive,
quantitative, downstream
analysis of life specific T
cells (further phenotyping,
TCR repertoire analysis)
[19,51,52]

less established for
antigen-specific CD8 T
cells, fluorescence
interferences may limit
analysis of high chemical
concentrations

TNBS,
Nickel

AIM—activation-induced marker; APC—antigen presenting cell; BB—Brandowsky’s base; CD—cluster of
differentiation; DNBS—2,4-dinitrobenzenesulfonic acid; DNCB—2,4-dinitrochlorobenzene; ELISA—enzyme-
linked immunosorbent assay; ELISpot—enzyme-linked immunoSpot assay; FITC—fluorescein isothiocyanate;
HCA—α-hexylcinnamaldehyde; hTCPA—human T cell priming assay; HTS—high-throughput sequencing;
ICS—intracellular cytokine staining; IFN—interferon; IL—interleukin; LC—Langerhans cells; LPT—lymphocyte
proliferation test; MoDCs—monocyte-derived dendritic cells; pMHC—peptide major histocompatibility com-
plex; PPD—p-phenylenediamine; TCR—T cell receptor; TNBS—2,4,6-trinitrobenzenesulfonic acid; TNF—tumor
necrosis factor.

3.1. Detection of Naïve T Cells

Unlike memory T cells, naïve T cells require further signals beyond TCR engagement,
including co-stimulation via CD28 and cytokines like interleukin (IL)-2, for full activation
and proliferation [86–88]. Professional APCs like DCs supply essential co-stimulatory
molecules like CD86 or cytokines, which also drive the shift of T cells towards effector and
memory phenotypes including Th1, Th2, or Th17 subpopulations [89].

Priming assays, among the first tests developed for skin sensitizers, are currently the
only ones that mimic the sensitization phase in vitro. These assays involve the co-culture
of naïve human T cells with APCs in the presence of a chemical, integrating the necessary
co-stimulatory signals from the innate immune system [31,90]. This approach not only
activates naïve T cells but also potentially allows for the assessment of chemical-induced
shifts in immune responses [17]. After the initial priming, cells are restimulated at one or
several time points.
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T cell responses are primarily evaluated by cell proliferation, traditionally using [3H]-
thymidine incorporation into DNA [17,18,70]. Results are expressed as counts per minute
(cpm) and typically converted into a stimulation index. The stimulation index quantifies
cell proliferation by comparing chemical-treated cells to unstimulated control cells under
identical conditions, thus accounting for biological variations [69,70]. Alternative tech-
niques have been established to replace radioactive thymidine due to safety concerns and
limitations in single-cell resolution. The use of fluorescent dyes (e.g., carboxyfluorescein
succinimidyl ester (CFSE) or Oregon Green) as well as proliferation markers like 5-bromo-
2′-deoxyuridine (BrDU) or Ki67, along with the detection of cytokines provides better
specificity for cell identification and allows for detailed phenotyping [18,30,32]. However,
these alternatives offer a lower sensitivity and make them less suitable for the identification
of small populations of proliferating cells.

Various adjustments have been implemented to increase assay sensitivity, including
modification of T cell and APC populations. Blood monocyte-derived DCs (abbreviated
MDDCs or MoDCs) or monocyte-derived Langerhans cells (MoLCs) are commonly used
APCs [17,18,91,92]. In the human T cell priming assay (hTCPA), additional stimulation to
support effective T cell priming has been used, e.g., the addition of CD28 antibodies for T
cell co-stimulation or maturation of immature MoDCs with stimulators like lipopolysac-
charide (LPS) [18,70]. However, it is important to note that once MoDCs mature, they
exhibit a significant reduced phagocytic capacity, which may limit their ability to effec-
tively take up and process haptenated proteins [92]. Other modifications in experimental
protocols, such as the addition of cytokines for improved T cell survival, the depletion
of several immune-regulatory cells (e.g., CD56+ and CD25+ cells), and/or blocking of
inhibitory checkpoint receptors (e.g., programmed cell death ligand-1 (PD-L1) or cyto-
toxic T-lymphocyte-associated protein 4 (CTLA4)) may contribute to an improved assay
sensitivity [32,70,91].

Despite advancements, human priming assays still face difficulties in the reliable
identification of sensitizing chemicals. Multiple restimulations may increase background
levels due to uneven proliferation of individual T cell clones in samples without antigen
stimulation. Optimization for individual parameters within the complex protocol remains
labor-intensive and time consuming with prolonged cultivation periods, thus challenging
the high-throughput implementation of priming assays [32].

3.2. Detection of Memory T Cells

Assays that evaluate the secondary immune response mediated by expanded effector
or memory T cells usually aim to detect chemical-specific T cells in previously sensitized
individuals. Naïve T cells do not typically proliferate in PBMC cultures unless they receive
both antigen-specific TCR engagement and co-stimulatory signals along with cytokine
support due to insufficient priming stimulation [86–88,92]. On the other hand, effector or
memory T cells can be efficiently detected. However, in a regulatory context it is crucial to
reach the detection limit in non-allergic donors. For some chemicals, like metals, specific
T cells can easily be identified in vitro. In contrast, other chemicals are more challenging,
e.g., due to low frequencies of specific T cells and/or difficulties in epitope generation (see
Sections 4.1 and 4.4).

3.2.1. Lymphocyte Proliferation Test (LPT)

The lymphocyte proliferation test (LPT), also termed lymphocyte transformation test
(LTT) or lymphocyte stimulation test (LST), measures the antigen-specific response of
effector or memory T cell populations based on their in vitro proliferation [16,74,93–95]. It
is also referred to as a lymphocyte activation test (LAT) in some literature [96,97]. PBMCs,
including both T cells and mainly monocytes and B cells as APCs, are cultured with the
chemical of interest (or otherwise chemical-induced epitopes, see Section 4.1), usually using
replicates. Cell proliferation is measured after several days, typically by [3H]-thymidine
incorporation and subsequent determination of the stimulation index (see Section 3.1).
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Alternative readouts, like cytokine production or the expression of several activation
markers, can also be combined with the proliferation protocol [98,99]. The addition of
several cytokines in cell culture medium has been proposed to enhance assay sensitivity,
but their use remains controversial as it may skew overall T cell responses by selectively
activating or suppressing specific T cell subsets [99,100].

One main challenge of the LPT is that it does not provide information on original
specific cell frequencies unless performed in the setting of limiting dilution cultures. In
addition, the results of the LPT may reflect altered frequencies of T cell subpopulations due
to varying division speeds [101].

3.2.2. Cytokine-Based Tests

Cytokine-based assays aim to quantify cytokine production by TCR-activated effector
or memory T cells and are commonly used as an additional readout of LPT or priming
assays [18,77,78].

Among these methods, the enzyme-linked immunosorbent assay (ELISA) or bead-
based immunoassays are widely employed to measure cytokine concentrations in cell
supernatants. Depending on the applied method, a single cytokine (ELISA), or a variety of
soluble analytes (e.g., cytometric bead array (CBA)) can be detected at a time [72]. However,
supernatant analysis does not identify cytokine production at single-cell level. In contrast,
ELISpot assays visualize cytokine-releasing cells as colored spots, enabling the quantifica-
tion of responsive individual T cells, though without preserving cell viability [78,102]. In
most studies, IFN-γ and IL-10 are the main redout, although ELISpot enables the detection
of a variety of cytokines in parallel, e.g., IL-2, IL-4, IL-5 or IL-13, to improve qualifica-
tion of the induced response [103]. Capture assays, such as the cytokine secretion assay
(CSA), also termed cytokine catch assay, detect cytokines at individual cell level while
maintaining cell viability [80]. Another approach is intracellular cytokine staining (ICS)
using multiparameter flow cytometry. This method employs protein transport inhibitors to
prevent extracellular cytokine migration, followed by cell fixation and permeabilization to
allow the penetration of fluorochrome-conjugated antibodies. While ICS enables analysis
of multiple cytokines and the phenotyping of responsive cells, it does not preserve cell
viability [79,104]

The isolated quantification of cytokines as a single readout is associated with certain
limitations. The complex nature of cytokine production makes it difficult to efficiently
capture antigen-specific responses at any given time point, as not all chemical-specific
T cells produce all cytokines [105]. Additionally, elevated or altered baseline cytokine
levels, especially during active inflammatory processes, can affect assay interpretation.
Furthermore, the detection of T cell subsets with low cytokine profiles can be challenging,
leading to incomplete characterization of certain T cell responses [106].

3.3. Detection of Both Naïve and Memory T Cells
3.3.1. Peptide-Major Histocompatibility Complex Class I and II Oligomers

The peptide-MHC oligomer technique analyzes the binding of T cells to specific
antigens via the interaction between TCRs and recombinantly generated soluble peptide-
MHC complexes. Fluorescent tetramers, as well as dimers, pentamers, and higher-order
oligomers of MHC I and II molecules loaded with specific peptides, bind to CD8+ or CD4+
T cells, respectively. Antigen-specific T cells are then identified using multiparameter
flow cytometry, which also allows for T cell phenotyping and isolation of specific viable T
cells [82,107].

The multimer approach is necessary to overcome the low avidity of TCRs, particularly
for CD4+ T cells, and stabilize their interaction with MHC [108–110]. However, it remains
unclear whether MHC oligomers can efficiently capture all relevant T cells, regardless of
their activation state or epitope avidity [111,112]. Nevertheless, the adaptability of the
assay for detecting chemical-specific T cells has been demonstrated by the development of
a nickel mimotope tetramer [107].
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Optimized protocols with magnetic-bead enrichment improved assay detection ca-
pabilities, allowing for the analysis of rare antigen-specific T cells even in unexposed
individuals [110,112]. Besides, a combination with mass cytometry is possible. In this
approach, antibodies labeled with isotopically purified metal conjugates are measured by a
time-of-flight mass spectrometer. This offers a wider range of parameter detection than
flow cytometry and fewer variations in signal intensity between parameters [113,114].

The main bottleneck of the peptide-MHC oligomer technique is that all relevant
contributors need to be known, including the presented peptide, the presenting MHC
protein and, in the case of chemical sensitizers, the haptenated entity. Moreover, the
complex production of peptide-MHC tetramer complexes, especially for MHC II, restricts
its widespread use [113,115,116].

3.3.2. Amplified T Cell Libraries

The in vitro generation of amplified T cell libraries enables the quantitative and func-
tional analysis of naïve and memory antigen-specific CD4+ and CD8+ T cells [83]. Initially,
T cells are isolated based on their naïve or memory phenotype, followed by polyclonal
expansion and subsequent stimulation of fractions of the expanded pools with autologous
monocytes, in the presence of an antigen. T cell proliferation of expanded antigen-specific
T cell clones is assessed via [3H]-thymidine incorporation or flow cytometry and can be
combined with further TCR repertoire analysis and cytokine detection assays [83,117,118].

This method offers high sensitivity in the detection of rare antigen-specific T cells.
However, it involves a labor-intensive process with extended culture times that requires
advanced expertise. Additionally, the in vitro expansion of T cells may not accurately reflect
in vivo scenarios due to possible outgrowth or loss of certain specific clones. Moreover,
potential phenotypic or functional alterations in T cells induced by in vitro manipulation
may also limit reproducibility of real-life settings [40,117]. To date, this method has not
been applied to chemical allergens.

3.3.3. Autologous Skin Explant Test

The human in vitro skin explant assay presents an alternative approach to assess
the skin sensitization potential of chemicals through a co-culture of MoDCs and T cells
from healthy individuals combined with a skin explant from the same donor [84,85,119].
Not unlike priming assay, fast MoDCs are generated (day 1), matured with maturation
stimuli (day 2), modified with chemical allergens (day 3), and then co-cultured with T
cells (days 4–7). Here, a comprehensive T cell pool is used (CD14- PBMC fraction), which
include all T cell subpopulations. Thus, the T cell responses observed in the assay may
consist of either primed naïve T cells or (cross-reactive) memory responses and includes
CD4+ as well as CD8+ T cells. Then, skin biopsies are co-cultured for another 3 days
(days 8–10).

By including a skin explant besides dendritic cell models and T cells, this assay mim-
ics the human in vivo relevant cutaneous immune response more closely compared to
other tests. Histopathological damage is the major readout and evaluated according to
the Lerner criteria, using hematoxylin and eosin staining [120]. The visible damage in
histological sections mainly reflects the response of keratinocytes to the inflammatory
environment generated by the in vitro culture, likely dominated by the proliferated, acti-
vated chemical-specific T cells. Additional readouts from parallel MoDC-T cell co-cultures
include cytokine (IFN-γ) assessment in the cell culture supernatants and T cell proliferation
via [3H]-thymidine incorporation. The assay has also been applied to biologicals and
small-molecule drugs, besides a comparatively large pool of sensitizing chemicals [85,119].
However, the complexity of the in vitro system may also pose some challenges, such as the
necessary logistics to obtain autologous skin samples.
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3.3.4. Activation-Induced Marker (AIM) Assays

AIM assays offer a short-term functional approach for the detection, isolation, and
potential expansion of antigen-specific T cells, even from low original precursor frequencies.
These assays are based on the upregulation of surface proteins (activation markers) upon
TCR stimulation [40,121,122].

The background expression of the activation markers can complicate the accurate
distinction of low-frequency T cell subsets, which compromises assay sensitivity [123,124].
Ideally, these markers should be expressed only after TCR interaction, independently of
cytokine secretion or cell differentiation stages, with fast kinetics sustained for a reliable
period [40,125]. Some early activation markers like CD69 are intrinsically expressed on
several T cell subsets or can be induced by TCR-independent signals [124,126]. Late activa-
tion markers, including HLA-DR (HLA-DR) and CD38, show high expression variability
and are also prone to TCR-independent bystander activation [127–129]. In contrast, CD154
(CD40L) is transiently expressed after 5–7 h on activated CD4+, and to a lesser extent
among CD8+ T cells, upon TCR engagement, with minimal bystander activation within
this time window [130]. CD154 is rapidly internalized after interacting with CD40, so its de-
tection is only possible intracellularly or with the concomitant addition of a CD40-blocking
antibody [106,123,131,132]. Another well-known marker is CD137 (4–1BB), which is up-
regulated primarily in CD8+ but also CD4+ T cells. Its expression generally peaks around
24 h, with regulatory CD4+ T cells showing peak upregulation at approximately 5 h, and it
remains detectable for up to 5 days [125,133–135]. Other surface proteins described in the
literature include CD134 (OX40) and programmed death-ligand 1 (PD-L1, CD274), which
are typically upregulated after 18–24 h [105,133]. It often remains unclear whether the
expression of these activation markers varies between cell types or in response to different
antigens. The lack of comparative data hinders a comprehensive understanding and the
accurate characterization of immune responses, particularly concerning low-frequency T
cell subsets [122].

The co-staining of activation markers, e.g., CD154 or CD137 with CD69 and Nur77,
an intracellular marker for TCR-mediated activation, can further confirm T cell speci-
ficity [40,126,136]. Other markers allow for simultaneous analyses, such as cell prolifera-
tion, single-cell cytokine detection, or T cell phenotyping, which also informs on in vivo
relevance [19,40,51,52,105]. For instance, HLA-DR, a late activation marker, and Ki-67,
a nuclear protein only expressed during active cell division, are often detected among
antigen-specific T cells [19,137]. Increased co-expression of cutaneous leukocyte-associated
antigen (CLA) on activated cells indicates skin-homing responses [138,139]. However, if
the frequency of antigen-specific T cells is low, the analysis of further markers may not
be feasible.

Using flow cytometry, only a limited number of cells can be acquired and computation-
ally processed within a reasonable timeframe, which contrasts with the need for a sufficient
number of target events for statistically robust analysis, particularly for certain subpopu-
lations [140]. To address these limitations, the antigen-reactive T cell enrichment (ARTE)
protocol has been developed as a modification of the AIM assay. This protocol involves
magnetic pre-enrichment of activation marker-positive cells, allowing for the acquisition
and analysis of rare antigen-specific viable cells from large blood samples [121,140]. Cur-
rently, ARTE has successfully been established for CD154 and CD137 [124,141]. Another
approach for flow cytometry is to acquire events specifically from target T cell subpopula-
tions to reduce data volume [19,51]. In both options, a small fraction of cells is analyzed in
detail to capture original frequencies within parent populations, providing information
about cell phenotype and functionality.

Further optimization of AIM assays, e.g., in analogy to priming assays, is possible and
it has to be tested whether this leads to improved chemical-specific T cell detection, e.g.,
using co-stimulation with CD28 or depletion of regulatory T cells [142].

Overall, AIM assays offer promising advantages for both laboratory and clinical
applications. Their shorter experimental time leads to fast results and facilitates their
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large-scale application. Because T cells do not divide during short-term stimulation, T cell
frequencies, phenotypes, and TCR profiles obtained remain unbiased, accurately reflecting
the in vivo repertoire and frequencies [143]. Specifically, the CD154-based CD4+ AIM
assay has proven to be highly effective in the identification of chemical-specific T cells,
underscoring its value for monitoring chemical-related immune responses [19,36,52].

4. Critical Steps for T Cell Assay Development

Several crucial steps are involved in the development of T cell tests (Figure 3), which
are discussed in the following sections.
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1 November 2024.

4.1. Generation of T Cell Epitopes

For most sensitizers, the identity of the induced T cell epitope and the conditions
required for efficient in vitro generation are not well understood. This renders the devel-
opment of T cell tests for chemical sensitizers more challenging compared to those for
protein antigens. The physicochemical properties of the sensitizer drive the molecular
mechanisms of its interaction with cellular components. Different aspects need to be con-
sidered, including protein binding affinity at different sites, chemical reactivity (including
pre- or pro-haptens), or solubility [45,144]. Covalent protein binding (haptenation) can
occur on extracellular proteins, which are subsequently processed by APCs, resulting in
hapten-derived peptides being presented on MHC II molecules to CD4+ T cells [145–147].
Cross-presentation enables the activation of CD8+ T cells due to presentation of haptenized
peptides on MHC I molecules. Some haptens can penetrate into the cell and modify in-
tracellular proteins to serve as an epitope source, which is subsequently shuffled into the
MHC I presentation pathway [146,147]. Moreover, some chemicals have been shown to
covalently modify peptides bound to MHC molecules, leading to the formation of TCR epi-
topes in a processing-independent way [145,148]. Others may alter intracellular processes
to produce neo-epitopes without chemical contact of the TCR [36,149,150]. As a second
main mechanism for epitope formation, some chemical-derived epitopes are formed in a
processing-independent way [151]. This has been described for metal allergens where epi-
topes are formed via complex formation (coordination bonds), also termed pharmacological
interaction (or p-i) in the context of drug hypersensitivity [36,49,152].

In real life, proteins in the skin are typically modified. Such skin proteins are rarely
available in in vitro assays, but this may not pose a problem. According to the concept of T

https://BioRender.com/j18a303
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cell polyspecificity, sufficiently similar modified proteins or peptides can be processed and
presented by the APCs in the assay, thus engaging a representative fraction of the relevant
chemical-specific TCR repertoire, similar to the in vivo skin responses [95,153,154].

Considering the possible molecular mechanism for epitope formation in vivo, the
following four major in vitro approaches can be distinguished in the literature: separate
modification of the APCs, modification of model proteins, which are provided to the
APCs, direct addition of a chemical to the culture medium, and chemical delivery by
nanomaterials (Figure 4).
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Figure 4. Approaches for the in vitro generation of chemical-induced T cell epitopes. The physico-
chemical properties of a substance influence which epitope formation approach may be the most
suitable. For instance, certain features, like binding via complex formation (chelation) or insolubility,
may require direct addition into the culture medium or benefit from nanomaterial-mediated delivery,
respectively. Human blood samples serve as the cell source (e.g., for PBMCs, indicated here as white
cellular layer after blood density gradient centrifugation), which includes fresh blood donations, cord
blood, buffy coats, and leukocyte depletion filters. APC—antigen presenting cells; HSA—human
serum albumin. Created in BioRender.com. Siewert, K. (2024). https://BioRender.com/b98e522,
accessed on 1 November 2024.

For sensitizers that interact via covalent protein binding (haptenation), APC modifica-
tion or the addition of modified proteins (or peptides) to the APCs have been described.
APC modification, also termed pulsing, facilitates efficient antigen processing under culture
conditions. Additionally, pre-haptens, which require prior oxidation, or pro-haptens, which
require metabolic activation, can convert into their immunogenic reactive forms. In contrast,
a second way comprises a short-term incubation with a chemical for ~10 min in PBS which
may limit toxic effects due to the shorter exposure time. This latter approach allows for a
targeted modification of pre-existing surface peptide-MHC complexes, due to the lack of

https://BioRender.com/b98e522
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reactive proteins in the cell culture medium [52,70]. To determine if a chemical-induced
epitope requires antigen processing, APCs can be fixed with glutaraldehyde, which leads
to an immediate stop of antigen uptake and processing [18,70].

The use of haptenated model proteins provides an excess source of extracellular protein
for APC processing. Human serum albumin (HSA) is often used as a model protein due to
its several lysine and cysteine residues, which readily react with many sensitizers, including
nickel and 2,4-dinitrobenzenesulfonic acid [70,155]. Moreover, HSA is the most abundant
plasma protein and a common carrier protein in the skin [156,157]. The modification
of a single protein provides a limited number of functional groups and consequently,
a restricted range of potential T cell epitopes [153,158]. To better mimic the extensive
protein diversity encountered during skin sensitization, the modification of a well-defined
mix of model proteins (e.g., skin) may improve in vitro epitope formation [159]. Each
haptenated model protein or peptide should also be tested without chemical modification to
determine background T cell reactivity. Successful protein modifications can be determined
analytically, e.g., by mass spectrometry.

The direct addition of the chemicals to the cell culture medium is a straightforward
approach to induce T cell responses but requires careful controls for toxicity and cell
functions (see Section 4.2). For chemicals that form T cell epitopes via complex formation,
such a direct application is essential to maintain the reaction equilibrium.

As an additional approach, the encapsulation within nanomaterials potentially of-
fers an improved epitope formation for insoluble chemicals by maintaining availability,
dispersibility and stability in aqueous solutions. Nanomaterials may be taken up by the
APC and deliver chemicals for intracellular protein modification. This approach potentially
boosts T cell activation, further preventing chemical aggregation and protecting against
metabolic or oxidative degradation. It also enables the controlled release of haptens over
time, thus mimicking in vivo conditions [160–162]. As the use of nanomaterials is already
a dynamic field in drug delivery research, an adaptation to the assessment of chemical
sensitizers in T cell tests seems promising.

4.2. Determination of Suitable In Vitro Assay Conditions

For each chemical and epitope generation approach, suitable chemical concentration
ranges should be determined by performing a concentration-dependent stimulation to
assess assay interferences and potential toxic effects.

Autofluorescence, which is an inherent property of several chemicals, can compli-
cate the detection of fluorescence-based parameters. To address this issue, it is possible
to either select autofluorescence-free flow cytometry channels or to employ alternative
detection methods, such as cytometry by time-of-flight (CyTOF) or through [3H]-thymidine
incorporation. Moreover, chemical binding to the cell membrane can interfere with the
binding of viability stains or antibodies, thereby affecting flow cytometry results (unpub-
lished own observation) [163,164]. However, assay interferences due to reduced antibody
binding are unlikely to occur when modified APCs or proteins are used as the bases of
epitope formation.

Monitoring cell viability and functionality is essential for the accuracy and reliability
of T cell assays. Multiparameter flow cytometry is widely used for this purpose, as it allows
for the discrimination between viable, apoptotic, and necrotic cells across different cell types
and subpopulations [165]. Depending on the kind of epitope formation approach, monitor-
ing the functionality of the T cells and/or the APCs, often a more sensitive parameter than
cell viability, is necessary. Proper cell function can be assessed by concurrent incubation of
a positive control with the chemical concentrations of interest. The positive control should
trigger widespread activation in a processing-independent manner to determine if T cell
function is affected. A decrease in control-mediated T cell activation in response to increas-
ing chemical concentrations will indicate functional defects. For this purpose, polyclonal
stimulation controls, such as the superantigen staphylococcal enterotoxin B (SEB), have
been employed recently in AIM assays [51,52]. It is also imperative to monitor the viability
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and function of APCs, particularly with regard to the processing-dependent formation of
epitopes. Co-exposure to a universal, processing-dependent antigen may help to evaluate
APCs’ function (Seifert et al., in preparation). Of note, a preserved APC function during the
initial hours of antigen incubation can be sufficiently effective to generate chemical-induced
epitopes and specific T cell activation. In contrast, chemicals that act as pre- or pro-haptens
may require functional APCs for extended periods.

If solvents like dimethyl sulfoxide (DMSO) are used, their effects on cell viability
and function should be carefully monitored. To exclude solvent-related effects, a con-
sistent concentration of the solvent should be maintained throughout the experimental
protocol [166,167].

The tolerable concentration of a chemical in the assay can differ depending on the
incubation time and the type of cells used. For example, PBMCs in AIM assays may
tolerate higher chemical concentrations compared to PBMCs in proliferation assays, due
to the shorter experimental time. Careful adjustment of all the described parameters is
essential to ensure that assay conditions accurately reflect biological responses. Accordingly,
the concentration selected for the T cell assay should be the highest non-toxic level, for
example preserving 75–80% of the signal detected in the assay readout. Subsequently, lower
concentrations are expected to have no toxic effects. These adjustments will guarantee the
reliability and reproducibility of assays while minimizing potential confounding effects on
T cell function and assay outcomes.

4.3. Confirmation of Chemical-Specific T Cell Responses

Once a signal is obtained from a T cell test, it should be verified to distinguish be-
tween true TCR-mediated responses and bystander activation. For instance, higher nickel
concentrations were previously interpreted as nonspecific mitogenic effects [168,169]. How-
ever, AIM assay data confirmed that nickel-specific T cell responses are induced via the
interaction of Ni2+ ions with certain features of the TCR repertoire [19,51].

In most assays, the confirmation of T cell signals has traditionally relied on the gen-
eration of clones or lines from activated cells, followed by restimulation with the original
antigen. Since all T cell clones originate from a single T cell, they share the same TCR
sequence and antigen specificity. If these clones react positively upon re-exposure to
the original antigen, it confirms specific TCR involvement. These clones can be further
characterized for research purposes through cytokine and chemokine analysis or HLA
typing. In addition, this method allows for the assessment of potential cross-reactivities by
demonstrating positive responses to non-original but related antigens [40,51]. However,
the experimental protocol for generating clones is labor-intensive and time-consuming, in-
volving several steps such as culture with feeder cells, expansion, and splitting if necessary.
Furthermore, clone restimulation requires autologous APCs, like CD3-depleted PBMCs or
Epstein–Barr virus (EBV)-transformed B cells. This can be challenging due to the limited
availability of blood samples or the biosafety level 2 requirements, respectively [40,121,139].

To verify MHC restrictions, MHC-blocking antibodies or isotype controls can be
employed. These antibodies prevent T cell activation by targeting specific MHC molecules,
whether class II (HLA-DR, -DQ or DP) or class I (HLA-A, -B and -C) [40,51,52,170]. This
approach is most effective with T cell clones or lines, because blocking antibodies may not
be completely effective, particularly due to differences in HLA alleles. As a result, small
signals, such as those frequently obtained in assays using bulk PBMCs, may be less reliably
controlled by MHC blocking [40,51,52].

Distinctive TCR repertoire features or CDR3 motifs can also serve as indicators of
chemical specificity in activated T cells. For example, in nickel-specific T cells, an over-
representation of the TRAV9-2 gene segments (TAV9-2) and histidine in the CDR3 region
indicates TCR-mediated activation [19]. Similar results have been observed for cobalt and
palladium and the experimental allergen TNBS, but these features remain to be determined
for other chemicals [51,52].
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Lastly, differences in cytokine production, phenotypes, proliferation, or frequencies
of specific T cells between allergic and non-allergic individuals can indicate specific T
cell activation. Increased signals in allergic individuals also demonstrate that the in vitro
test accurately reflects in vivo immune responses, as has been shown for nickel or p-
phenylenediamine (PPD) [19,171].

4.4. T Cell Test as Diagnostic Tool

The gold standard for diagnosing ACD in clinical practice is the patch test which,
despite its widespread use, has several limitations. The patch test is an epicutaneous
provocation test in which the allergic skin responses of a patient to small amounts of
potential allergens on the back are evaluated at repeated time points. One difficulty is
that patients with active skin conditions may be unable to undergo testing. In addition,
there is a lack of test preparations for less common allergens, which are not included in the
predefined patch test panel [172,173]. Furthermore, some allergens may not penetrate the
skin efficiently. This phenomenon has been observed in studies examining the reactivity of
palladium, a metal allergen, and in investigations of tattoo ink reactions [174,175].

Blood-based in vitro T cell tests, particularly LPT and AIM assays, provide several
advantages over the current diagnostic standard [99,176]. They eliminate the discomfort
associated with patch testing and reduce the need for multiple visits in the clinic. Particu-
larly, AIM assays offer short processing times, which enables the evaluation of the allergic
state within ~48 h after blood sampling. Additionally, in vitro readouts provide a less
subjective result compared to patch tests readings and a wider range of potential allergens
beyond those applicable in patch test preparations can be tested. Since in vitro tests do
not rely on skin penetration, systemic reactions, like adverse drug reactions or implant
failure due to allergic reactions, may be more readily detectable with a blood-based assay.
Documented half-lives for antigen-specific memory T cells, as seen with vaccinations or
infections, and general clonal persistence in longitudinal studies indicate that increased
T cell frequencies can be detected over time [42,177–179]. In addition, acute eczema and
the related ongoing T cell responses may be more clearly identified and linked to the
causative allergen. For example, patients who recently underwent patch tests exhibited a
marked increase in nickel-specific CD154+CD4+ memory T cells that were also frequently
CLA-positive, likely associated with active skin eczema, compared to patients tested in
the distant past [19,180]. Thus, in vitro T cell tests would offer an accurate, comprehensive,
and more patient-friendly diagnosis of contact allergies. In addition, improved allergy
diagnosis can also provide data to further improve regulatory risk assessment.

Still, current challenges limit the replacement of patch tests by in vitro tests, which
are not yet accepted as diagnostic tools [181]. One key issue is how well blood reflects
the immune status of the skin, given that some T cells circulate between the two compart-
ments while others remain resident [43,182]. Other limitations include the need to better
understand and optimize the in vitro epitope generation and the selection of appropriate
concentrations for each chemical (see Sections 4.1 and 4.2). Particularly, the CD154- and
CD137-based AIM assays for antigen-specific CD4+ and CD8+ T cell detection have poten-
tial for further development as a diagnostic tool [19,125,140]. However, studies comparing
current clinical diagnostic methods, including patch testing, medical history, and relevance
assessment, with T cell test results are needed.

In general, positive results from diagnostic tests indicate sensitization, whereas the
actual manifestation of allergic symptoms, referred to as in vivo relevance, may vary. Con-
sequently, a positive patch test or induced T cell activation may not always accurately reflect
in vivo conditions. In vitro, excessively high chemical concentrations may lead to extended
T cell activation that may not reflect real-life scenarios, as described for palladium [51,174].
Therefore, determining the range of local in vivo concentrations of chemicals in the skin
and/or draining lymph nodes, known as exposure assessment in risk assessment, would
be crucial to interpret T cell test results. This topic, however, lies beyond the scope of
this review.
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5. Remaining Challenges and Future Directions

The regulatory implementation of predictive T cell tests for sensitizing chemicals
requires a strategic approach that overcomes several challenges. Ideally, chemical-specific
T cells will be detected using PBMCs from blood donations and thus likely non-allergic
individuals, which requires clarification of ethical issues. The number of required blood
samples that is needed to cover both intra- and inter-donor variations, arising from, e.g.,
sampling effects, differences in TCR repertoires, HLA haplotypes, or immune status and
age, still needs to be determined. If rarer alleles are involved, a test with a limited number
of donors will not reliably detect T cell responses associated with specific HLA haplo-
types. While no HLA associations have been identified for contact allergies, certain drug
hypersensitivities are linked to specific HLA haplotypes [47].

Another relevant question is whether to interrogate the naïve or memory T cell pool.
The naïve T cell pool is more diverse, but the memory pool may still contain a sufficiently
extensive TCR repertoire to detect chemical-specific T cells [19,26,45]. Memory T cells are
easier to handle, as they do not require priming. They have already been preselected for
antigen reactivity, which means they potentially comprise a higher proportion of responsive
TCRs. Pre-existing memory T cells may even be recruited during chemical sensitization
in vivo, as shown analogously for memory B cells [183]. However, it is difficult to trace
their specific involvement because TCRs do not undergo somatic hypermutation like B
cells. Moreover, memory T cells have already undergone differentiation and may not fully
translate innate signals from chemical-treated APCs into phenotypic changes as effectively
as naïve T cells when used in priming assays.

The assessment of T cell cross-reactivity to predict potential cross-allergies is a major
unmet regulatory need. Currently, the most commonly used method involves the genera-
tion, expansion, and restimulation of chemical-specific T cell clones or lines, which is highly
labor-intensive. In silico methods are not yet capable of predicting TCR reactivity [184].
Recently, bulk high-throughput TCR sequencing has emerged as a promising solution to
assess cross-reactivity among activated expanded memory T cell clonotypes identified by
the AIM assay. Cross-reactivity must be analyzed within the T cell pool from the same
individual, as TCR repertoires are unique to each person. The assessment of the β-chain is
sufficient to identify cross-reactive clonotypes, but additional α-chain analysis may reveal
unique binding sites [19,51].

A T cell assay could offer valuable insights in a tiered approach for hazard identi-
fication, particularly in the assessment of chemicals that show discrepancies or unclear
results in current KE1-3 NAM, LLNA, and human data. However, a negative T cell test
result remains inconclusive until more experience is gained with known skin sensitizing
chemicals. In this context, in vitro T cell assays may not always provide sufficient pre-
dictions of human clinical outcomes but rather complement existing approaches. T cell
tests alone may underestimate severe adverse reactions, if they do not effectively mimic
in vivo conditions for antigen presentation. This emphasizes the need for more compre-
hensive and integrated approaches for safety assessment beyond in vitro T cells tests alone.
As a final objective, the practical application of in vitro T cell assays within regulatory
frameworks would be highly beneficial. Currently, the state of T cell tests for regulatory
purposes could be assigned a regulatory readiness level (RLL) of 2 (mid research stage),
as reviewed and outlined by Haase et al. [185] The scientific relevance should be further
illustrated by case studies. Standardization and validation of these assays must follow a
structured pathway to ensure their acceptance and implementation. First, internal valida-
tion must be achieved with a clear protocol (SOP; standard operating procedure) with a
well-defined endpoint and applicability domain [32,185]. This preliminary process also
includes the validation of the accuracy and reproducibility of the assay. Next, large-scale
inter-laboratory validation studies should be conducted to further confirm the transferabil-
ity, reproducibility, and reliability of the assays. In these trials, participating laboratories
will adhere to the established protocol while conducting independent assays with their
own setups, to assess the effectiveness of the assays across diverse environments. To the
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best of our knowledge, there is currently no established standardization or inter-laboratory
collaboration specific to a regulatory T cell test. However, upon successful completion
and data analysis to determine accuracy, predictive capacity, applicability domain, and
performance standards of an assay under these settings, a final report can be submitted to
a recognized validation organism, such as the European Union Reference Laboratory for
Alternatives to Animal Testing (EURL ECVAM), which will evaluate whether the method
meets the necessary criteria for formal validation. After successful validation and potential
approval, the assays can be proposed for inclusion in the OECD test guidelines, facilitating
their acceptance in regulatory frameworks throughout the EU and other OECD member
countries [186,187]. Nevertheless, since not all NAMs can be prioritized for inclusion in
the OECD test guidelines, a potential alternative which is currently in evaluation is the
establishment of a qualification system. This system is assessed by experts to ensure that
NAMs are used effectively in suitable contexts and to help optimize them for regulatory
applications [185]. Besides, continuous monitoring of the assay protocol is essential to
maintain ongoing effectiveness and relevance. Looking ahead, it will be important also
to assess respiratory sensitizers and drugs, including biologicals [85,119]. Further, NAMs
should aim to replace or reduce the use of animal-derived products, such as bovine serum
or animal-derived antibodies, with several options already available [188,189].

An important emerging field comprises efforts towards a precise assessment of the
potency of skin sensitizers, i.e., the dose per cm2 of skin associated with a certain degree
of sensitization within a fraction of individuals, optimally measured on a continuous
scale [190–192]. This information is relevant as it should help to define safe levels and
enable risk assessment beyond hazard identification. Potency data are derived from dose-
response curves (hazard characterization). A combination of methods from the different
KEs in the skin sensitization AOP is likely needed to obtain reliable values. Integrating
findings from various testing methods, such as T cell assays, could lead to better-defined
applicability domains for chemicals, ultimately enhancing regulatory risk assessment. It is
still unknown to which extent immunological responses, which may include tolerance and
threshold mechanisms, follow conventional dose-response curves [193,194]. Concentration-
dependent T cell activation has been shown for metal allergens binding via complex
formation [19,51]. However, how and whether frequencies of in vitro reactive T cells can
be translated into potency data is still uncertain and further experience with additional
chemicals is needed [26,31,32].

6. Conclusions

Overall, T cell assays remain demanding experimental methods due to the intricacies
of chemical-induced epitope generation, combined with the need to identify specific T
cells among numerous irrelevant bystanders. Recently, AIM assays have been adapted
to investigate skin sensitizers [19,51,52]. Particularly, CD154-based AIM assays are fast,
highly sensitive, comprehensive, and directly quantitative methods for antigen-specific
CD4+ T cell responses, supporting an efficient optimization of experimental conditions
without prior knowledge of epitopes or cytokine secretion patterns. When combined with
bulk TCR high-throughput sequencing, AIM assays can assess T cell cross-reactivity more
efficiently than restimulation of specific T cell clones or lines [51].

The in vitro T cell tests presented here highlight the advantages and potential of NAMs
by being directly relevant to human conditions, offering ethical benefits, and providing
new insights not available from animal models. However, more resources are needed
to test more chemicals and facilitate regulatory implementation. While not all chemicals
or substances may require T cell testing, bridging the T cell-related gap in NAM-based
sensitizing chemical hazard identification could significantly complement and enhance
regulatory frameworks.
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