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Abstract: Skin sensitization is a significant concern for chemical safety assessments. Traditional
animal assays often fail to predict human responses accurately, and ethical constraints limit the
collection of human data, necessitating a need for reliable in silico models of skin sensitization
prediction. This study introduces HuSSPred, an in silico tool based on the Human Predictive Patch
Test (HPPT). HuSSPred aims to enhance the reliability of predicting human skin sensitization effects
for chemical agents to support their regulatory assessment. We have curated an extensive HPPT
database and performed chemical space analysis and grouping. Binary and multiclass QSAR models
were developed with Bayesian hyperparameter optimization. Model performance was evaluated
via five-fold cross-validation. We performed model validation with reference data from the Defined
Approaches for Skin Sensitization (DASS) app. HuSSPred models demonstrated strong predictive
performance with CCR ranging from 55 to 88%, sensitivity between 48 and 89%, and specificity
between 37 and 92%. The positive predictive value (PPV) ranged from 84 to 97%, versus negative
predictive value (NPV) from 22 to 65%, and coverage was between 75 and 93%. Our models exhibited
comparable or improved performance compared to existing tools, and the external validation showed
the high accuracy and sensitivity of the developed models. HuSSPred provides a reliable, open-access,
and ethical alternative to traditional testing for skin sensitization. Its high accuracy and reasonable
coverage make it a valuable resource for regulatory assessments, aligning with the 3Rs principles. The
publicly accessible HuSSPred web tool offers a user-friendly interface for predicting skin sensitization
based on chemical structure.

Keywords: skin sensitization; computational toxicology; QSAR; cheminformatics; NAMs

1. Introduction

Skin sensitization testing is employed to determine the potential for a substance to
cause allergic contact dermatitis in susceptible individuals [1]. United States and interna-
tional regulatory authorities require or recommend that chemical manufacturers conduct
tests that assess skin sensitization hazards [2]. The most common tests are the human
repeat insult patch test, human maximization test, murine local lymph node assay (OECD
TG 429 [3]), guinea pig maximization test (OECD TG 406 [4]), and Buehler test (OECD
TG 406 [4]), although several non-animal tests now exist (OECD TG 442C; OECD TG 442D;
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OECD TG 442E; OECD TG 497) [5–8]. Despite the widespread use of animal tests, it has been
shown that animal-based assay outcomes do not always equate with human responses [9]
and that animal models are less reproducible than other alternative methods [10].

Human data provide the most accurate assessment of sensitization potential, but
ethical considerations preclude the intentional induction of sensitization in human subjects,
resulting in limited availability of such data. Despite this sparsity, the human repeat insult
patch test (HRIPT) and the human maximization test (HMT) provide sufficient information
on the potential of substances to cause allergic contact dermatitis. These assays include
results detailing the dose per skin area (DSA) causing induction of sensitization, the number
of individuals sensitized, and other parameters reflecting the sensitization potency from
test substances. Reliable in silico models leveraging human assay data for skin sensitization
predictions could support improved regulatory assessments.

Computational methods have become increasingly vital in toxicology in light of the
three Rs (reduce, refine, and replace) of animal testing. In silico approaches are cost-effective,
safe, and ethical alternatives to traditional animal and human testing. One computational
approach explored here is machine learning (ML), in which algorithms enable systems to
learn and improve from experience without being explicitly programmed [11]. Various
computational models for skin sensitization already exist (Table 1).

Table 1. Overview of existing skin sensitization prediction software.

Title Computational Approach Species/Assay Access

StopTox [12] QSAR Mice/LLNA Free
PredSkin [13] QSAR Mice/LLNA Free

CASE Ultra [14] Structural alerts Mice/LLNA Commercial

Derex Nexus [15,16] Structural alerts Expert
system Mice/LLNA Commercial

OECD QSAR Toolbox [17] QSAR and read-across - * Free
VEGA [18] Read-across - Free

ToxTree [19] Structural alerts - Free

TOPKAT [15] QSAR Rat & Other/
Multiple Commercial

* Cells without input indicate that this information is not publicly available or multiple models are encompassed
in the tool, making a single answer not applicable.

The purpose of this work is to present HuSSPred, an in silico human predictive patch
test (HPPT)-based tool for Human Skin Sensitization Prediction from the human repeat
insult patch test (HRIPT) and the human maximization test (HMT) (Figure 1). This study
continues the series of our previous works on skin sensitization [20–22], extending the strat-
egy that we developed earlier [23] in modeling human data. Using an extensively curated
HPPT database, we developed QSAR models using random forest (RF), LightGBM, and sup-
port vector machine (SVM) algorithms with Bayesian hyperparameter optimization. Our
models exhibit comparable or improved performance versus existing tools. We conclude
that HuSSPred is one of the first tools built strictly with human data and validated with skin
sensitization-defined approaches (DA) [24,25]. This tool provides a reliable, cost-effective,
and ethical alternative to traditional testing for skin sensitization. Its accuracy and reason-
able coverage make it a valuable resource for regulatory assessments, aligning with the
three Rs principles. Furthermore, the HuSSPred web tool (https://husspred.mml.unc.edu/,
accessed on 18 October 2024) is publicly accessible and offers a user-friendly interface for
predicting skin sensitization based on chemical structure.

https://husspred.mml.unc.edu/
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Figure 1. General study design of HuSSPred. Experimental data were collected from the HPPT
test results and combined with the HPPT GHS Classifications database. All entries were carefully
curated following best practices in the field. Molecular descriptors were calculated and selected
to build skin sensitization QSAR models. SHAP analysis was performed to enhance the model’s
interpretability. The best-performing QSAR models were deployed as a web tool, HuSSPred, available
at https://husspred.mml.unc.edu/, accessed on 18 October 2024.

2. Materials and Methods
2.1. Data Collection and Curation

We collected chemical data from the NICEATM human predictive patch test (HPPT) [26,27]
and the HPPT Classifications according to the Globally Harmonized System of Classifica-
tion and Labelling of Chemicals (GHS) [28]. The HPPT database contains 2277 entries for
1366 unique chemicals. Using Chemical Abstracts Service Registry Number (CASRN), the
HPPT data were harmonized with the Dose per Skin Area (DSA05) classifications database,
resulting in 2014 entries. The data sets were then biologically and chemically curated
according to the best practices in the field [29–31]. As for chemical curation, we removed
mixtures, inorganics, and large organic compounds, removed counterions, cleaned and
neutralized salts, and normalized chemotypes using the ChemAxon Standardizer soft-
ware [32]. We followed one of the two appropriate procedures for handling duplicates:
(i) if the outcomes of all duplicates were concordant (from a hazard perspective), one
record was kept with the respective outcome; (ii) if any outcomes disagreed, they were
removed. The HPPT data contained four different weight-of-evidence approaches with skin
sensitization outcomes: the median location-like parameter (MLLP), median sensitization
potency (MSPE), weight of evidence (WoE), and overall weight of evidence (WES). Most
curation steps were performed through Konstanz Information Miner (KNIME) [33–35].

2.1.1. Binary Data Curation

After combining the two data sets, we kept only binary labeled outcomes (sensitizers
(1) and non-sensitizers (NCs)). Entries with missing outcomes were removed. Then, the
dataset-specific curation began for each weight-of-evidence approach, through which we
removed outcome entries with the label “unavailable” for MLLP, MSPE, WoE, and WES;
this process was performed separately, resulting in 4 independent datasets. Compounds
for which the SMILES could not be retrieved were also removed. We labeled all sensitizers
as Class 1 and non-sensitizers as Class 0. The resulting data sets were exported as SD files
into Python for model development (available in Supplemental File S1).

https://husspred.mml.unc.edu/
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2.1.2. Multiclass Data Curation

The collected data contained multiclass GHS classifications for skin sensitization
potency. The outcome labels were mapped to numbers for model building, where NC
(non-sensitizer), 1B (weak sensitizer), and 1A (strong sensitizer) were mapped to classes
0, 1, and 2, respectively. We removed compounds with missing outcomes and SMILES
from each weight-of-evidence approach. The four multiclass data sets are available in
Supplemental File S1.

2.1.3. Continuous Data Curation

The data set entries also included continuous values for the dose per skin area (DSA),
dose per skin area for potential sensitization of 5% of the tested population (DSA05), and
dose per skin area for potential sensitization of at least 1 individual (DSA01+). We excluded
compounds with missing outcomes, applied our standard chemical curation workflow,
and calculated the median for compounds with multiple entries. We applied a logarithmic
transformation to the DSA values.

2.2. Classification QSAR Modeling
2.2.1. Calculation of Molecular Fingerprints

The RDKit package [36] was used to calculate extended-connectivity fingerprints
with a diameter of 4 (ECFP4) and 2048 bits [37]. Molecular ACCess System (MACCS,
version 3) Fingerprints [36], Mordred [38], and Saagar descriptors [39] were also used for
model development.

2.2.2. Model Development and Performance Assessment

Models were developed with either RF, LightGBM, or SVM algorithms. QSAR models
were developed and validated according to the best practices in cheminformatics [40]. In the
RF algorithm, trees were decorrelated via bootstrapping with replacement; in LightGBM, a
gradient-boosting algorithm optimizes model performance through a leaf-wise tree con-
struction approach. Models using LightGBM [41] and RF [42] were implemented through
Scikit-learn, v.1.4.0 [43]. The SVM algorithm finds the optimal hyperplane that maximizes
the margin between distinct classes in a multidimensional feature space, thereby enabling
robust data point classification. These three ML algorithms were also utilized in similar
studies, and they are dominant in the field based on a balance between computational
efficiency, predictivity, and interpretability [44].

For binarized models (non-sensitizers vs. sensitizers), the following statistical metrics
were used to assess the performance of the classification models (Equations (1)–(5)):

Sensitivity (SE):

SE =
NTP

NTP + NFN
, (1)

Specificity (SP):

SP =
NTN

NTN + NFP
, (2)

Correct classification rate (CCR):

CCR =
SE + SP

2
, (3)

Positive predictive value (PPV):

PPV =
NTP

NTP + NFP
, (4)
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Negative predictive value (NPV):

NPV =
NTN

NTN + NFN
(5)

N represents the number of compounds, NTP and NTN represent the number of true
positives and negatives, respectively, and NFP and NFN represent the number of false
positives and false negatives, respectively.

For binary classification models, compounds labeled as skin sensitizers were classified
as positive (Class 1), and non-sensitizing compounds were classified as negative (Class 0).

For multiclass classification, compounds are labeled as non-sensitizers (Class 0), weak
sensitizers (Class 1), or strong sensitizers (Class 2). The one-vs.-rest approach was used
when calculating metrics for multiclass models. Metrics (such as SP and NPV) were
computed for each class separately and then averaged to obtain an overall score. Classes
were weighted equally (macro-average) during calculations for the average

2.2.3. Hyperparameter Optimization

Since the performance of a model can be closely linked to the hyperparameters used
during development, the models were optimized using a Bayesian approach implemented
through Optuna [45]. Optuna uses a framework to identify ideal hyperparameters for a
given set of descriptors and ML algorithms. The best hyper-parameters were then used
to fine-tune the models using the entire training set of compounds and tested during the
5-fold cross-validation step.

2.2.4. Dimensionality Reduction and Feature Selection

Dimensionality reduction was performed by applying a low-variance filter with a
threshold of 0.01. Descriptors with low variance (threshold of 0.01) were filtered out to
exclude non-informative data using Scikit-learn [43]. Subsequently, supervised feature
selection was conducted using recursive feature elimination (RFE) to identify the most
relevant molecular descriptors, thereby improving model performance and interpretability
while reducing overfitting and training time [46].

2.2.5. Normalization of Continuous Descriptors

We normalized the Mordred descriptors using min–max scaling to ensure consistent
scale and improve model performance. The normalization was implemented via the
“MinMaxScaler” class from the Scikit-Learn library [43], which scales each feature to a
range [0–1]. The scaling process adjusts each descriptor’s value to be within the specified
range, preserving the relationships among features while enhancing model training stability.
Scaling was performed within each fold to prevent data leakage, ensuring that the scaling
parameters were derived solely from the training data [47].

2.2.6. Data Set Split and 5-Fold Cross-Validation

Five-fold external cross-validation was used [48]. For this, the data set was split
into five equal parts, wherein one subset (20%) is used as the test set, and the remaining
compounds (80%) compose the training set. This procedure was repeated five times, and
each subset was used as the validation set exactly once. Models were built using the training
set only, and compounds in the test set had to not be present in the training set. Alternative
validation methods, such as 10-fold cross-validation and leave-one-out cross-validation,
are available. We selected 5-fold cross-validation due to its established validity within the
field, effectively balancing methodological rigor with computational efficiency [44].

2.2.7. Threshold Moving

We tried the threshold-moving calibration of probability estimates to increase predic-
tion confidence without losing data, i.e., without needing to balance the data. Binary QSAR
models’ probability thresholds were adjusted using this approach, which was incorporated
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into Python [43,49]. Threshold moving was used to select the binary classification probabil-
ity threshold for the model that produced the highest geometric mean values on these test
sets. The geometric mean was chosen since it better assesses the performance of models
when predicting imbalanced data [49–52]. Radar charts to represent model calibration were
constructed using the Plotly package [53].

2.2.8. Applicability Domain (AD)

Our group has previously shown the importance of the applicability domain of models
when drawing conclusions from predictions derived from QSAR models. The AD must
be stated for the given chemical space of predictive models to identify “reliable” and
“unreliable” regions for predictions [49,54]. Thus, users should only consider the model’s
predictions reliable if their predicted compounds fall within the model’s AD.

The “Applicability Domain” meta-node was used to assess the AD of our models. The
KNIME meta-node uses Euclidean distances to measure the chemical similarity between a
compound from the test set and its nearest neighbor in the training set. The prediction may
be unreliable if the distance of a compound not present in the test set to its nearest neighbor
is higher than an arbitrary parameter (Z = 0.5) that controls the significance level [55].

2.2.9. Model Interpretation

Model interpretation was facilitated using machine learning interpretable packages
such as Shapley additive explanations (SHAP) [56,57]. SHAP can be used to identify key
features that impact model performance, improving the transparency and understanding
of ML models [58].

Contribution maps [59,60] were generated from QSAR models to visualize atoms and
fragments contributing to skin sensitization potential. The contribution maps used an
approach in which an atom’s “weight” was considered a predicted probability difference
obtained when bits in the fingerprints corresponding to the atom were removed. Then, the
normalized weights were used to color atoms in a topography-like map in which green
indicates the contribution to toxicity (i.e., predicted sensitization probability decreases
when bits are removed) and red indicates a negative contribution to toxicity (i.e., predicted
sensitization probability increases when bits are removed) [60].

2.2.10. Model Implementation—HuSSPred Web Tool

The QSAR models developed in this study were implemented as a web application,
HuSSPred, which runs on an Ubuntu server. The HuSSPred application is encoded using
Flask [61], uWSGI [62], Nginx [63], Python 3.11.4 [64], RDKit [36], Scikit-learn [43], and
JavaScript [65]. HuSSPred also includes the JSME molecule editor [66], written in JavaScript
and supported by most popular web browsers. The server takes input chemicals and
produces skin sensitization predictions based on chemical structure for the user.

2.3. Chemical Space Analysis and Grouping

The MoViz pipeline [67] was employed for chemical space analysis and grouping.
The NICEATM team developed the pipeline, which facilitates identifying and organizing
structurally similar compounds. Morgan fingerprints with a radius of 2 and 2048 bits were
used for molecular descriptor calculation during the analysis. After this, low-variance de-
scriptors were filtered out, and variable selection was performed to enhance the robustness
of the analysis. Subsequently, uniform manifold approximation and projection (UMAP) [68]
was utilized for dimensionality reduction, enabling the visualization of complex chemical
spaces in a simplified manner. UMAP was chosen over linear methods like principal
component analysis (PCA) because it is a nonlinear manifold learning technique that can
better preserve both local and global structures of high-dimensional data, and it also in-
volves no computational restrictions on embedding dimensions, which is advantageous
for handling the high-dimensionality molecular descriptors used [68,69]. The MoViz [67]
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pipeline allowed for the effective grouping of compounds, supporting the identification of
structural similarities and potential activity cliffs.

2.4. Activity Cliff Analysis—Molecular Roughness Calculation

Mordred descriptors were normalized to compute a pairwise distance matrix based
on Euclidean distance. The roughness index (ROGI) score was calculated to quantify
the ruggedness of the activity landscape [70]. For visualization, we projected the high-
dimensional data onto a 2D plane using multidimensional scaling (MDS). The 3D plot
was generated by interpolating the activity values across the projected 2D coordinates and
plotting the resulting surface. Additionally, a 2D contour plot was created to highlight
the activity distribution, utilizing interpolation to create a smooth heatmap overlaying
the 2D MDS projection. These visualizations facilitated the identification of activity cliffs,
providing insights into structure–activity relationships within the continuous data set.
The code for these plots was adapted from https://github.com/coleygroup/rogi-results,
accessed on 18 October 2024 [70].

2.5. Case Study: Validation Using Defined Approaches

Our models were validated using compound results from the NIEHS Defined Ap-
proaches for Skin Sensitization Web app (DASS app), representing testing strategies that
are accepted by international regulatory authorities. The original DASS data set contained
196 compounds. These compounds cover a diverse range of chemical structures and sensi-
tization potencies and have been employed in previous studies to assess the performance
of the novel skin sensitization-defined approaches, as recognized by the OECD TG 497 and
accepted in 2021 [5]. The data extracted from the DASS app are also available in the Na-
tional Toxicology Program (NTP) Integrated Chemical Environment (ICE), a highly curated
repository of toxicological data for various endpoints [71,72]. We removed compounds
with inconclusive outcomes and compounds in our model’s training set. Then, we used
an automated QSAR-ready workflow to standardize and curate chemical structures [73].
For binary models, we performed validation using (i) the Defined Approaches Integrated
Testing Strategy (DA ITS) Call, (ii) 2o3 Defined Approaches Call, and (iii) Basketter Human
data Call as references [74,75]. After the curation protocols, the DA ITS call had 138 com-
pounds (38 NC, 100 sensitizers), the 2o3 Call had 142 compounds (61 NC, 81 sensitizers),
and the Basketter data set had 63 compounds (21 NC, 42 sensitizers). A consensus heatmap
was created using the Seaborn [76] package for the 45 compounds that had predictions for
all three validation data sets for comparison.

The “Basketter Potency” and “HPPT Reference Potency” columns were used to vali-
date multiclass models. After the removal of training, unclassified, and automated curation,
the data sets comprised 81 compounds (13 NC, 27 weak sensitizers, and 14 strong sensitiz-
ers) and 14 compounds (2 NCs, 10 weak sensitizers, and 2 strong sensitizers), respectively.

The Y-randomization test was also used per OECD Guidance Document on the vali-
dation of QSAR models [77] to investigate whether the reported accuracy of our models
was due to chance correlation. The results of ten rounds of Y-randomization are reported in
Table S3.

3. Results and Discussion
3.1. Data Sets Summary

Here, we have collected and curated the HPPT and the HPPT Classifications database
into four independent binary classification data sets for modeling and comparison, four
multiclass data sets, and three continuous data sets. Table 2 demonstrates the number
of compounds in each data set used for binary classification model development. Data
curation is essential for the development of QSAR models [29,40]. During curation, we
found various inconsistencies in which the same compound would possess the conflicting
ranking of both a sensitizer and a non-sensitizer; these entries were removed. We also
identified multiple entries of the same compound with concordant outcomes, and these

https://github.com/coleygroup/rogi-results
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were merged into a single entry. We emphasize the need for rigorous biological curation, as
QSAR models developed with duplicate entries will exhibit under-optimistic performance
if the outcomes are dissimilar or over-optimistic performance if the outcomes are identical.
The number of compounds in the multiclass data set (Table 3) and continuous models
(Table 4) are provided below. We note that there was a class imbalance for the binary and
multiclass data sets; sensitizers were more abundant than non-sensitizers. Weak sensitizers
were roughly three times as abundant for multiclass data as other classes. The majority
class was randomly undersampled in the multiclass models to mitigate this imbalance and
improve model performance.

Table 2. Number of compounds in each binary data set for MSPE, MLLP, WoE, and WES classifications.

Data Set Sensitizers Non-Sensitizers Total

MLLP 154 41 195
MSPE 177 39 216
WoE 177 41 218
WES 132 37 169

MLLP, median location-like parameter; MSPE, median sensitization potency estimate; WoE, individual weight-of-
evidence scores; WES, overall weight-of-evidence scores.

Table 3. Number of compounds in each multiclass data set for MSPE, MLLP, WoE, and WES classifications.

Data Set Strong Sensitizers Weak Sensitizers Non-Sensitizers Total

MLLP 40 118 41 199
MSPE 44 123 39 206
WoE 42 126 41 209
WES 37 87 34 158

MLLP, Median location-like parameter; MSPE, median sensitization potency estimate; WoE, individual weight-of-
evidence scores; WES, overall weight-of-evidence scores.

Table 4. Number of compounds in continuous data sets for DSA, DSA05, and DSA01 classifications.

Data Set Total

DSA 829
DSA05 170
DSA01 104

DSA, dose per skin area; DSA05, dose per skin area for sensitization of 5% of the tested population; DSA01, dose
per skin area for sensitization of at least 1 tested individual.

3.2. Binary Classification QSAR Models

Here, we built 36 binary classification models with different combinations of molecu-
lar fingerprints and ML methods. The RF, LightGBM, and SVM models were built using
Python and validated with 5-fold cross-validation. Table 5 highlights the statistical charac-
teristics of the binary classification models after threshold moving (calibrated). Table S1
highlights the characteristics of the uncalibrated models. Threshold moving was used to
increase prediction confidence without losing data (i.e., we attempted a threshold-moving
calibration of probability estimates without the need to balance the data). Most cross-
validated skin sensitization models showed high-quality predictive accuracy on 5-fold
external cross-validation based on metrics such as CCR, SE, SP, PPV, NPV, and coverage.

Table 5 highlights the best-performing model for each data set. Briefly, the performance
of these four models showed reasonable CCR (74–88%), SE (63–92%), PPV (90–97%), NPV
(41–60%), and AUC (75–92%). The best-performing model, using the WES data set with
ECFP4 and SVM, showed the most promise and was deployed as a web tool. The perfor-
mance of all models in the WES data set was also assessed using the Y-randomization test.
The best-performing WES model, with the ECFP4 and SVM, significantly outperformed
models built with Y-randomization (Table S3).
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Table 5. Calculated metrics for calibrated binary classification QSAR models.

Approach FP ML CCR SE SP PPV NPV AUC Coverage PT

MLLP

ECFP4 RF 0.74 0.84 0.63 0.90 0.50 0.75 83 0.77
ECFP4 SVM 0.71 0.81 0.61 0.89 0.45 0.77 83 0.78
ECFP4 LightGBM 0.62 0.55 0.68 0.88 0.27 0.63 83 0.80

Mordred RF 0.76 0.69 0.83 0.94 0.40 0.80 93 0.78
Mordred SVM 0.62 0.83 0.41 0.85 0.38 0.58 93 0.80
Mordred LightGBM 0.74 0.69 0.78 0.93 0.39 0.74 93 0.82

MSPE

ECFP4 RF 0.72 0.85 0.59 0.90 0.47 0.72 88.9 0.80
ECFP4 SVM 0.68 0.75 0.62 0.90 0.35 0.73 88.9 0.84
ECFP4 LightGBM 0.55 0.60 0.51 0.85 0.22 0.56 88.9 0.82

Mordred RF 0.78 0.74 0.82 0.95 0.41 0.82 94 0.77
Mordred SVM 0.70 0.67 0.72 0.91 0.32 0.74 94 0.85
Mordred LightGBM 0.73 0.67 0.79 0.94 0.35 0.77 94 0.82

WoE

ECFP4 RF 0.74 0.75 0.73 0.92 0.40 0.75 88.5 0.83
ECFP4 SVM 0.72 0.88 0.56 0.90 0.52 0.70 88.5 0.78
ECFP4 LightGBM 0.62 0.49 0.76 0.90 0.25 0.58 88.5 0.81

Mordred RF 0.78 0.79 0.76 0.93 0.46 0.81 92 0.73
Mordred SVM 0.56 0.64 0.49 0.84 0.24 0.53 92 0.81
Mordred LightGBM 0.74 0.72 0.76 0.93 0.39 0.75 92 0.81

WES

ECFP4 RF 0.82 0.89 0.76 0.93 0.65 0.88 90.5 0.75
ECFP4 SVM 0.88 0.83 0.92 0.97 0.60 0.92 90.5 0.84
ECFP4 LightGBM 0.64 0.53 0.76 0.89 0.31 0.60 90.5 0.78

Mordred RF 0.73 0.67 0.78 0.92 0.4 0.79 91 0.77
Mordred SVM 0.6 0.71 0.49 0.83 0.32 0.59 91 0.78
Mordred LightGBM 0.74 0.79 0.68 0.9 0.47 0.74 91 0.74

RF, random forest; ECFP4, extended connectivity fingerprints with diameter 4; LightGBM, light gradient-boosting
machine; MACCS, molecular access systems keys fingerprint; CCR, correct classification rate; SE, sensitivity;
SP, specificity; PPV, positive predictive value; NPV, negative predictive value; coverage, a ratio of the test set
or external set compounds within the applicability domain; PT, probability threshold; statistical results all
obtained after threshold-moving calibration. Statistical results obtained from the default probability thresholds
(uncalibrated) are available in the Supplementary Table S1. Models in bold reflect those with the best performance
in the data set.

3.2.1. Threshold Moving

In the developed RF, SVM, and LightGBM models, a continuous value represents
the probability of a given compound belonging to a specific class (i.e., sensitizer or non-
sensitizer). With the aim of better differentiating between skin sensitization sensitizers and
non-sensitizers, despite the imbalance of classes present in the data, the probability thresh-
old was adjusted. Usually, probabilities less than 0.5 are assigned to the non-sensitizing
class (Class 0), while values greater than or equal to 0.5 are assigned to the sensitizing
class (Class 1). However, when modeling imbalanced data, QSAR models often express
lower probability estimates for the minority class [49]. Thus, we tested various probabil-
ity thresholds ranging from 0 to 1 in order to identify the optimal threshold for model
performance. The threshold-moving approach and calibration significantly improve the
statistical performance of the QSAR models. Figure 2a–d highlights that, for the best mod-
els, the calibrated models outperformed the uncalibrated counterparts or scored similarly,
rarely underperforming models without calibration. Table S1 highlights the uncalibrated
performance for all binary models.
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Figure 2. Radar chart comparing metrics before and after calibration for best-performing models.
CCR, SE, SP, PPV, NPV, and AUC are included. AUC is a threshold-independent metric. The results
for the best-performing (a) MLLP, (b) MSPE, (c) WoE, and (d) WES models. The calibrated models
outperformed the uncalibrated models or scored similarly, rarely underperforming models without
calibration. Generally, a more balanced and symmetrical shape in the radar chart indicates a uniform
performance across the metrics, while pronounced peaks and dips highlight potential strengths and
weaknesses of the models, respectively.

3.2.2. Binary Model Interpretation with SHAP

SHAP values were calculated to interpret the built binary classification ML models.
SHAP calculates the model’s feature importance, and it is accessible in the web tool.
Figure 3a shows the most relevant features, ranked in order of the impact on the model’s
predictions. These features exhibited the highest average absolute SHAP values, suggesting
that they strongly influenced the model’s predictions. Figure 3b demonstrates the bit
images of the highest impact features. Bits 7 and 16 shared similar substructures, indicating
that this substructure is likely important for the model’s predictions. Given the imbalance in
the data set, most high-impact bits showed a higher impact on the prediction of sensitizers.
It appears that bits 9 and 15 had the highest impact on non-sensitizer prediction. Since
a chemical fingerprint of radius 2 was used, many of the substructures highlighted lack
robust evidence of chemical significance. However, comparisons can still be drawn for
some substructures. For instance, bit 4 resembles the sulfonamide moiety, and drugs with
this structural composition have reported common adverse drug reactions such as allergies
and hypersensitivity [78–82]. According to the Adverse Outcome Pathway (AOP) for skin
sensitization by the OECD [83], step 2 of the AOP involves the substance behaving as a
direct-acting electrophile or being converted into a reactive electrophilic metabolite. Given
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the electrophilic nature of the sulfonamide moiety, as discussed in a recent article evaluating
the degradation mechanisms of sulfonamides [84], it is plausible that this structural feature
could interact with nucleophilic sites in proteins, potentially contributing to sensitization
processes, as outlined in the AOP for skin sensitization. Further, bit 1 resembles a 1,2 alkane
diol substructure, and links have been examined between changes in 1,2 alkane diol chain
length and skin sensitization potential [85].
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3.2.3. Case Study: Validation of Binary Models with DASS App Defined Approaches

Using the DASS app reference experimental values, we compared our binary model’s
predictions to the OECD-validated defined approaches for assessing skin sensitization
(Table 6), as well as a literature-based human reference set.

Table 6. Case study validation metrics for binary classification QSAR models.

Reference Column # Compounds
(NCs/Sensitizers) Inside AD ACC * SE * SP * PPV * NPV *

DA ITS call 138 (37/101) 115 61% 88% 34% 75% 54%
2o3 DA call 142 (61/81) 117 62% 88% 28% 61% 64%

Basketter human data 63 (21/42) 48 75% 94% 34% 75% 75%

* Metrics reflect predictions inside the model’s applicability domain.

The model showed comparable performance across all three validation scenarios, with
accuracy ranging from 61 to 75% and SE from 88 to 94%. Notably, the model showed
significant strength in predicting sensitizers (high SE and PPV) compared to non-sensitizers
(low SP and reasonable NPV). Predictions for the Basketter data set showed promise, which
was expected since the Basketter data most closely resemble the model’s training data,
given that it expresses expert judgment based on human testing, while the DA ITS Call and
the 2o3 are based on an in vitro screening of compounds.

Figure S1 highlights the discrepancy between the predictions for each reference, highlight-
ing how the data used for validation can impact the validation metrics. In brief terms, com-
pounds with all reference values concordant across the three data sets (i.e., all three columns
are either “1” or “0”) showed high correct prediction rates, correctly labeling 30 out of 36
(83%) compounds. When the original outcomes of the external values were divergent, such as
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in compounds of index 1, 5, 40, and 44, the model usually predicted the Basketter category
correctly but incorrectly according to the DA ITS and 2o3 Call. Such discrepancies were
anticipated, considering that the model was created using human data, and the Basketter call
is also based on human information, whereas the DA ITS Call and the 2o3 Call are based
primarily on in vitro experiments (DPRA, h-CLAT, and KeratinoSens assays).

3.3. Chemical Space Analysis

The chemical space analysis performed was investigated for each of the best-performing
models. Supervised classification was performed to identify similarities and gaps in the
chemical space. Figure 4a highlights that there is not much overlap between classes (i.e.,
structurally similar compounds but with different outcomes). Despite variable selection,
compounds were still aggregating and clustering due to structural similarities. Here, we
classified compounds that appeared to cluster together to identify the chemical space,
and we found clusters of chlorophenols, sulfanylacetamides, di-amines, and tri-amines to
contain mostly skin sensitizers.
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Figure 4. Supervised classification results. Compounds are represented as points on the X and Y axes.
The chemical grouping of compounds in the data set was performed after using Morgan descriptors
with a radius of 2 and 2048 bits. Low-variance descriptors were filtered, and dimensionality reduction
was performed using SVM. Grouping was performed after the calculating was depicted for each of
the data sets. Each cluster can be identified by different colors in the chart. If the user downloads the
data set and utilizes the pipeline shown in MoViz [67], the option to interact with points in the plot
and visualize the chemical structures is available. Here shown are (a) clustering for the WES data set,
(b) clustering for WES multiclass data, and (c) clustering for the WES data set after random balancing.
Non-sensitizers are in blue, weak sensitizers are in green, and strong sensitizers are in red.



Toxics 2024, 12, 803 13 of 21

A similar process was conducted for the best-performing multiclass data set (Figure 4b,c).
The multiclass also had a highly diverse set of compounds in its chemical space. After
random undersampling, Figure 4c highlights that the model still covers most of the chemical
space. Random undersampling was beneficial in balancing class distribution by reducing
the size of the majority class while mitigating the risk of bias in our ML models. In this
situation, random undersampling yielded a reasonable alternative, as most compounds of
the majority class (weak sensitizers) were structurally similar and in close proximity to one
another (Figure 4b).

3.4. Multiclass Modeling Results

Table 7 demonstrates the metrics for the best-performing multiclass models developed.
The performance of all built multiclass models can be found in Table S1. The WES data
set showed the most promising results: reasonable accuracy (73%), specificity (82%), and
an AUC of 75% with 81% coverage. Compared to the binary models, the multiclass
models surprisingly showed better classification of negatives than positives (high SP and
NPV). One potential explanation is the balancing of the data sets and the relatively small
number of compounds in the data set, which likely contributed to better discrimination
between strong sensitizers and non-sensitizers. The best-performing multiclass model also
performed better than the models built with Y-randomization (Table S3).

Table 7. Calculated metrics for calibrated multiclass QSAR models with undersampling.

Approach * FP ML CCR SE SP PPV NPV AUC Coverage

WES

ECFP4 RF 0.60 0.47 0.74 0.49 0.73 0.69 49
ECFP4 SVM 0.58 0.44 0.72 0.44 0.72 0.66 49
ECFP4 LightGBM 0.56 0.41 0.71 0.42 0.71 0.61 49

Mordred RF 0.73 0.64 0.82 0.64 0.82 0.75 81
Mordred SVM 0.50 0.34 0.67 0.23 0.67 0.48 81
Mordred LightGBM 0.66 0.55 0.77 0.55 0.78 0.69 81

* Metrics for the remaining approaches are available in Table S1.

Case Study: Validation of Multiclass Models with Defined Approaches

The validation performance of the multiclass models was evaluated using human skin
sensitization potency reference values as published by the OECD. Here, we can observe
that the model exhibits an average prediction accuracy of (51%), correctly predicting 30
of the 58 compounds. As the confusion matrix highlights (Figure 5), the multiclass model
showed good distinctions between the non-sensitizers (NCs) and strong sensitizers (1A),
only incorrectly mislabeling one compound as a strong sensitizer. However, as emphasized
in Figure 4, the model struggled to correctly distinguish between weak and non-sensitizers
due to their structural similarity (Figure 4), so most NCs were incorrectly predicted as
weak sensitizers (11 compounds). The non-sensitizing class had the most incorrect labels
(17 out of 21 compounds), likely due to the lack of true negatives during model building and
structural similarity to weak sensitizers. Table S2 contains each compound’s predictions and
the validation predictions using HPPT data. For the external set of HPPT compounds in the
DASS app, 13 of 14 compounds were inside the applicability domain. The model correctly
predicted 9 of the 13 compounds in the HPPT validation set (69%). Overall, when tested
with compounds outside the model’s training set, the multiclass model showed reasonable
promise in predicting human skin sensitization potential, with average class-wise CCR of
63%, SP of 75%, SE of 51%, PPV of 51%, and NPV of 76%.

The validation data set included a diverse array of compounds representing various
chemical classes, such as aldehydes, alcohols, esters, acids, amines, phenols, and hydro-
carbons (Table S2). The original data in the DASS app are also available in the NTP’s
Integrated Chemical Environment (ICE) [72,86]. In the ICE toolbox, the data set is ac-
cessible via the Chemicals quick list as “OECD Defined Approach to Skin Sensitization:
Human” (https://ice.ntp.niehs.nih.gov/ChemicalQuickLists, accessed on 18 October 2024).

https://ice.ntp.niehs.nih.gov/ChemicalQuickLists
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The ICE toolbox Chemical Characterization workflow can also be used to enable a better
understanding of the chemical composition of the data set.
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3.5. Visualization of Continuous Data Structure–Property Landscapes

Visualizing the continuous skin sensitization data provides a qualitative representation
of molecular roughness. Through the 3D and 2D landscapes, activity cliffs can be easily
identified. The data in Figure 6a,b for the DSA data comprised the smoothest landscape
of the three, with a ROGI value of 0.19, followed by DSA05 at 0.29 (Figure 6c,d) and then
DSA01 at 0.31 (Figure 6e,f). In Figure 6, we can observe that all landscape profiles exhibit a
relatively rugged landscape throughout. Further, for the three data sets, we can observe
that very similar molecules lead to drastically different outcomes, suggesting that these
data sets contain activity cliffs.

The continuous models developed for predicting human skin sensitization did not
perform satisfactorily. The box and whisker plots (Figure S2) highlight one of the challenges
in modeling human HPPT data due to the high variability and wide range of results for a
single chemical that, when expanded to the entire data set, introduces noise and inhibits
the model’s ability to predict the dose per skin area for compounds correctly. Notably, for
the three continuous data sets (Figure S2a–c), most compounds have a wide range and
interquartile range (IQR), suggesting that using these compounds for modeling would
introduce ambiguity and significant uncertainties into the model’s predictions. These
results underscore the limitations of using continuous models to capture the underlying
patterns in the human predictive patch test data. We recommend that other groups build
on our curated continuous data and explore alternative modeling approaches to achieve
more reliable predictions.
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3.6. Model Implementation

The most predictive classification model for Human Skin Sensitization Prediction was
implemented in the open-access HuSSPred web application (https://husspred.mml.unc.
edu, accessed on 18 October 2024). The HuSSPred web tool was designed to possess an

https://husspred.mml.unc.edu
https://husspred.mml.unc.edu
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intuitive user interface, where users can draw compounds of interest in the “molecular edi-
tor” box or directly paste a list of SMILES strings to query chemical compounds (Figure 7).
After clicking the “Get Properties” button, the user will be shown the classification outcome
of the compounds (sensitizer or non-sensitizer) using the best classification model. Fur-
ther, the user can opt to include ‘Fragment contribution analysis” and “SHAP descriptor
importance” in the report. All predictions also contain AD estimates and mechanistic inter-
pretation using color-coded maps of fragment contribution. For the fragment-contribution
maps, atoms or fragments promoting positive toxicity are highlighted in green, while those
decreasing toxicity are highlighted in purple. The models developed in this study are
available within the HuSSPred web application https://husspred.mml.unc.edu/, accessed
on 18 October 2024).
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In the development of NAMs to predict a compound’s toxicity and sensitization
potential, it is essential for models to accurately predict potential skin sensitizers, rather
than non-sensitizers, which can reduce animal testing and the waste of resources by
eliminating compounds likely to fail downstream in the development process. Given these
safety and resource management considerations, the high sensitivity of the best-performing
models (63–92%) and high PPV (90–97%) indicate that sensitizers are frequently correctly
labeled. Further, the high PPV and reasonable NPV underscore the model’s potential to
contribute to advancing the three Rs (reduce, refine, and replace). The model’s applicability
to binary contexts is further supported by the high sensitivity (94%) and accuracy (75%)
obtained during the model’s validation with reference human data and other human
biology-based DAs for skin sensitization testing.

While the model performance could be drastically improved by including a more
comprehensive set of true negatives, we emphasize the difficulty of obtaining such, given
the current human skin sensitization testing system. Currently, the Globally Harmonized
System of Classification and Labelling of Chemicals (GHS) [74,87] uses a set of frameworks
for classifying compounds as skin sensitizers [88]. Therefore, the challenge of obtaining a
true negative is commonly caused by not testing substances at a high enough concentration
to trigger sensitization. This frequently results in compounds labeled as “inconclusive”,
which are unsuitable for modeling. To our knowledge, this skin sensitization QSAR model’s
high sensitivity fares competitively well against other established tools in the field. An
evaluation of in silico tools to predict skin sensitization was published in 2017 [89]. From
this report, the best-performing and best-known tools were VEGA, Derek Nexus, and
the OECD QSAR Toolbox. According to the metrics reported in the assessment, our tool
exhibited a good external validation sensitivity score relative to those three, with 94% for
the Basketter human data set, compared to 91%, 78%, and 43%, respectively for the other
three tools, while also being one of few developed with human data. For other metrics,
such as CCR, SP, PPV, and NPV, our models performed similarly or better in the majority
of cases.

https://husspred.mml.unc.edu/
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Here, we suggest that our skin sensitization QSAR models’ utility lies in their ability to
predict skin-sensitizing substances accurately. The freely available web tool HuSSPred was
built on the best-performing models with the most highly curated data set available, making
it a valuable tool for toxicity prediction and providing risk assessors with confidence in
the model’s positive predictions. The overall weight-of-evidence approach used for the
web tool (WES) models was the preferred data set due to its robust scoring system and
overall performance. The scores assigned to each “extrapolated” classification in the WES
database intuitively reflect how a risk assessor might combine multiple HPPT results in a
single WoE assessment. Only unambiguous outcomes were reported and assigned a score,
so the developed models available in the web tool were built only on the most rigorous
HPPT data [27,28].

There is an increasing need to quickly determine a compound’s skin sensitization po-
tential from a regulatory standpoint; unfortunately, these studies are time-consuming and
expensive, and they raise ethical concerns. On the other hand, our QSAR models can be eas-
ily implemented in the early stages of drug development and testing, minimizing resource
waste and facilitating the early stages of drug development while reducing animal testing.
We hope the QSAR models developed here progress further towards regulatory acceptance.

4. Conclusions

Overall, we have carefully curated the HPPT database to predict skin sensitization, en-
abling a more accurate assessment of the human response. The models underwent rigorous
validation with reference data from the internationally validated Defined Approaches for
Skin Sensitization (DASS), resulting in one of the first in silico tools based strictly on human
data for skin sensitization, with high accuracy and sensitivity, as validated with human
biology-based in vitro outcomes and human data. The rigorously curated data, validation
predictions, and models are available on the website (https://husspred.mml.unc.edu/,
accessed on 18 October 2024), where users can select the desired models to obtain (i) binary
predictions, (ii) multiclass potency predictions for hazard assessments of compounds, and
(iii) fragment-contribution maps for each assay prediction.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/toxics12110803/s1. File S1: Curated data sets for binary, multiclass,
and continuous model development. Table S1: Uncalibrated model results for binary and WoE
approaches for multiclass models. Table S2: Validation exercise data sets and predictions. Table S3:
Y-randomization test modeling results. Figure S1: Model predictions for compounds in common
across validation datasets. Figure S2: Box and whisker plots for continuous data.
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