
Citation: Desai, S.; Wilson, J.; Ji, C.;

Sautner, J.; Prussia, A.J.; Demchuk, E.;

Mumtaz, M.M.; Ruiz, P. The Role of

Simulation Science in Public Health at

the Agency for Toxic Substances and

Disease Registry: An Overview and

Analysis of the Last Decade. Toxics

2024, 12, 811. https://doi.org/

10.3390/toxics12110811

Academic Editor: Chiachi Wang

Received: 23 September 2024

Revised: 31 October 2024

Accepted: 7 November 2024

Published: 12 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Role of Simulation Science in Public Health at the Agency
for Toxic Substances and Disease Registry: An Overview and
Analysis of the Last Decade
Siddhi Desai 1,2, Jewell Wilson 2, Chao Ji 2, Jason Sautner 2, Andrew J. Prussia 2 , Eugene Demchuk 2,
M. Moiz Mumtaz 3 and Patricia Ruiz 2,*

1 Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
2 Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry,

Atlanta, GA 30329, USA
3 Office of Associate Director for Science, Agency for Toxic Substances and Disease Registry,

Atlanta, GA 30329, USA
* Correspondence: pruiz@cdc.gov

Abstract: Environmental exposures are ubiquitous and play a significant, and sometimes understated,
role in public health as they can lead to the development of various chronic and infectious diseases. In
an ideal world, there would be sufficient experimental data to determine the health effects of exposure
to priority environmental contaminants. However, this is not the case, as emerging chemicals are
continuously added to this list, furthering the data gaps. Recently, simulation science has evolved
and can provide appropriate solutions using a multitude of computational methods and tools. In
its quest to protect communities across the country from environmental health threats, ATSDR
employs a variety of simulation science tools such as Physiologically Based Pharmacokinetic (PBPK)
modeling, Quantitative Structure–Activity Relationship (QSAR) modeling, and benchmark dose
(BMD) modeling, among others. ATSDR’s use of such tools has enabled the agency to evaluate
exposures in a timely, efficient, and effective manner. ATSDR’s work in simulation science has also
had a notable impact beyond the agency, as evidenced by external researchers’ widespread appraisal
and adaptation of the agency’s methodology. ATSDR continues to advance simulation science tools
and their applications by collaborating with researchers within and outside the agency, including
other federal/state agencies, NGOs, the private sector, and academia.

Keywords: computational toxicology; PBPK; QSAR; BMD; fate and transport modeling; machine
learning modeling; simulation sciences; predictive toxicology

1. Introduction

Environmental pollution, such as oil spill accidents and contaminated food, air, and
water, raises significant concerns for public health. Ideally, experimental chemical testing
would provide evidence of the potential effects of these environmental chemicals on human
health. However, in most scenarios, the data we need are unavailable. Simulation science
tools can be used to address environmental chemical exposure and its potential health
effects, as well as related challenges [1–7]. Simulation science uses informatics, mathemati-
cal and statistical modeling, and computational toxicology to assess the potential health
risks of chemical exposure. These tools can be used to break down complex environmental
problems and inform decision making.

The Agency for Toxic Substances and Disease Registry (ATSDR), a federal public
health agency of the U.S. Department of Health and Human Services, has played a crucial
role in assessing and addressing the potential health risks associated with toxic substances.
Like the Centers for Disease Control and Prevention (CDC), ATSDR’s primary objective is to
protect public health by preventing and/or minimizing exposure to hazardous substances.
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At ATSDR, simulation science approaches have become essential tools in understanding the
adverse effects of environmental exposures on human health. ATSDR utilizes sophisticated
computational models, tools, and data analysis techniques to predict chemical toxicity,
identify potential hazards, and prioritize risk assessment efforts.

ATSDR’s Office of Innovation and Analytics (OIA) is integral in the collection, analysis,
and interpretation of data on exposure to hazardous substances. OIA further leverages
its Simulation Science Section (SSS) in the provision of analytical and modeling expertise
as well as the development of novel computational tools to support the Agency’s public
health endeavors [8]. Subsequently, ATSDR and its partners are able to make actionable
decisions regarding exposure to hazardous substances. Informed decision making has had
a positive effect of public health [9].

Since establishing a state-of-the-art computational toxicology laboratory in 1998 (later
renamed the ‘Simulation Science Section (SSS)’ within OIA), computational tools have
been used in various aspects of human health risk assessment, as seen in Figure 1. These
computational modeling approaches include the following:

• Physiologically Based Pharmacokinetic (PBPK) modeling;
• Quantitative Structure–Activity Relationship (QSAR) analysis;
• Computational systems biology;
• Benchmark dose (BMD) modeling;
• Fate and transport modeling.
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PBPK models translate Points of Departure (PODs) from animal studies to the tar-
get human population by simulating chemical absorption, distribution, metabolism, and
excretion. POD is the dose necessary to produce a particular effect of interest. QSAR pre-
dicts chemicals’ physiochemical, biological, and toxicological characteristics based on their
molecular structures. QSAR bridges knowledge gaps when toxicological data are unavail-
able by screening chemicals to prioritize those that need more attention. Computational
systems biology establishes associations between chemical exposures, gene expression,
biological pathways, and potential health effects. BMD models help to estimate PODs
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by modeling the dose–response shapes of toxicology data. Fate and transport modeling
reconstructs past chemical exposures through mathematical modeling.

ATSDR plays a crucial role in the risk assessment process by leveraging computational
models, high-throughput screening data (HTS), and in vivo data. This enables the efficient
identification of potentially hazardous chemical compounds that require more detailed
investigation. ATSDR also provides timely recommendations for mitigating these public
health risks. The information obtained through the use of simulation tools allows identify-
ing vulnerable populations and devising targeted strategies to reduce exposure risks.

This paper presents an overview of the past decade of using computational tools for
the risk assessment of toxic substances at ATSDR. These computational approaches include
PBPK modeling, QSAR modeling, computational systems biology, BMD modeling, and fate
and transport modeling. We discuss the modeling approaches, how they help meet data
requirements, and how they assist in risk assessments for specific chemicals. Additionally,
we summarize the collaborations used to address environmental health challenges using
computational tools. Finally, we identify current challenges and gaps and offer insights
into future directions for these computational tools.

2. Overview of Simulation Science Tools for Public Health
2.1. Physiologically Based Pharmacokinetic (PBPK) Modeling

One of ATSDR’s foremost goals is to determine tolerable exposure levels, or health
guidance values (HGVs), for the numerous chemicals that people are regularly exposed
to. HGVs are typically derived using all available data, including toxicological data from
animal studies and epidemiological and biomonitoring data in humans. There are several
limitations with this approach. One issue is that there is no upper limit on the number
of studies required to produce the best HGV estimate. In practice, all pertinent available
studies are used to support a calculated HGV. Additionally, translating exposure effects
from animal studies to the target human populations conventionally requires extensive
generalization, as indicated by the uncertainty factor (UF) values used in calculating
minimal risk levels (MRLs) [10–13]. The UF values are designed to produce safe MRL
values. However, they often overestimate tolerable exposure levels in humans, especially
for sensitive populations such as pregnant women or the elderly.

PBPK modeling can be used to extrapolate toxicological information across different
species, routes, and doses [14,15]. PBPK models estimate a chemical or mixture’s absorption,
distribution, metabolism, and excretion. PBPK models simulate the human or animal body
as a series of compartments (e.g., the lungs, fat, the brain, the liver, etc.) and track the
plasma/blood flow through them [16,17]. PBPK modeling allows both cross-route and
cross-duration extrapolation. For instance, chronic inhalation data can be used to derive an
oral intermediate HGV via PBPK modeling. PBPK modeling can also eliminate the need for
repeat animal and human studies that require extensive time and resource allocations for
HGV estimation. Consequently, PBPK modeling greatly facilitates chemical risk assessment
and benefits public health.

Given the advantages of PBPK modeling, ATSDR began developing a PBPK toolkit for
high-priority chemicals. While there is an extensive number of PBPK models, they all vary
in complexity and do not all use the same programming language. This makes routinely
using them a challenge. ATSDR has been recoding highly advanced and/or efficient PBPK
models, translating them onto a single platform (Berkeley Madonna), and modifying them
to make them more generic. The resulting recoded models provide increased accessibility
to public health assessors and can be more readily applied to the general population. Thus
far, the ATSDR PBPK toolkit encompasses many chemicals, from heavy metals to dioxins
and volatile organic compounds (VOCs).

The fidelity of each PBPK in the toolkit model has also been verified. Over a decade
ago, ATSDR recoded models for cadmium, mercury, arsenic, and high-priority chemicals
on the National Priority List [18,19]. The recoded cadmium model was validated by
simulating urinary excretion data using dietary intake data from the 2003–2004 NHANES.
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The estimates closely matched actual urinary cadmium data [20]. Since then, the cadmium
model has been used in various ways, ranging from use as a simple prototype to illustrate
advancements in toxicokinetic modeling methods [21] to relatively in-depth summaries
of its composition, function, and capabilities [22], and for comparison to more recently
developed models [23]. The recoded cadmium model has been applied and adapted several
times, demonstrating its effectiveness and far-reaching impact. The recoded cadmium
model was used to estimate relative cadmium exposures in Thailand from diet and smoking
in low- and high-exposure scenarios to evaluate the effectiveness of such models when
applied to a more comprehensive exposure range [24]. The study used biomonitoring data
(urinary cadmium) to estimate cadmium exposure, a method known as reverse dosimetry.
The exposure estimates were noteworthy. Exposure estimates in the high-exposure area
had a relatively small safety margin when compared to reference exposure levels. This
emphasized the need to address cadmium exposures in the region because the metal is
known to cause a myriad of health effects (ATSDR, 2012). More recently, researchers
constructed one- and multi-compartment toxicokinetic models for cadmium geared toward
the Chinese population. They used the recoded cadmium model [20] to characterize dietary
cadmium intake as an age-dependent variable for the multi-compartment model. This
enabled more accurate estimates of their intended population [25].

The PBPK toolkit has also incorporated recoded models for VOCs. In 2011, a generic,
seven-compartment VOC model was recoded on Berkeley Madonna for use with six VOCs:
benzene, carbon tetrachloride, dichloromethane, perchloroethylene, trichloroethylene, and
vinyl chloride, and in 2012, another paper was published to present the progress towards
developing and validating the generic VOC model [26]. The multi-compartment model
was assessed by comparing its predictions with previously published human kinetic data
and those of the original models from which it was derived. The generic model performed
well in both cases (90% agreement). The VOC models have been primarily referenced
in reviews and discussions of the current and potential advancements and limitations of
PBPK models [27,28]. One article detailed federal agencies’ efforts to make PBPK models
more accessible yet noted the lack of their widespread use in public health assessments [29].
Researchers in the Netherlands evaluated how the generic model [26] estimated blood
dichloromethane concentrations in health participants [30]. The model helped determine
first impressions during emergency risk assessments, although detailed applications would
require a more sophisticated approach. The model was also used, with other strategies,
to derive differential equations for a study creating a fuzzy number model of chloroform
to inform swimming pool design and management [31]. The generic VOC model has
propelled the creation and use of PBPK models and other computational tools in health
risk assessments at the population level.

Dioxins and dioxin-like chemicals (DLCs) are another set of high-priority chemicals for
ATSDR. In 2014, ATSDR recoded a model for 2,3,7,8-Tetracholorodibenzo-p-dioxin (TCDD),
which is the most toxic congener of DLCs. ATSDR assessed its quality and concluded that
the model may be helpful in health risk assessments given that it provides both age- and
gender-related information about exposure as a function of its intake [32]. The recoded
models have been adapted and used in various projects external to ATSDR, for example,
in research to evaluate the toxicological risk of polychlorinated dibenzo-p-dioxins and
dibenzofurans in the soil in Switzerland [33] and in a European Food Safety Authority
(EFSA) scientific opinion article to assess the risk to humans and animals from dioxins in
feed and food [34]. More recently, a study adapted the 2017 recoded model, among other
things, to develop a dioxin mixture model [35]. This is a significant advancement, given
that pollutants are usually encountered in mixtures. Thus, their interactions may play an
important role in the overall toxicokinetic effects.

While the ATSDR’s human PBPK toolkit continues to grow, it has significantly influ-
enced environmental pollutant risk assessment by assisting in extrapolating toxicological
information across species, estimating a chemical or mixture’s absorption, distribution,
metabolism, and excretion, and by allowing both cross-route and cross-duration extrapola-
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tion. While the recoded models have been intentionally made simple, they are constantly
being adapted to produce more specific and wide-ranging models, fueling advancements
in computational toxicology.

2.2. Quantitative Structure–Activity Relationship (QSAR) Modeling

QSAR modeling is extensively employed in public health and human risk assessment
to predict the biological or toxicity activity or adverse effects of chemicals. These models
assist in prioritizing chemicals for further testing, providing insights into their potential
risks to human health [36–39].

QSAR models play a crucial role in reducing the need for animal testing by providing
reliable predictions based on chemical structure information. They are particularly valuable
when experimental data on chemicals are limited or lacking. While more experimental data
could be collected, the extensive time and resources necessary for these studies may not
be feasible.

We use this type of modeling in two ways: structure–activity relationship (SAR)
models for structural alerts and QSAR models to quantify a chemical’s activity. SAR
models are essentially qualitative as they predict whether the structural features of a
compound indicate the potential to exhibit a specific health effect. QSAR models quantify
these associations by predicting the chemical’s toxicological/biological activity. While
they are used in various fields from agriculture to pharmaceutical industries, QSAR, as
opposed to SAR, is of particular interest to health agencies. QSAR allows such agencies
to bridge information gaps in toxicological data, thus eliminating the need for additional
animal studies. In this way, it saves time and resources and enables users to establish
HGVs efficiently.

However, despite the apparent benefits of using QSAR modeling, it has not yet been
used to its potential. Not all models are created equal: the QSAR models possess varying
predictive power and accuracy levels. Thus, developing, validating, and refining QSAR
models is imperative as new experimental information becomes available to improve their
accuracy. To this end, ATSDR is continually developing and validating QSAR models
for major endpoints including endocrine disruption, carcinogenicity, mutagenicity, and
developmental toxicity.

2.2.1. Endocrine Disruption

ATSDR has expended significant efforts to develop and evaluate QSAR models for
endocrine-disrupting chemicals. ATSDR researchers developed QSAR models to assess
and define the relationship between molecular descriptors and the estrogenic potential of
hydroxylated polychlorinated biphenyl (OH-PCB) metabolites. A follow-up study was
published to illustrate estrogen receptor binding. The study expanded on the 2D QSAR ap-
proach of the earlier study using molecular docking and 3D QSAR techniques [40]. The 2D
QSAR study has been referenced in various reviews and studies of computational modeling
and endocrine disruptors [41–45]. More importantly, the study has been used to buttress
the results and hypotheses of several investigations on the toxicology of PCBs. Baker and
Bauer [46] (2015) investigated the chemotherapeutic effects of green tea by observing its
impact on estrogen-sensitive breast cells that are induced to proliferate by an estrogenic
PCB. They found that the PCB-102 effect was mediated by ERα (estrogen receptor alpha)
and used the 2D QSAR study to confirm and reinforce their findings [46]. Additionally,
researchers examining the presence of OH-PCBs in Arctic foxes in Svalbard used the 2D
QSAR study to elucidate the toxicological implications of OH-PCB accumulation in the
body [47]. Furthermore, Wang et al. [48] used the 2D QSAR study to state and explain fea-
tures contributing to higher estrogenic activity. They explored OH-PCBs as Erβ (estrogen
receptor beta) using 3D QSAR, molecular docking, and molecular dynamics.

The 3D QSAR study [40] has also significantly contributed to our mechanistic under-
standing of estrogenicity and breast cancer. It has underpinned hypotheses, results, and
methods of multiple projects. For example, Ashtekar et al. [49] aimed to identify natural
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compounds that may inhibit HER2. HER2 plays a role in the development of breast can-
cer [49]. The 3D QSAR study was one of several papers used to clarify the pharmacophore
modeling aspect of Ashtekar et al.’s study. In another publication, the 3D QSAR paper de-
scribed the 2D and 3D models that Ashtekar’s research group developed [50]. Furthermore,
the 3D QSAR study helped Farasani and Darbre emphasize the potential of triclosan (a PCB
prevalent in personal care and household products) metabolites to have unknown toxic
effects at the cellular level [51]. Notably, the study’s reach has not been limited to cancer
research. The paper’s results were also used to emphasize the importance of investigating
OH-PCBs in the marine environment [52,53] and in animal-derived food [54].

To further improve their models, ATSDR evaluated the QSAR approaches to inves-
tigate endocrine-disrupting chemicals. They compared the predictions of various QSAR
models to experimental data for a large set of endocrine disruptors. This suggested con-
sensus approach incorporating multiple models provided the most accurate predictions.
The evaluation has been further analyzed in discussions of in silico methods and used to
demonstrate the majority vote classifier method [55,56]. Additionally, Stanojević et al. used
the study to justify their use of the consensus approach while computationally investigating
the endocrine activity of biocidal active substances [57]. The consensus approach used
by ATSDR researchers has encouraged other researchers to do the same, addressing the
limitations of using single QSAR models to some extent.

ATSDR was also a part of a project to develop QSAR models for other endocrine-
disrupting chemicals and androgen-active chemicals. As part of the project, researchers
developed and validated five predictive classification models based on different algorithms.
They amalgamated the models using two consensus approaches, majority vote, and con-
vergent predictions. The researchers’ work has been credited several times, including in
a paper on the latest high-throughput machine learning models for endocrine-disrupting
chemicals [58]. The consensus approach developed for the project was also included in a re-
view published by the Organization for Economic Cooperation and Development (OECD).
The review highlighted the large training set used to create the models [59]. The consensus
approach was further acknowledged as an effective way to circumvent the limitations of
using singular QSAR models in a recent, extensive review of in silico studies on the nuclear
receptor family [60].

2.2.2. Carcinogenicity, Mutagenicity, and Developmental Toxicity

When evaluating the risk of exposure to chemicals via the environment, carcinogenicity,
mutagenicity, and developmental toxicity are endpoints of significant interest. ATSDR
researchers used a QSAR approach to understand the mutagenic and carcinogenic potential
of specific PCB congeners and their metabolites. ATSDR’s work has supported hypotheses
and conclusions drawn by other researchers. For instance, Koh et al. compared the
serum levels of non-Aroclor PCBs in adolescents and their mothers living in East Chicago,
Indiana, and Columbus Junction, Iowa [61]. They found certain PCBs were prevalent
and, despite the resounding lack of toxicity data on one of the chemicals (PCB 35), the
researchers could attribute potential mutagenicity and carcinogenicity to this specific
congener. They did so using the approaches developed by ATSDR researchers. Furthermore,
the findings reported by ATSDR researchers (such as higher mutagenic potential in lower
chlorinated PCBs and their metabolites) have been broadly used to support several research
projects. In some research studies, neurotoxic equivalent factor derivations were used to
develop QSAR models for untested PCBs [62], and to expound on the properties of PCBs
in Dickerson et al.’s preamble to investigating PCB-induced cell death mechanisms [63].

Furthermore, the PCB congeners’ work by ATSDR researchers indicated that mono-
and di-chlorinated PCBs and their metabolites have a higher risk of genotoxicity effects
and were further pursued through in vitro validation by Zhang et al. The authors studied
a Chinese hamster-derived cell line expressing a human cytochrome enzyme that the
researchers believed would transform PCBs to genotoxic metabolites. The enzyme appeared
to convert certain PCBs to strong mutagens [64]. However, further work conducted by
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Zhang’s group suggested that certain tri- and tetra-chlorobiphenyls were more potent than
the mono- and di-chlorinated congeners. [65]. Liu et al. account for this difference by
pointing out that the S9-mediated assays used to generate the part of the database used
in the ATSDR study would be biased against bigger molecules, such as more chlorinated
biphenyls, inadvertently discounting their toxic potential.

ATSDR researchers also used QSAR modeling tools to investigate four ethylene glycol
ethers (EGEs) and their metabolites for potential mutagenicity, carcinogenicity, and devel-
opmental toxicity. Reverse QSAR (rQSAR) was also used to identify structures that may
induce developmental toxicity [66]. Using the ATSDR study’s identification of potential
toxicity for the EGEs as support, DiScenza and Levine chose to include ethylene glycol
in their research to develop sensitive and selective methods for detecting aliphatic alco-
hols [67]. ATSDR’s results helped the researchers prioritize ethylene glycol as one of the
few analytes included in their efforts to develop high-throughput detection systems for
aliphatic alcohols. That essentially made it easier to select chemicals by outlining possible
health effects/metabolic pathways based on QSAR analyses. This work has further been
used as evidence of the reliability of in silico methods [68,69], making researchers more
likely to trust and use QSAR and other in silico methods. The decision tree developed and
used in the EGE QSAR study to assign confidence in a prediction was also used by ATSDR
researchers the following year. ATSDR researchers used it to investigate the joint toxicity
of alkoxyethanols. QSAR modeling was used to identify chemicals that may interact with
alkoxyethanols and alter their toxicity.

ATSDR has applied QSAR modeling techniques to address several areas of public
health toxicology including exposure duration extrapolation as well as predicting the rela-
tive toxicity of breakdown products of military chemical agents. Such work has increased
awareness by involving and encouraging collaborative efforts in the field of predictive
toxicology. ATSDR researchers also used QSAR modeling to supplement their work on
defining UFs for duration extrapolation in multiple chemical groups [70]. Researchers
were able to use QSAR modeling to justify the exclusion of chemicals that were outliers as
they disproportionately increased or decreased the average across-duration ratio for the
chemical groups. QSAR modeling was thus able to yield UFs that were more specific than
the traditional method of applying default UFs irrespective of the chemical in question.
QSAR models also greatly assisted ATSDR researchers in the assessment of the toxicity of
the breakdown products of sulfur mustard [71]. Using four different QSAR models, the
researchers predicted median lethal dose (LD50) values for sulfur mustard and its potential
breakdown products. LD50 is the dose at which 50% of the test population dies. ATSDR
found that the breakdown products were potentially less toxic than the parent compound.
This study exemplified the potential of QSAR modeling to assist with health guidance
regarding chemical incidents, encouraging its widespread use to address various issues.
QSAR modeling has thus allowed for notable toxicological discoveries and accomplish-
ments at ATSDR and continues to progress, given our agency’s efforts to develop, evaluate,
apply, and refine QSAR models and methods.

2.3. Computational Systems Biology

While research has established strong associations between exposures to certain chem-
icals and specific adverse outcomes, scientists have often been unable to designate causality
due to a lack of mechanistic understanding. Computational systems biology integrates
bioinformatics modeling, mathematics, high-throughput data, gene networks, protein in-
teractions, and cellular processes to characterize potential linkages between environmental
toxicants, biological pathways, and health outcomes [72–75]. This approach thus allows for
substantiation of mechanistic hypotheses that can then be explored via experimentation.

As a part of a project employing computational systems biology modeling, ATSDR
scientists investigated associations between three lipophilic persistent organic pollutants
(TCDD, PCB 153, and p,p′-DDE) and metabolic diseases. They identified gene network
pathways wherein the chemicals interacted to activate common downstream targets that
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may contribute to developing type 2 diabetes [76]. These findings were used by researchers
exploring diabetes and diabetes-adjacent morbidities in an epidemiological study based
in Spain that linked long-term exposure to persistent organic pollutants and the risk of
metabolic syndrome [77]. Our findings were also used to emphasize the validity of investi-
gating environmental toxicants in metabolic diseases in studies that assessed risk factors
associated with diabetes, heart attack, and stroke among the Inuit Nation in Canada [78,79].
Based on our findings, Schulz and Sargis included TCDD in their review of evidence
linking environmental endocrine-disrupting chemicals to the diabetes pandemic [80]. More
recently, scientists at ATSDR led efforts to combine PBPK modeling, computational systems
biology, and gene expression data to (1) discern the potential interaction mechanisms of
toluene, ethylbenzene, and xylene (TEX) mixtures and (2) identify the health effects of long-
and short-term exposure to the mixture [81].

2.4. Benchmark Dose (BMD) Modeling

Chemical risk assessment evaluates chemical toxicity and supports chemical regis-
tration, safety evaluation, and exposure limitation development. As a part of the risk
assessment, a dose–response analysis determines the POD. The POD is the dose necessary
to produce a particular effect of interest. Typically, researchers would identify the lowest
observed adverse effect level (LOAEL) and corresponding no observed adverse effect level
(NOAEL) to derive the POD. This process requires hypothesis testing to compare differ-
ences in response. However, the NOAEL/LOAEL approach does not consider the shape of
the dose–response curve and is limited to experimental doses, dose spacing, and sample
size of the study [82]. In contrast, the benchmark dose (BMD) methodology proposed
by Crump [83] fits a mathematical model to all the dose–response data for the study’s
endpoint. The BMD also incorporates experimental uncertainty in responses and allows
users to assign a benchmark response appropriate for the assessment [84–88]. For these
reasons, the US EPA [82] and EFSA [89] have advocated for BMD use for years.

Three software packages have been developed to promote the BMD modeling ap-
proach using continuous and dichotomous data from animal-based toxicology experiments:
the US EPA’s BMDS 3.3.2 [90], the Netherlands National Institute for Public Health and
the Environment’s PROAST software 71.1 [89], and Dream Tech’s Bayesian BMD 2.1.1
(BBMD) [91]. The major difference between these software packages is the algorithm.
BMDS and PROAST have historically used maximum likelihood estimations of frequentist
models, while BBMD uses the Bayesian statistical approach for parameter estimations
of Bayesian models. Typically, BMDS chooses the ‘best’ model for BMD estimates based
on the Akaike Information Criterion (AIC) value. However, recent BMDS versions now
incorporate an alternative Bayesian model averaging approach for dichotomous data. This
may be due to EFSA’s new guidance, which recommended changing from the frequentist
to the Bayesian paradigm [92]. PROAST implements frequentist model averaging using
the AIC as the basis for the weighting scheme. BBMD calculates the posterior BMD using
the Bayesian model average (BMA) method.

In the past decade, BMD has moved from an emerging technology to an established
technology at ATSDR. The software packages are more accessible, are available in various
environments (websites, excel macros), and have more developed modeling capabilities.
These advances in the understanding and accessibility of BMD modeling have greatly facil-
itated deriving MRLs. Over the past 15 years, ATSDR has revised older MRLs as additional
studies have been performed and risk assessment approaches have been modified. In these
revisions, BMD lower confidence limits, also known as BMDLs, were used if more appropri-
ate. ATSDR analyzed the fold changes from the original MRLs to the updated MRLs. These
findings suggest that using BMDLs as PODs does not cause a clear bias toward decreasing
or increasing MRL values. Additionally, BMDL analysis does provide a more quantitative
approach to analyzing dose–response data and incorporating experimental uncertainty.
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2.5. Fate and Transport Modeling

It is often difficult for public health professionals to access direct measures of exposure
and dose, especially for historical exposures. ATSDR introduced the Exposure-Dose Recon-
struction Program (EDRP) to address this issue. EDRP was an interdisciplinary team. Fate
and transport models are important tools for predicting contaminant exposures [93–103].
Exposure-dose reconstruction involves the use of computational models and tools to pro-
vide estimates of the concentration of toxic substances in people who may be at risk of
exposure to chemicals from hazardous waste sites. Environmental fate and transport mod-
eling and water-distribution system modeling were introduced as a part of EDRP in 1993
and are now a part of OIA/SSS. They greatly augment the agency’s capacity to evaluate
exposures and doses, improving the subsequent health assessments and studies.

Water Modeling: Reconstruction of Historical Drinking Water Contamination

Between 1950 and 1985, the drinking water at U.S. Marine Corps Base Camp Lejeune
was contaminated with VOCs. In recent years, ATSDR scientists sought to evaluate the
association between exposure to the contaminated water and various birth outcomes, and
they have published multiple papers describing their reconstruction of the historical con-
tamination. One case–control study focused on birth defects and childhood cancers. Using
groundwater fate and transport and water-distribution system models to assess historical
exposures, the researchers found certain water contaminants were associated with neural
tube defects [104]. In another study, the researchers found that these contaminants were
associated with adverse effects such as preterm birth and fetal growth retardation [105].

Exposure-dose modeling was also used to evaluate adult mortality and cancer out-
comes. Studies found elevated hazard ratios at Camp Lejeune for death from several causes,
including cancers and neurodegenerative diseases in marine and naval employees [106]
and civilian employees [107]. The confidence intervals were wide for most hazard ratios
as only 14% of the cohort had died by the end of follow-up, resulting in small numbers of
cause-specific deaths. Furthermore, another study suggested possible associations between
male breast cancer and being stationed at Camp Lejeune and cumulative exposure to
several VOCs [108]. However, the confidence intervals for the hazard ratios were wide.

Ongoing applications of ATSDR’s exposure-dose reconstruction modeling focused on
per- and polyfluoroalkyl substances (PFASs) in the following projects:

• Pease International Tradeport of Portsmouth, New Hampshire
The historical reconstruction used a materials mass balance model to compute flow-
weighted average concentrations of PFASs in public drinking water.

• PFAS Exposure Assessments
Evaluated 50+ PFAS sites to determine the nationwide representation of concentrations
of PFAS in drinking water.

• PFAS Multi-Site Study
Historical Reconstruction Workgroup oversees fate and transport analyses and water-
distribution system analyses to estimate concentrations of PFAS in drinking water.
Estimates will be used as input for PBPK modeling.

• Saint-Gobain (Merrimack, NH)
Historical reconstruction of concentrations of PFASs in the public drinking water.

• NASA Wallops Flight Facility (Town of Chincoteague, VA)
Historical reconstruction of concentrations of PFASs in the public drinking water.

• Warminster and Willow Grove, Pennsylvania
Historical reconstruction of concentrations of PFASs in the public drinking water.

3. Collaborations

ATSDR’s progress in simulation sciences has been extensive in the last decade. How-
ever, these modeling efforts would not have been as successful without support and
collaboration from other CDC/ATSDR teams and the projects ATSDR works on. The
projects involve inhalation toxicity modeling, surveillance, biomonitoring reports, and liter-
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ature reviews. The technical support and expertise provided by these scientific researchers
are crucial in driving the field of simulation science forward. The research integrates
epidemiological and toxicological approaches, and the collaboration demonstrates how
multidisciplinary teams can use their combined skills to achieve a common goal.

3.1. Internal Collaborations
3.1.1. Inhalation Toxicity and Emergency Response

Acute, short-term exposures to airborne chemicals are an ongoing threat to public
health, especially in emergency response situations. However, there are challenges to
determining HGVs for inhalation toxicity. One of the main issues is that certain durations of
exposure may not have experimental data. Subsequently, extrapolation modeling is crucial
for determining health guidance. Modeling inhalation toxicity is challenging because
the adversity of health effects is a two-dimensional problem: it depends on the inhalant
concentration and the duration of exposure. The simplest modeling assumption would be
that the toxic effect is proportional to the product of inhalant concentration and duration
of exposure. However, this equation does not hold for many volatile compounds. Thus, a
more complex concept of toxic load was introduced: the toxic load equation (TLE), which
is chemical-specific [109].

While short-term exposure recommendations may exist for certain chemicals of in-
terest, these recommendations are sometimes limited to specific exposure periods. This
provides inadequate guidance for exposure that may last longer or shorter periods. Dem-
chuk et al. used QSAR/TLE modeling to derive HGVs for dimethyl sulfide using data
reviewed by the American Industrial Hygiene Association [110]. The HGVs were in good
agreement with the American Industrial Hygiene Association’s 1 h health guidance and
were able to extend the guidance to durations ranging from 10 min to 8 h.

Another issue is that inhalation experiments require large numbers of animals to
model the concentration and duration confidently. This requires a method that combines
experimental data from multiple studies. Prussia et al. achieved this by conducting a
meta-analysis wherein 28 volatile chemicals were investigated [111]. Data evaluation rules
were derived from the meta-analysis and structured into a decision tree. The tree provides
an unambiguous framework for TLE derivation from probit data of any kind and greatly
facilitates inhalation risk assessment. The tree uses all of the appropriate experimental
studies to arrive at an exposure threshold for the chemical, increasing the precision and
scientific rigor of its public health assessment.

3.1.2. Biomonitoring, Surveillance, and Literature Reviews

Biomonitoring data provide invaluable information for identifying trends and conduct-
ing further research and analysis on the target population. Simulation science researchers
provide technical support to other projects by agency researchers. ATSDR researchers
analyzed NHANES data from 2007 to 2012 to identify and characterize prevalent cadmium,
mercury, lead, and arsenic combinations in the general U.S. population [112]. The study
was intended to provide a solid basis for future work on the four toxic metals and their
combinations. Similarly, simulation science researchers provided technical consultation
to epidemiologists at ATSDR who used biomonitoring data for exposed communities.
Such work, in turn, supports ongoing attempts to develop simulation science models for
chemical mixtures and to better understand potential biological pathways.

While collaborations are necessary to amalgamate the expertise needed to develop and
improve simulation science approaches, assessing the existing knowledge base and identi-
fying relevant gaps are equally important in developing and enhancing simulation science
methods. Literature reviews, although laborious, provide an abundance of information
that is distilled to the most relevant components. For example, an expert review by ATSDR
researchers on PCB exposures and health effects [113] has been instrumental in supporting
research to understand the toxic potential of PCBs. That review provided substantial detail
on different health effects, including nephrotoxicity, developmental effects, and cancer.
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More importantly, the paper discussed both human and animal studies, which enabled a
better understanding of the relationship between the exposure and toxicity of PCBs.

Another important method for identifying patterns or issues to address, and one of
CDC’s principal functions, is public health surveillance. The National Toxic Substance
Incidents Program (NTSIP) is a surveillance initiative created by the ATSDR. NTSIP collects
data on acute toxic substance incidents and their association with mortality and morbidity
in terms of public health. The program collected data in nine states (California, Louisiana,
North Carolina, New York, Missouri, Oregon, Tennessee, Utah, and Wisconsin). The
large set of data helps identify patterns and causes of incidents. Furthermore, NTSIP can
provide valuable information to those working to prevent or respond to similar incidents.
In addition to supporting public health professionals’ characterized occurrences of acute
toxic substance releases, one publication was used to highlight the danger of such chemical
incidents. Hu et al. aimed to analyze the pollution inequality of toxic chemical releases
across regions and income groups in the U.S. [114].

ATSDR’s great strides in simulation sciences have not been achieved in a vacuum. The
concurrent research and projects within and beyond the CDC/ATSDR continue to fuel and
be fueled by the progress of simulation sciences in public health.

3.2. External Collaborations

Scientists from the Simulation Science Section at ATSDR have been involved in ef-
forts to further simulation science approaches in various industries. Efforts have been
made to meet the needs of stakeholders such as other federal agencies, academia, and the
private sector.

3.2.1. Interagency Collaborations

Several recent interagency efforts promoted the use of simulation science methods,
such as PBPK and QSAR modeling, and were led by the Interagency Coordinating Com-
mittee on the Validation of Alternative Methods (ICCVAM) [115]. The group’s main aim
is to reduce the use of lab animals during toxicity testing of chemicals while optimizing
the use of scientific methods and knowledge. One of the premier ways of minimizing
the use of test animals is through validating and promoting alternative methods, such as
computational toxicology methods, that move research from observational to predictive
science. ICCVAM’s Strategic Roadmap [116] highlights how workgroups comprising na-
tional and international participating agencies could encourage confidence in using and
developing new methods. ATSDR is a part of several ICCVAM workgroups, including
the In Vitro to In Vivo Extrapolation workgroup (IVIVE WG), the Read-Across workgroup
(RAWG), the Acute Toxicity workgroup (ATWG), and the Verification workgroup (VW).
These interagency collaborations support a more transparent understanding of the progress
and future work potential in the field of simulation sciences. The agency representatives can
convey the needs and problems faced by their organizations precisely and unambiguously.

ATSDR was also a part of the Collaborative Modeling Project for Androgen Receptor
Activity (CoMPARA). In the collaborative, scientists from 25 international research groups
generated QSAR models for androgen receptor activity and screened many chemicals. The
project produced consensus model predictions [117]. This project aimed to combine the
strengths of multiple models to generate consensus predictions about the toxicology of
large numbers of chemicals. The researchers hoped the predictions would further the quest
to optimize high-throughput virtual screening methods. Ultimately, the project aided the
creation of open-source tools that the scientific community can apply for various purposes.

ATSDR initiated a series of Interagency Computational Toxicology Colloquia (ICTC),
which included participants from ATSDR, FDA, EPA, the National Institutes of Health
(NIH), Chemical Genomics Center (NCGC), National Institute of Environmental Health
Sciences (NIEHS), and other interested agencies. Following the ICTCs, ATSDR and the Na-
tional Center for Toxicological Research (FDA-NCTR) developed a joint funding initiative
in hepatotoxicity. Conventionally, hepatotoxicity has been investigated based on exten-
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sive traditional toxicology testing methods. Traditional methods often involve a detailed,
comprehensive study under various doses. These studies are costly, time-consuming, and
ineffective for extensive chemical screening and prioritization. Therefore, considerable
effort has been directed toward alternative methods, including high-throughput molecular
and cell-based assays and computational modeling techniques. As a part of these endeav-
ors, FDA-NTCR and ATSDR developed highly efficient QSAR and spectral data–activity
relationship models to identify chemical hazards to the human liver [118]. The models
provide additional novel in silico tools for identifying hepatotoxicity more effectively.

Furthermore, ATSDR contributed to the efforts of an external workgroup funded
by the Health & Environmental Sciences Institute (HESI) that produced a PBPK model
reporting template [119]. Tan et al. designed the template to facilitate the review process
when submitting PBPK models to regulatory agencies. In addition to improving the chances
of the model’s acceptance for regulatory purposes, the template can educate others on best
practices for planning to use and communicating about a new model.

3.2.2. Academic Collaborations

Scientists at ATSDR also work with university researchers to facilitate research goals
using QSAR modeling. A 2019 study by Uwimana et al. sought to identify the isoforms
of an enzyme (cytochrome P450) that metabolized a group of polychlorinated biphenyls
(PCBs) to their hydroxylated forms [120]. ATSDR used in silico methods, specifically
ADMET Predictor and MetaDrug, to predict the isoforms that could metabolize the PCBs
to OH-PCBs. This process allowed the researchers to perform in vitro experiments using a
narrowed set of enzymes, significantly reducing the time and cost required to perform the
experiments and helping focus the scope of the work.

Similarly, ATSDR has been involved in a series of studies investigating the metabo-
lites of certain individual PCBs by combining in silico and in vitro methods to optimize
the research process. In 2020, Zhang et al. studied the metabolomics of PCB 11 (3,3′-
dichlorobiphenyl) using ADMET Predictor and MetaDrug to predict PCB 11’s metabolites.
The predictions were aligned to a significant extent with what was previously found in
rat studies. The team predicted 4 of the 30 metabolites detected in the in vitro portion
of the study [121]. Subsequent studies on the P450-mediated biotransformation of lower
chlorinated PCBs such as PCB 3 (4-chlorobiphenyl) and PCB 2 enhanced the preliminary
research process by employing ADMET Predictor and MetaDrug.

Another noteworthy collaboration was between researchers across the U.S. (ATSDR),
Australia, Thailand, and Japan. The collaboration resulted in a study on Thai subjects
that investigated and established a link between cadmium toxicity markers and clinical
kidney function measures [122]. Satarug and colleagues were able to reassert a previously
dismissed role of cadmium exposure in kidney toxicity: they discovered an association be-
tween cadmium and chronic kidney disease (CKD). This work was a part of an undertaking
to model cadmium toxicity by comparing low- and high-exposure populations [24].

In silico predictive methods can transform scientific research by identifying a short
list of variables or candidates for further inquiry. Yet, such simulation science methods
do not have widespread use, making collaborative work crucial in catalyzing change.
Scientists trained in silico methods and tools can help educate colleagues who were trained
in different fields and who are interested in simulation science.

3.2.3. Private Collaborations

A lack of standardized guidance regarding the use and interpretation of in silico
methods is one of the major reasons they are not widely used and heavily relied upon.
While several agencies and organizations have developed their own sets of protocols, there
remains a need for a universal set of guidance or standardized protocols that scientists
across different fields can rely upon. Working towards this goal, ATSDR has been a part
of an international consortium that brings together representatives from various fields
to outline a framework for developing in silico toxicology protocols for major endpoints
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of interest [123]. While the initial publication by Myatt et al. laid out the schematics for
developing in silico toxicology protocols (QSAR approaches), the specific endpoints were,
and continue to be, addressed in publications through the work of focused subgroups
formed by the consortium participants.

The inter-industry nature of the collaboration is essential for developing universally
accepted standardized protocols. Representatives from various fields can convey their
needs and requirements and appreciate the expertise contributed by the other members.
The amalgamation of different perspectives warrants that, once the in silico protocols have
been established, users will not have reservations about the applicability of those guidelines
to their work. To advance this overarching goal, ATSDR has collaborated with various
stakeholders in the pharmaceutical industry to delineate the current status and future needs
for using in silico methods to predict and assess heart, kidney, and lung toxicities [124].
The publication they produced provides a foundation for developing in silico protocols for
organ toxicities by outlining the current methods and the associated issues and data gaps.
Crofton and colleagues also published a paper following a similar framework on using
in silico methods in neurotoxicity hazard assessment [125]. The publication emphasizes
the utility of combining computational and experimental methods and provides a draft
assessment framework for a standardized in silico toxicology protocol for neurotoxicity. As
proposed by in silico methods, the likelihood of off-target effects could be better evaluated
by improved high-throughput screening methods. These methods would improve both
awareness and guidance with regard to new and old pharmaceutics. ATSDR is actively
providing expert support and guidance via collaborations with several companies in the
private sector to bring these efforts to fruition.

4. Challenges and Future Directions

Computational approaches have revolutionized the field of toxicology and risk assess-
ment, offering several advantages. First, they enable rapid and cost-effective screening of
chemicals for potential toxicity, which reduces the need for time-consuming and expensive
animal testing. Second, computational models can predict toxic effects at various levels of
biological organization. This can provide valuable insights into mechanisms of toxicity and
aids in risk assessment. Additionally, these approaches offer a systematic way to integrate
diverse data sources, including chemical structures, molecular properties, ADME, and
biological pathways, to identify new hazard endpoints [81].

Multiple manuscripts have been published describing ATSDR’s work, research in-
terests, and collaborations in simulation science over the past decade. Figure 2 shows
the details of the work published by ATSDR scientists and the application of computa-
tional tools and links them with published citations. It shows the consistent application
of PBPK modeling, QSAR modeling, computational systems biology, benchmark dose
modeling, and fate and transport modeling during the past decade at ATSDR. PBPK and
QSAR modeling has been the most published of these computational modeling approaches,
while benchmark dose modeling has been the least published by ATSDR scientists yet is
regularly used to support internal ATSDR risk assessments. With the advance of time,
ATSDR publications have been recognized, and ATSDR collaboration in several efforts has
increased during the past five years.

Figure 3 clearly illustrates the impact of ATSDR’s publications, as measured by the
number of references cited in the Google Scholar databases as of July 2023. Google Scholar is
a freely accessible product of Google; it collects citation and reference information using web
crawlers that roam through websites containing scholarly information. These data show
the relevance and influence of ATSDR’s work in computational modeling. There were nine
publications on PBPK modeling, ten on QSAR modeling, three on computational systems
biology, one on BMD modeling, five on fate and transport modeling, six on supporting
ATSDR programs, and fifteen in collaborations (seven interagency collaborations, three
private collaborations, and five collaborations in academia). The PBPK publications appear
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to have had the most impact on computational modeling development and applications,
followed by QSAR modeling and fate and transport modeling [119,123].

Toxics 2024, 12, x FOR PEER REVIEW 14 of 25 
 

 

details of the work published by ATSDR scientists and the application of computational 
tools and links them with published citations. It shows the consistent application of PBPK 
modeling, QSAR modeling, computational systems biology, benchmark dose modeling, 
and fate and transport modeling during the past decade at ATSDR. PBPK and QSAR mod-
eling has been the most published of these computational modeling approaches, while 
benchmark dose modeling has been the least published by ATSDR scientists yet is regu-
larly used to support internal ATSDR risk assessments. With the advance of time, ATSDR 
publications have been recognized, and ATSDR collaboration in several efforts has in-
creased during the past five years. 

 
Figure 2. Timeline of publications [19,20,24–26,32,40,66,70,71,76,81,104–108,110–113,117–127]. 

Figure 3 clearly illustrates the impact of ATSDR’s publications, as measured by the 
number of references cited in the Google Scholar databases as of July 2023. Google Scholar 
is a freely accessible product of Google; it collects citation and reference information using 
web crawlers that roam through websites containing scholarly information. These data 
show the relevance and influence of ATSDR’s work in computational modeling. There 
were nine publications on PBPK modeling, ten on QSAR modeling, three on computa-
tional systems biology, one on BMD modeling, five on fate and transport modeling, six on 
supporting ATSDR programs, and fifteen in collaborations (seven interagency collabora-
tions, three private collaborations, and five collaborations in academia). The PBPK publi-
cations appear to have had the most impact on computational modeling development and 
applications, followed by QSAR modeling and fate and transport modeling [119,123]. 

Figure 2. Timeline of publications [19,20,24–26,32,40,66,70,71,76,81,104–108,110–113,117–127].

The most cited publication was the in silico modeling, with 199 citations (Figure 3).
ATSDR’s participation in consortia and collaboration with national and international work-
ing groups had a significant impact. The most cited publications are related to model
development, and model application of computational modeling based on PBPK and
QSAR modeling were the next most cited. The significance of integrating multiple com-
putational toxicology modeling approaches and PBPK modeling, computational systems
biology, and fate and transport modeling that interpreted biomonitoring and epidemiologi-
cal data are also well represented, as seen in the citations. The details of support lent to
other ATSDR programs by simulation science publications are also described in this figure.

The future of computational modeling at ATSDR holds significant promise for advanc-
ing public health and human risk assessment. One key area of focus is the integration of
emerging technologies, such as artificial intelligence (AI) and machine learning, to enhance
the predictive capabilities of PBPK models [128–136]. In the future of simulation science,
AI could address public health concerns by supporting spatial modeling, risk and disease
prediction, and public health surveillance [137]. However, since the application of AI is a
currently evolving topic, future implementation at ATSDR will need to consider develop-
ment of infrastructure, training people to improve technical understanding of applications
and pitfalls, addressing the need for more data, and dealing with ethical and privacy
issues. This strategic direction aligns with the organization’s commitment to harnessing
advanced algorithms and vast amounts of data to provide more accurate predictions on
environmental chemical distribution, metabolism, and elimination in diverse populations.
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Additionally, there is a growing emphasis on incorporating genetic variability and
probabilistic risk assessment into PBPK models to better understand individual susceptibil-
ity to chemical toxicity or adverse health effects, which will address the issues of sensitive
populations and environmental justice. These advancements in PBPK modeling can poten-
tially revolutionize public health interventions by enabling personalized risk assessment
approaches and improving risk assessment strategies for environmental chemicals.

QSAR modeling has significantly advanced in predicting the potential toxicological
effects of chemicals on human health. However, several limitations and challenges hinder
its application in public health and human risk assessment. A major limitation is the lack of
comprehensive databases containing high-quality toxicity data. This limits the accuracy and
reliability of QSAR models. Additionally, QSAR models often do not account for complex
biological processes and interactions within the human body, resulting in uncertainties
when extrapolating results to real-life scenarios. Moreover, there is a need for standardized
protocols and guidelines to ensure consistency and reproducibility across different QSAR
studies. Addressing these limitations and challenges will be crucial for improving the
effectiveness and reliability of the use of QSAR models in public health and human risk
assessment. With the increasing need for accurate risk assessment in public health, there has
been a continuous effort to enhance the capabilities of QSAR models. Recent advances have
focused on improving these models’ accuracy, reliability, and applicability. One significant
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advancement is the integration of big data analytics and machine learning algorithms into
QSAR modeling. This allows researchers to analyze vast amounts of chemical data and
make more precise predictions of toxicity and exposure levels.

Another computational approach, benchmark dose modeling, plays a critical role in
evaluating the potential toxicity of chemicals and assessing human health risks associated
with chemical exposure. Advances in digital imaging, cell painting, and histopathology
data are now being explored for integration in dose–response analyses; however, it is impor-
tant to address potential risks when using extrapolated BMDL values outside of measured
exposure ranges [138–140]. BMD results should be retained for further consideration when
(1) the difference between the estimated BMD and its BMDL is not greater than 20 times
and (2) the estimated BMDL value is not less than 10 times the lowest non-zero dose
level [141]. Benchmark dose modeling can produce unrealistic BMD and BMDL values for
certain dose–response curves, particularly when the data provide little useful information
about the dose–response relationship [90]. The ideal solution is to collect additional data in
the dose range that the current studies have missed. If this is not possible and modeling
will not yield useful results, the NOAEL value is used as the POD, although the data
gaps and inherent limitations of that approach should be acknowledged [90]. Traditional
animal-based toxicology experiments are labor-intensive and time-consuming and lack
explanations for mechanisms. Chemical risk assessment is transitioning from an in vivo
observational to in vitro functional science through the use of omics technologies, named
toxicogenomics, for HTS [126,142,143]. The evolving landscape of HTS technologies and
New Approach Methodologies (NAMs) is driving the transition of the Tox21 initiative
towards more resource-efficient methods. With the U.S. EPA formerly set to eliminate all
testing in mammals by 2035 and the European Union banning animal testing on cosmetic
ingredients and finished products since 2013, the importance of benchmark dose modeling
and simulation science in these areas is amplified [144–146]. As we work toward ATSDR’s
mission, the future of the simulation science team in benchmark dose modeling will be
centered around leveraging the advancements in HTS and NAMs to enhance the accuracy,
efficiency, and cost-effectiveness of chemical toxicity evaluations.

Integrating PBPK/IVIVE models with benchmark dose modeling for in vitro data is
where simulation science can significantly contribute. These integrated models can bridge
the gap between in vitro and in vivo responses, provide valuable insights into chemical
exposures, and facilitate the refinement of risk assessments [147–153]. Moreover, apply-
ing the benchmark modeling approach to epidemiological data and its potential use in
interdisciplinary fields, such as interindividual variability assessment, offers promising
avenues for future research. The Simulation Science Section can collaborate with epidemiol-
ogists and other experts to explore and refine these methodologies, contributing to a more
comprehensive understanding of human health risks.

Recent research in computational systems biology has provided an innovative in silico
strategy to integrate computational systems biology, AI, and machine learning models
that may help to understand and propose mechanisms of action and adverse outcome
pathways, offering new insights in the interpretation of the interaction between chemical
exposure, genes, and diseases [154–157].

Environmental fate and transport modeling and water modeling play an integral role
in estimating the cumulative exposure of hazardous substances internalized by persons
expected to have come into contact with substances associated with hazardous waste
sites [95,96,101,104]. ATSDR estimates past exposures and uses population information
and biological sampling to determine current exposure levels. For example, modeled
drinking water concentration outputs that estimate past and current human exposure
can be integrated with PBPK models and used as inputs to help better determine human
health risks.

ATSDR is often involved in chemical emergencies and assessments of potential toxic
effects. Thus, building capacity in inhalation toxicity modeling and hazard forecasting is
an important aspect of the agency’s mission. However, achieving these goals is challenging.



Toxics 2024, 12, 811 17 of 24

Firstly, experimental data for TLE development are only available for a handful of volatile
hazardous chemicals. Therefore, the number of quality HGVs is limited. Research is
necessary to fill these data gaps, perhaps by leveraging other computational methods such
as in silico and pharmacokinetic modeling.

Industrial processes continually evolve, causing changes in the spectrum of chemical
pollution. According to the EPA Chemical Data Reporting (CDR) Program, the use of
chemicals has increased almost linearly in recent decades. There are approximately 300 new
chemicals added annually, reaching 8649 chemicals in 2020 [158]. Therefore, more chemicals
may deserve risk assessment reviews and chemical-specific HGVs. For example, there are
more than 20 isocyanate compounds on the 2020 CDR list, and many of these compounds
have not undergone comprehensive inhalation exposure risk assessments, and none have
HGVs developed. Thus, vast unexplored areas in inhalation toxicity modeling deserve
public health attention and further development.

Collaboration and data sharing are crucial to advance simulation science research at
ATSDR. By fostering collaboration among scientists, industry professionals, and regula-
tory agencies, ATSDR aims to leverage collective expertise and resources to improve the
assessment of chemical hazards. Through collaborative efforts, researchers can share com-
putational models, tools, and databases that aid in predicting toxicity [117,127]. This will
enable a more comprehensive evaluation of potential health risks associated with various
chemicals. By pooling resources, diverse datasets can be integrated into computational
models, enhancing their accuracy and applicability. Moreover, data-sharing initiatives
ensure transparency, acceptance, and reproducibility of methods in simulation science re-
search. Risk assessors and scientists can access shared datasets to validate findings or build
upon the existing knowledge. This facilitates the development of standardized approaches
that promote consistency across studies [119,123].

5. Conclusions

The Agency for Toxic Substances and Disease Registry uses computational modeling
to assist state and local health departments, federal agencies, academia, and public health
professionals. Specifically, ATSDR employs computational tools to support the investigation
and understanding of health effects from exposure to environmental chemicals. Simulation
science continues to evolve. Researchers are identifying new data sources and applying
cutting-edge modeling approaches to understand and interpret human chemical exposure.

ATSDR’s simulation science methods and tools provide the information needed for the
following tasks:

• Interpreting toxicological data for site- and chemical-specific health consultations and
exposure assessments;

• Interpreting emergency response activities;
• Interpreting applied toxicology research;
• Developing toxicological profiles;
• Assessing and filling chemical-specific data needs.

As research and technology advance rapidly, the promise of reducing the adverse
effects from exposure to chemicals on human health will become more attainable. This
will, in turn, expand the potential applications of simulation science approaches to benefit
the environment and human health. We intend to advance the growth of simulation
science approaches to support environmental and public health protection by promoting
the standardization of these methods as well as encouraging continued multidisciplinary
collaborative work in the field.
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68. Trawiński, J.; Skibiński, R. Photolytic and photocatalytic degradation of the antipsychotic agent tiapride: Kinetics, transformation
pathways and computational toxicity assessment. J. Hazard. Mater. 2017, 321, 841–858. [CrossRef] [PubMed]
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