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Abstract: In developing countries, vehicle emissions are a major source of atmospheric pollution,
worsened by aging vehicle fleets and less stringent emissions regulations. This results in elevated
levels of particulate matter, contributing to the degradation of urban air quality and increasing
concerns over the broader effects of atmospheric emissions on human health. This study proposes
a Hybrid Explainable Boosting Machine (EBM) framework, optimized using the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), to predict vehicle-related PM2.5 concentrations and analyze
contributing factors. Air quality data were collected from Open-Seneca sensors installed along the
Nairobi Expressway, alongside meteorological and traffic data. The CMA-ES-tuned EBM model
achieved a Mean Absolute Error (MAE) of 2.033 and an R2 of 0.843, outperforming other models.
A key strength of the EBM is its interpretability, revealing that the location was the most critical factor
influencing PM2.5 concentrations, followed by humidity and temperature. Elevated PM2.5 levels
were observed near the Westlands roundabout, and medium to high humidity correlated with higher
PM2.5 levels. Furthermore, the interaction between humidity and traffic volume played a significant
role in determining PM2.5 concentrations. By combining CMA-ES for hyperparameter optimization
and EBM for prediction and interpretation, this study provides both high predictive accuracy and
valuable insights into the environmental drivers of urban air pollution, providing practical guidance
for air quality management.

Keywords: air quality; PM2.5; explainable boosting machine; covariance matrix adaptation
evolution strategy

1. Introduction

Air pollution has become a pressing issue for both environmental sustainability and
and public health in developing nations, intensifying in recent decades due to rapid
industrial growth and urbanization [1,2]. Estimates show that nearly 7 million deaths
each year can be traced to exposure to fine particulate matter with a diameter of less
than 2.5 µm (PM2.5). Moreover, approximately 91% of the world’s population lives in
areas where PM2.5 concentrations surpass the acceptable limits of 10–20 µg/m3 [3,4]. Both
toxicological and epidemiological studies have established a strong association between
PM2.5 exposure and heightened risks of cardiovascular and respiratory ailments, alongside
an increased incidence of premature mortality linked to prolonged exposure [5–8]. The
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Global Burden of Disease (GBD) study ranks PM2.5 as the fifth leading risk factor for global
mortality, accounting for approximately 4.2 million premature deaths annually [9].

Many rapidly growing nations, such as Saudi Arabia, India, and China, face significant
challenges in managing air quality [10]. With high levels of transportation-related pollution,
industrial emissions, and energy use, these countries are taking steps to combat rising air
pollution as part of broader sustainability initiatives. Urban centers like Riyadh, Delhi, and
Beijing see elevated PM2.5 levels due to population growth and a heavy reliance on gasoline-
powered vehicles. To address these challenges, governments are promoting electric vehicles
(EVs) and improving public transportation infrastructure. For example, Saudi Arabia has
partnered with Lucid Motors to produce EVs domestically [11], while India and China
are expanding charging infrastructure and offering EV subsidies. Investment in public
transit, like Saudi Arabia’s Riyadh Metro and metro expansions in India and China, aims to
reduce vehicle emissions by decreasing private car reliance. These initiatives are expected
to significantly lower air pollutants such as PM2.5 and NOx, contributing to healthier
urban environments.

Rapid development across many African countries has led to significant urbanization
and a sharp rise in vehicle usage, thereby intensifying energy demand [12]. This growth has
profoundly impacted air quality, particularly concerning PM2.5 levels resulting from vehic-
ular emissions. Meteorological conditions are pivotal in intensifying PM2.5 concentrations,
as they influence the dispersion, dilution, and deposition of these fine particles [13–15].
Research indicates that unfavorable meteorological conditions can lead to elevated PM2.5
levels, even when emissions are reduced, compared with scenarios with more favorable
weather and higher emissions. Key factors such as fluctuations in humidity, wind speed,
atmospheric pressure, and temperature play a critical role in shaping the spatial and
temporal distribution of PM2.5 [16,17]. Furthermore, earlier studies have demonstrated
that vehicular emissions are a major contributor to PM2.5 pollution in the environment.
Specifically, vehicle-related PM2.5 accounts for 39.8% of the total PM2.5 concentration in
Shanghai, 16% in New York, and 26% in Beijing [18]. However, there is a scarcity of research
on vehicle-related PM2.5 emissions in developing countries. Therefore, this study seeks
to estimate the concentration of PM2.5 emissions from vehicles and assess the impact of
various traffic-related and environmental conditions on these emissions. We propose a new
approach using the Explainable Boosting Machine (EBM) framework [19], with hyperpa-
rameter fine-tuning achieved via the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [20]. This is motivated by the following objectives:

• The EBM model was selected due to its strong predictive capabilities in forecasting
PM2.5. Unlike black-box models, EBM maintains transparency and offers inherent
interpretability, allowing stakeholders to understand the contributing factors [21–24].

• EBM is a Generalized Additive Model (GAM) that provides high interpretability by
modeling feature effects independently. This aspect is crucial when assessing envi-
ronmental risks such as PM2.5, as it enables clear identification of how variables like
location, humidity, and temperature contribute to PM2.5 levels, providing actionable
insights for policymakers and planners.

• To ensure optimal performance, the hyperparameters of EBM are fine-tuned using
CMA-ES. CMA-ES is a robust evolutionary optimization algorithm known for effi-
ciently navigating complex, high-dimensional search spaces [25]. Compared with
traditional methods such as Grid Search or Random Search [26], CMA-ES is more adap-
tive and capable of handling non-linearities and interactions in the model, ensuring
that EBM achieves its best possible performance on the PM2.5 dataset.

This EBM-CMA-ES framework not only improves predictive accuracy but also pre-
serves model transparency, making it well-suited for forecasting PM2.5. It empowers both
prediction and interpretability, ensuring a comprehensive understanding of PM2.5 levels
and their contributing factors. Figure 1 illustrates the proposed EBM-CMA-ES framework.
The structure of this paper is organized as follows: Section 2 reviews the existing literature
on statistical and machine learning models used for predicting PM2.5 levels, focusing on
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their strengths and limitations. Section 3 provides a detailed description of the study
location and outlines the theoretical background of the methods employed, including the
EBM framework and the CMA-ES for hyperparameter optimization. Section 4 evaluates
and explains the model performance, conducts uncertainty analysis, and interprets the
results with a focus on the inherent interpretability of EBM. Finally, Section 5 presents the
conclusions and provides recommendations for future research and practical applications.
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2. Related Work

PM2.5 has emerged as a significant public health concern due to its adverse effects
on human health [27,28]. Extensive research highlights the crucial role of environmental
and atmospheric factors, such as temperature, humidity, and wind patterns, in shaping
ambient PM2.5 concentrations. To predict PM2.5 levels, various statistical models have been
employed, drawing on these meteorological variables. A notable example is a multiple
linear regression (MLR) model designed to estimate daily PM2.5 concentrations across
different monitoring stations in the western United States. This model incorporates factors
like prior day PM2.5 levels, fire radiative power, and aerosol optical depth from satellite
data, providing an effective tool for forecasting PM2.5 fluctuations in response to changing
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environmental conditions [29]. Another study utilized a Bayesian ensemble approach
to create a method that integrates aerosol optical depth (AOD) data from satellites with
chemical transport model (CTM) simulations, thereby improving PM2.5 estimation [30].
Another study also applied MLR to forecast PM2.5 levels by utilizing various risk factors,
including maximum and minimum noise, temperature, and humidity [31]. Statistical
models, particularly MLR, are widely utilized due to their interpretability and straight-
forwardness. However, they possess significant drawbacks. Traditional statistical models
are based on stringent assumptions, such as linearity, normality, homoscedasticity, and
independence of residuals. Violation of these assumptions can result in biased or inaccurate
outcomes. Additionally, these models often struggle with complex nonlinear relationships
and interactions that frequently occur in real-world datasets. This limitation arises from
their inherent structure, which is constrained by predefined assumptions and lacks the
flexibility needed to adapt to the multidimensional characteristics of practical data scenar-
ios where variables may not conform neatly to theoretical expectations. As a result, when
data exhibit intricate behaviors or interdependencies, conventional approaches may fail to
yield reliable or robust insights. Such limitations hinder their effectiveness in capturing
complex patterns compared with more adaptable methodologies. Furthermore, statistical
models may encounter challenges with large datasets or high-dimensional data due to
computational inefficiencies or risks of overfitting, particularly when not managed with
precision [32,33].

In contrast, Artificial Intelligence (AI) and, in particular, machine learning models,
is increasingly preferred for several reasons. Machine learning models are adept at man-
aging nonlinear and complex relationships more effectively than traditional statistical
approaches [34]. They can automatically detect interactions between variables without
explicit specification. The machine learning models are designed to handle large-scale data
and can be easily automated to learn from new data continuously, improving their predic-
tions over time [35]. Researchers around the world are increasingly turning to machine
learning models to predict PM2.5 concentrations. For instance, a study conducted in north-
ern Taiwan made use of the self-organizing map (SOM) technique. This approach clusters
high-dimensional data into a comprehensible two-dimensional topological map, effectively
highlighting the spatial and temporal distribution of PM2.5 levels. This method enhanced
the visualization and understanding of how PM2.5 concentrations fluctuate over different
locations and periods [36]. Another study employed a Random Forest (RF) model to esti-
mate the PM2.5 levels across China from 2005 to 2016. The proposed model significantly
outperformed traditional statistical regression models in capturing spatial variability and
reducing prediction errors at daily, monthly, and annual time scales [37]. Another similar
study conducted in various regions of China employed an ensemble machine learning
approach that combines Random Forest (RF), generalized additive models, and extreme
Gradient Boosting (XGBoost) and demonstrated a strong PM2.5 prediction accuracy [38].
In order to consider both machine learning and deep learning models, a study conducted
in the Hunan province of China utilized XGBoost and a fully connected neural network
(FCNN) to predict PM2.5 concentrations using data from meteorological parameters and
PM2.5 measurements. It was observed that the XGBoost model outperformed the neural
network in predicting PM2.5 [39]. A study conducted in Malaysia employed RF and Sup-
port Vector Machine (SVM) to estimate PM2.5 concentrations by combining satellite data,
ground-measured pollutants, and meteorological factors. The RF model performed better
than SVM in predicting PM2.5 [40]. In addition, deep learning models have also been used
to predict PM2.5 concentration. A study employed a weighted long short-term memory
extended model (WLSTME) to improve PM2.5 prediction accuracy by considering site
density and wind conditions. The WLSTME integrated neighbor site data, historical PM2.5
concentrations, and meteorological data, outperforming previous methods [41]. Similarly,
some other researchers employed deep convolutional neural networks (CNNs) to estimate
PM2.5 levels. This research involved generating a hallucinated reference image, computing
discrepancy maps, and predicting PM2.5 concentrations using extracted features [42]. An-
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other study employed deep learning-based recurrent neural networks (RNNs), including
Long Short-Term Memory (LSTM), Bi-LSTM (Bidirectional LSTM), and Bidirectional Gated
Recurrent Unit (Bi-GRU) models, alongside a CNN to predict PM2.5 concentration using
meteorological data from 2017 to 2019 from Taiwan [43].

To the best of our knowledge, no researcher has previously utilized the EBM in combi-
nation with the CMA-ES for predicting PM2.5 concentrations. Therefore, this study adopts
the EBM model to take advantage of its inherent interpretability and predictive capabilities.
By employing CMA-ES for hyperparameter tuning, the EBM model performance is further
enhanced, allowing it to achieve higher accuracy in PM2.5 prediction. In addition, the inher-
ent transparency of the EBM framework ensures that the model not only delivers accurate
predictions but also provides clear, interpretable insights into the influence of various input
features on PM2.5 levels, providing a deeper understanding of the contributing risk factors.

3. Materials and Methods
3.1. Study Location and Data

The Nairobi Expressway serves as a critical transportation corridor, connecting Nairobi’s
urban center to Jomo Kenyatta International Airport (JKIA). This 27 km (17 miles) six-lane
dual carriageway runs along the central reservations of Mombasa Road, beginning at
Mlolongo, extending through Uhuru Highway, and concluding at James Gichuru Road, as
illustrated in Figure 2. It is a vital route for commuters, particularly those traveling to and
from the airport.
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For this study, data collection was conducted at three strategically chosen locations
along the Nairobi Expressway corridor. Monitoring occurred for 12 h per day over
seven consecutive days, focusing on peak hours when traffic flow and related emissions
are most significant. To capture potential seasonal variations in PM2.5 concentrations, data
were collected during three distinct periods: 23–29 August 2021 (representing the dry
season), 13–18 December 2021 (peak holiday season), and 21–27 March 2022 (post-holiday,
also dry). August represents the dry season in Kenya, where PM2.5 levels may be elevated
due to reduced rainfall and increased dust resuspension. December coincides with the
peak holiday season, likely increasing traffic volumes and vehicle-related emissions. March,
as a dry month post holiday, allows for observations of typical daily traffic patterns and
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ambient air quality outside peak travel periods. Table 1 provides detailed descriptions of
these monitoring sites.

Table 1. Description and locations of sampling sites in Nairobi.

Sites Description Latitude Longitude

Westlands roundabout
(Site 1)

Located on Waiyaki Way, this is a three-lane highway in each direction
adjacent to the Westlands roundabout. The area experiences a high
proportion of personal vehicles and buses due to its central location and
proximity to residential neighborhoods

−1.26551 36.80268

Nyayo roundabout
(Site 2)

Situated in Bellevue, this is a three-lane highway in each direction. It is a
busy urban route with a balanced mix of personal and commercial
vehicles. Although congestion levels here are generally lower than at
Westlands, it experiences similar types of traffic.

−1.31940 36.83854

City Cabanas
(Site 3)

Positioned near the Airport North Road and Mombasa Road interchange,
this site has a three-lane highway in each direction. Given its proximity
to the airport and industrial areas, it sees a high volume of heavy
vehicles, including goods transport and delivery trucks.

−1.33573 36.89217

Traffic volumes were systematically recorded across various vehicle categories, includ-
ing motorcycles, passenger vehicles, buses, and goods vehicles of differing capacities (light,
medium, heavy, and articulated trucks). The comprehensive datasets were compiled on
ambient air pollutant concentrations using calibrated Open-Seneca sensors. The sensors
were calibrated before deployment by cross-referencing with a reference-grade air quality
monitoring station, involving both laboratory testing to establish baseline accuracy and
field calibration to account for environmental variables such as temperature and humidity.
This calibration process ensured that PM2.5 measurements were accurate and consistent
across the three monitoring locations. Along with pollutant data, hourly traffic volume, as
well as average vehicle speeds and meteorological parameters, including humidity, wind
speed, and temperature, were recorded to provide a holistic view of factors influencing air
quality along the Nairobi Expressway.

3.2. Hybrid EBM-CMA-ES Framework
3.2.1. Theoretical Overview of EBM

The EBM is an advanced machine learning model designed to balance high predictive
accuracy with interpretability. It combines the principles of the Generalized Additive Model
(GAM) and boosting algorithms to create a model that is both powerful and interpretable.
This makes EBM particularly useful in domains where understanding the rationale behind
predictions is crucial. The GAM represents the outcome as an additive function of the
predictors, allowing for straightforward interpretation. For any mth data point within
a data, the general form of a GAM is given in Equation (1).

y = φ0 + Σφm(xm) + ε (1)

where the following hold:

• y is the predicted outcome.
• φ0 is the intercept.
• φm(xm) are the shape functions for each feature xm.
• ε is the error term.

Each shape function φm(xm) captures the relationship between the feature xm and the
outcome y. This allows us to visualize and understand the effect of individual features on
the prediction. The boosting is an ensemble technique that enhances model performance
by combining multiple weak learners. The process involves training weak learners sequen-
tially, where each new learner focuses on correcting the errors of the previous ones. The
objective is to minimize a loss function, typically using gradient descent. The process EBM
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modeling begins with an initial prediction, often the mean of the target variable as given
by Equation (2)

ŷ(0) = y (2)

where the following hold:

• ŷ(0) is the initial prediction.
• y is the mean of the target variable.

The model iteratively refines the predictions by learning shape functions for each
individual feature. Each iteration t involves computing residuals, fitting weak learn-
ers, updating shape function, and updating predictions. The residuals are calculated as
the difference between the actual target values and the current predictions as shown in
Equation (3).

r(t) = y− ŷ(t−1) (3)

where the following hold:

• r(t) is the residual at iteration t.
• y is the actual target value.
• ŷ(t−1) is the prediction from the previous iteration.

For each feature xi, fit a weak learner (e.g., a decision tree) to the residuals. This step
focuses on learning the shape function that φm(xm) best explains the residuals for that
feature as given by Equation (4).

φ
(t)
m (xm)← FitWeakLearner

(
r(t), xm

)
(4)

It is then followed by updating the shape functions for each individual feature by
adding the contribution from the current iteration, scaled by a learning rate η as given by
Equation (5).

φm(xm)← φm(xm) + η·φ(t)
m (xm) (5)

where the following hold:

• φm(xm) is the updated shape function for feature xm.
• η is the learning rate, controlling the step size of the update.

It also includes two-dimensional interactions between the features. The two-dimensional
interactions can be rendered as heat-maps on a two-dimensional plane, the model that in-
cludes two-dimensional interaction is also interpretable. Thus, the overall prediction
may be updated by adding the contributions from the updated shape functions and
two-dimensional interaction, as given by Equation (6).

ŷ(t) = ŷ(t−1) +
(M)

∑
m=‘

f (t)m (xm)+
(M)

∑
m=1

(N)

∑
n=1‘

f (t)m,n(xm, xn) (6)

where the following hold:

• ŷ(t) is the updated prediction at iteration t.

•
(M)

∑
m=‘

f (t)m (xm) captures the contributions from each individual feature.

•
(M)

∑
m=1

(N)

∑
n=1‘

f (t)m,n(xm, xn) captures the contributions from interactions between pairs of features.

The iterative process continues until a stopping criterion is met. Common stopping
criteria include (1) maximum number of iterations T; (2) convergence of the loss function,
i.e., when changes in the loss function fall below a certain threshold. The iteration process
stops when t ≥ T or ∆Loss < ε, where t ≥ T is the maximum number of iteration, and ε is
the threshold for convergence.
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3.2.2. Interpretation of EBM

One of the key interpretability features of EBM is the shape functions φm(xm). Each
shape function represents the relationship between a feature and the target variable. These
functions can be visualized to understand how changes in a feature affect the prediction.
For instance, if φm(xm) is a straight line, it indicates a linear relationship between xm and y.
In the case where φm(xm) is a curve, it indicates a nonlinear relationship, capturing more
complex interactions between xm and y. The additive nature of EBM allows for a clear
interpretation of each feature’s contribution to the final prediction. By examining the shape
functions, one can see how each feature influences the outcome. A positive slope in φm(xm)
indicates that higher values of xm lead to higher predicted values of y. A negative slope in
φm(xm) indicates that higher values of xm lead to lower predicted values of y. The pairwise
interaction involve heatmaps or contour plots, where xm and xn are on the axes, and the
calculated f (xm, xn) values fill the plot. This visualization helps in understanding which
combinations of m and n contribute most to the outcome.

3.2.3. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

CMA-ES is an advanced evolutionary algorithm specifically developed for optimiza-
tion in continuous parameter spaces. It is part of the evolution strategies family, inspired by
the principles of natural evolution. It adapts the covariance matrix of the search distribution
to effectively explore the search space, concentrating on the most promising regions. The
algorithm iteratively updates a population of candidate solutions, utilizing a multivariate
normal distribution whose mean and covariance matrix are dynamically adjusted based on
the performance of the selected solutions.

The core principle of CMA-ES is to represent the search distribution as a multivariate
Gaussian, with its mean and covariance matrix being iteratively refined. It starts with
an initial mean vector mo and covariance matrix Co and set initial step-size σo and popula-
tion size λo. Generate offspring by sampling from a multivariate normal distribution as
given by Equation (7)

xk ∼ N
(

mt, σ2
t Ct

)
(7)

where mt is the mean vector, σt is the step-size, and Ct is the covariance matrix at iteration t.
Evaluate the objective function f (xk) for each offspring xk. Select the top µ solutions based
on their fitness values to form a new mean as shown by Equation (8)

mt+1 =
µ

∑
i=1

ωixi (8)

where ωi denotes the weights allocated to each selected solution. The covariance matrix
Ct+1 is updated and step-sizes σt+1 are represented by Equations (9) and (10), respectively.

Ct+1 = (1− cc)Ct + cc

µ

∑
i=1

ωi(xi −mt)(xi −mt)
T (9)

σt+1 = σt exp
(

cσ

dσ

(
∥ pc,t+1 ∥

E ∥ N(0, 1) ∥ − 1
))

(10)

where cc, cσ, and dσ represent the learning rates, and pc,t+1 denote the evolution path.
Continue the process until the convergence criteria are met, such as attaining the maximum
number of iterations or achieving the desired fitness level.

For the EBM model, the key hyperparameters requiring careful optimization include
the learning rate, the maximum number of bins, the maximum number of interaction bins,
and the number of boosting iterations [44]. The learning rate determines the step size at
each boosting iteration. A lower learning rate allows the model to learn more gradually,
reducing the risk of overfitting and often improving accuracy, while a higher learning rate
speeds up training but may compromise EBM model accuracy. The maximum number of
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bins defines the number of discrete bins used to partition continuous features. A higher
number of bins allows for more detailed feature representation but increases EBM model
complexity. This parameter affects how well the model captures variable interactions and
feature effects. The maximum number of interaction bins controls the number of bins
used specifically for pairwise feature interactions, allowing the model to capture important
dependencies between features. Optimizing this parameter enhances the EBM model’s
ability to capture complex feature relationships without overcomplicating the structure.
The number of boosting iterations refers to the total number of boosting rounds. Too few
iterations can lead to underfitting, as the model may not fully capture data patterns, while
too many can cause overfitting by making the model overly complex.

3.3. Competitive Machine Learning Models

In addition to EBM, several other machine learning models were used to analyze PM2.5
concentration, including XGBoost, RF, LightGBM, and AdaBoost. Each model has distinct
strengths. XGBoost and LightGBM are both gradient-boosting techniques optimized for
efficiency, while Random Forest is known for its robustness in various tasks. AdaBoost, on
the other hand, is useful for improving weak learners through iterative weighting. Table 2
shows the summary table of different machine learning models.

Table 2. Summary Table of different machine learning models.

Model Acronym Key Features Primary Applications

Extreme Gradient Boosting XGBoost

− Utilizes gradient boosting with
regularization

− Highly efficient and optimized for
large datasets

− Handles missing values automatically

Regression and classification
tasks, especially with
structured/tabular data

Random Forest RF

− Ensemble of decision trees with
bootstrapping (bagging)

− Reduces overfitting by
averaging predictions

− Robust to noise and outliers

Broad use in classification and
regression, especially for
feature importance analysis

Light Gradient Boosting
Machine LightGBM

− Optimized for speed and efficiency,
handles large datasets

− Uses leaf-wise tree growth
− Highly effective for sparse data

High-dimensional data in
classification and regression,
effective with large datasets

Adaptive Boosting AdaBoost

− Sequentially combines weak learners to
form a strong model

− Focuses on errors of previous models
− Works well with simple base estimators

Binary classification and
situations requiring model
interpretability

3.4. Performance Measures

For evaluating the performance of regression models in machine learning, several
metrics are commonly used. These include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Mean Squared Error (MSE), and the coefficient of determination
(R2). Each metric provides different insights into the accuracy and performance of a model.
MAE quantifies the mean magnitude of prediction errors within a dataset, disregarding the
directionality of these errors. Specifically, it computes the average across a test sample of the
absolute variances between each predicted value and its corresponding actual observation,
treating all individual variances uniformly, as given in Equation (11).

MAE =
1
n∑n

i=1|yi − ŷi| (11)
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MSE calculates the average of the squared differences between estimated values and
the actual values. This metric represents the mean square error across the dataset, as
specified in Equation (12).

MSE =
1
n∑n

i=1(yi − ŷi)
2

(12)

RMSE represents the square root of the average of squared errors, as shown in
Equation (13). It serves as a measure of the accuracy with which the model predicts
the response.

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2

(13)

R2, also known as the coefficient of determination, measures the proportion of variance
in the dependent variable that is predictable from the independent variables. It quantifies
how closely data points align with the fitted regression line, as shown in Equation (14).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (14)

where the following hold:

• n is the number of data points.
• yi is the actual value.
• ŷi is the predicted value.
• yi is the mean of the actual values y.

4. Results and Discussion

This study utilizes air quality data collected from sensors positioned along the Nairobi
Expressway, supplemented by meteorological and traffic data, including humidity, hourly
temperature, average traffic volume, average vehicle speed, wind speed, and site location.
To handle missing values in the dataset, the K-Nearest Neighbors (KNNs) method was
applied, imputing the missing data points based on the similarity of neighboring values [45].
This approach preserves the dataset’s overall quality, making it more robust for predictive
modeling. The dataset was divided into two subsets: 70% of the data was allocated for
training and validation, while the remaining 30% was reserved for testing. This split
follows a widely accepted machine learning practice, enabling model development and
hyperparameter tuning on the training–validation set, while the test set remains unseen for
performance evaluation.

For the model development, the EBM was employed with hyperparameter optimiza-
tion performed through the CMA-ES. The EBM’s inherent interpretability was a key factor
in its selection, as it allows for transparent analysis of feature contributions to the predic-
tions. The performance of the EBM model was evaluated on the test set and compared
with several alternative machine learning models, including RF [46], XGBoost [47], Light-
GBM [48], AdaBoost [49], and the MLR [50]. Among the features used in this study, site
location was treated as a categorical variable, where Westlands Roundabout (Site 1) was
encoded as 0, Nyayo Roundabout (Site 2) as 1, and City Cabanas (Site 3) as 2. All models
were implemented in Python 3.7.1, with Table 3 presenting the descriptive statistics for the
input factors used in the analysis. As discussed previously, a 12 h daily monitoring was
conducted for each of the three sites. Consequently, Figure 3 illustrates the average PM2.5
concentration at different times of the day.
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Table 3. Summary statistics for different input factors.

Factors
Descriptive Statistics

Mean Standard Deviation Min Max

Humidity (%) 37.52 14.95 15.33 70.16
Temperature (◦C) 28.75 6.53 18.86 44.07
Average Traffic Volume (veh/hr) 1379.05 655.16 342 3213
Average Vehicle Speed (km/hr) 46.41 9.71 24.7 62.18
Wind Speed (m/s) 6.61 3.83 2.95 11.75
Location 0.94 0.79 0 2

Toxics 2024, 12, x FOR PEER REVIEW 11 of 26 
 

 

location. To handle missing values in the dataset, the K-Nearest Neighbors (KNNs) 
method was applied, imputing the missing data points based on the similarity of neigh-
boring values [45]. This approach preserves the dataset’s overall quality, making it more 
robust for predictive modeling. The dataset was divided into two subsets: 70% of the data 
was allocated for training and validation, while the remaining 30% was reserved for test-
ing. This split follows a widely accepted machine learning practice, enabling model de-
velopment and hyperparameter tuning on the training–validation set, while the test set 
remains unseen for performance evaluation. 

For the model development, the EBM was employed with hyperparameter optimiza-
tion performed through the CMA-ES. The EBM’s inherent interpretability was a key factor 
in its selection, as it allows for transparent analysis of feature contributions to the predic-
tions. The performance of the EBM model was evaluated on the test set and compared 
with several alternative machine learning models, including RF [46], XGBoost [47], 
LightGBM [48], AdaBoost [49], and the MLR [50]. Among the features used in this study, 
site location was treated as a categorical variable, where Westlands Roundabout (Site 1) 
was encoded as 0, Nyayo Roundabout (Site 2) as 1, and City Cabanas (Site 3) as 2. All 
models were implemented in Python 3.7.1, with Table 3 presenting the descriptive statis-
tics for the input factors used in the analysis. As discussed previously, a 12 h daily moni-
toring was conducted for each of the three sites. Consequently, Figure 3 illustrates the 
average PM2.5 concentration at different times of the day. 

 
 

(a) (b) 

  
(c) (d) 

Figure 3. Cont.



Toxics 2024, 12, 827 12 of 24Toxics 2024, 12, x FOR PEER REVIEW 12 of 26 
 

 

 
 

(e) (f) 

 
 

(g) (h) 

 

 

(i)  

Figure 3. Twelve-hour daily variation in average PM2.5  at different sites along Nairobi expressway. 

Table 3. Summary statistics for different input factors. 

Factors Descriptive Statistics 
Mean Standard Deviation Min Max 

Humidity (%) 37.52 14.95 15.33 70.16 
Temperature (°C) 28.75 6.53 18.86 44.07 
Average Traffic Volume (veh/hr) 1379.05 655.16 342 3213 
Average Vehicle Speed (km/hr) 46.41 9.71 24.7 62.18 
Wind Speed (m/s) 6.61 3.83 2.95 11.75 
Location 0.94 0.79 0 2 

  

Figure 3. Twelve-hour daily variation in average PM2.5 at different sites along Nairobi expressway.

4.1. Fine-Tuning of Hyperparameters via CMA-ES

To optimize the performance of the EBM model, hyperparameters were fine-tuned
using the CMA-ES [51]. The primary objective of the tuning process was to maximize the
R2 value, a metric that indicates the predictive performance of the model by measuring the
proportion of variance explained by the model predictions for comparative purposes, and
the hyperparameters of other models, including XGBoost, RF, LightGBM, and AdaBoost,
were also optimized. The best hyperparameters identified for the EBM model and other
comparative models are summarized in Table 4.
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Table 4. Hyperparameters of different machine learning models.

Models Hyperparameters Range Optimal Values

EBM

n_estimators [100, 500] 140
max_bins [120, 250] 185

max_interaction_bins [30, 120] 70
learning_rate [0.01, 0.1] 0.08

XGBoost
learning_rate [0.01, 0.15] 0.08
n_estimators [50, 1000] 600.0

RF
n_estimators [50, 1000] 420.0
max_depth [2, 12] 7.0

LightGBM learning_rate [0.01, 0.15] 0.13
n_estimators [50, 1000] 800.0

AdaBoost
learning_rate [0.01, 0.15] 0.06
n_estimators [50, 1000] 180.0

4.2. Prediction Results and Comparative Analysis

The comprehensive performance evaluation across multiple machine learning models,
as shown in Table 5, presents the performance metrics for predicting PM2.5 concentrations.
Among all models, the EBM, fine-tuned using the CMA-ES, demonstrated the most robust
and accurate predictions. EBM outperformed the other models in both the training and
testing datasets, with lower error rates and higher R2 values, highlighting its predictive
superiority and robustness. The EBM-CMA-ES model achieved an MAE of 1.615 on the
training set and 2.033 on the testing set, an MSE of 15.539 on the training set and 28.134 on
the testing set, an RMSE of 3.942 on the training set and 5.304 on the testing set, and an R2

of 0.904 on the training set and 0.843 on the testing set. These results confirm that the EBM
model not only performs well on the training data but also generalizes effectively to unseen
data, making it highly suitable for PM2.5 concentration forecasting.

Table 5. Performance evaluation of EBM, other competitive machine learning models, and
a statistical MLR.

Models
Training Dataset Testing Dataset

MAE MSE RMSE R2 MAE MSE RMSE R2

EBM 1.61 15.53 3.94 0.90 2.03 28.13 5.30 0.84
XGBoost 3.58 31.56 5.62 0.81 3.84 34.58 5.88 0.78

RF 4.26 38.29 6.19 0.77 4.52 40.79 6.39 0.74
LightGBM 4.13 33.68 5.8 0.80 4.27 34.4 5.87 0.78
AdaBoost 7.01 74.39 8.63 0.55 6.75 68.18 8.26 0.57

MLR 7.55 97.98 9.95 0.41 7.23 89.12 9.44 0.43

In comparison, the second-best-performing model was XGBoost, which delivered
an MAE of 3.58 on the training set and 3.84 on the testing set, an MSE of 31.56 on the
training set and 34.58 on the testing set, an RMSE of 5.62 on the training set and 5.88 on
the testing set, and an R2 of 0.813 on the training set and 0.782 on the testing set. While
XGBoost showed relatively strong performance, its error rates were higher, and its R2

values were lower than those of the EBM model, indicating that it was less effective at
capturing the underlying patterns in the data. At the other end of the spectrum, the MLR
model displayed the weakest performance. It yielded an MAE of 7.55 on the training set
and 7.23 on the testing set, an MSE of 97.98 on the training set and 89.12 on the testing
set, an RMSE of 9.95 on the training set and 9.44 on the testing set, and an R2 of 0.418 on
the training set and 0.438 on the testing set. These results indicate that MLR struggled to
capture the complex relationships within the dataset, making it the least suitable model for
predicting PM2.5 concentrations.

The prediction error plots in Figure 4 provide a clear visualization of the performance
differences among the various models. These plots compare predicted values with actual
data points, with a 45-degree reference line representing perfect predictions. The hybrid
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EBM-CMA-ES model stands out due to its close alignment with the reference line, both
in the training and testing datasets. The dense clustering of data points along the line
highlights the model’s high accuracy and low error, reinforcing its superior performance
in predicting PM2.5 levels. In contrast, the prediction error plots for alternative models,
including XGBoost, Random Forest, LightGBM, AdaBoost, and MLR, show greater dis-
persion of points around the 45-degree line. This scattering reflects their comparatively
lower predictive accuracy, with more variability in their ability to match actual values.
The broader distribution of data points away from the ideal line demonstrates that these
models, while still effective to varying degrees, are less reliable than the EBM-CMA-ES
model in accurately forecasting PM2.5 levels.
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4.3. Uncertainty Analysis

The uncertainty analysis evaluates the variability and reliability of each machine
learning model’s predictions by comparing the ratio of predicted PM2.5 concentrations
to observed PM2.5 concentrations against the observed values. Figure 5a–f present these
ratios for each model, while Table 6 summarizes the mean ratio and standard deviation for
each model.
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Table 6. Uncertainty analysis in terms of mean ratio and standard deviation of data points.

Models Mean Standard Deviation

EBM 1.0024 0.178
XGBoost 0.942 0.195
RF 0.926 0.221
LightGBM 0.934 0.199
AdaBoost 0.786 0.304
MLR 0.772 0.313

In Figure 5, the plot for each model provides a visual representation of how well the
model’s predictions align with the observed PM2.5 values. For instance, Figure 5a shows
that the EBM model has the most consistent performance, with the ratio of predicted to
observed PM2.5 values clustering tightly around 1.0, indicating minimal deviation from
the observed values. In contrast, Figure 5e,f, which represents the AdaBoost and MLR
models, respectively, shows more scattered data points, suggesting higher variability in
predictions. Table 6 further supports this observation by providing the mean ratio and
standard deviation for each model’s predictions. The EBM model has a mean ratio close
to 1.0024, indicating near-perfect accuracy and a relatively low standard deviation of
0.178, which confirms the model’s high precision and reliability. Similarly, the XGBoost
and LightGBM models perform reasonably well, with mean ratios of 0.942 and 0.934,
respectively, and moderate standard deviations, highlighting their stability. However,
the AdaBoost and MLR models show considerably higher uncertainty, with mean ratios
of 0.786 and 0.772, respectively, and the highest standard deviations (0.304 and 0.313).
This indicates that these models have larger deviations in predictions, suggesting lower
reliability and less accuracy in forecasting PM2.5 concentrations.

4.4. EBM Interpretation

In this section, we interpret our proposed EBM model, which emerged as the best-
performing model for PM2.5 prediction. By employing the EBM model’s inherent inter-
pretability, we are able to gain valuable insights into the factors that contribute to PM2.5
concentrations. We begin with a global interpretation by examining the feature impor-
tance plot and then proceed to local interpretations to explore how these factors affect
individual predictions.

4.4.1. EBM Global Interpretation

The feature importance plot, as shown in Figure 6, generated from the EBM model,
provides a ranked list of features based on their impact on the model’s predictions. The top
three most significant individual factors contributing to PM2.5 concentration predictions
are location, humidity, and temperature, each of which plays a distinct role in PM2.5
forecasting. Location stands out as the most critical factor in the model. This is likely
because different locations along the Nairobi Expressway experience varying levels of
pollution due to local sources such as traffic density, industrial activities, and proximity
to urban centers. Location-specific factors like the presence of high-emission vehicles or
specific meteorological conditions at certain sites could explain why this feature is highly
influential. Humidity is the second most significant feature. Its importance likely stems
from its ability to influence the behavior of airborne particles. High humidity can lead to the
aggregation of particulate matter, increasing PM2.5 concentrations. Alternatively, during
low humidity conditions, dry air can enhance the resuspension of particles from surfaces,
further elevating PM2.5 levels. Therefore, fluctuations in humidity are strongly tied to
changes in air pollution. Similarly, Temperature is the third most important individual
feature. The relationship between temperature and PM2.5 levels could be attributed to
several factors, including the impact of temperature on atmospheric mixing and chemical
reactions. Warmer temperatures may reduce the stability of the atmosphere, allowing
pollutants to disperse more easily, while cooler temperatures could trap pollutants closer
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to the ground. Furthermore, temperature can affect the formation of secondary particles,
which contribute to PM2.5 levels.
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In addition, the most significant interaction term is between humidity and hourly
traffic volume, indicating that the combined effect of these two features plays an important
role in PM2.5 concentration levels. This interaction likely highlights the dual impact of traffic
emissions and atmospheric conditions. Increased traffic volume results in higher emissions
of particulate matter, particularly from combustion engines. When traffic levels rise, PM2.5
concentrations are expected to increase. The interaction with humidity suggests that the
effect of traffic on PM2.5 concentrations may vary depending on the moisture content in
the air. Under high humidity conditions, the particles emitted by vehicles could cluster
more easily, resulting in higher recorded PM2.5 levels. Conversely, at lower humidity levels,
the particles might behave differently, potentially reducing their clustering but increasing
their dispersal.

Figure 7 illustrates the impact of three key locations, including Westlands Roundabout
(Location 1), Nyayo Roundabout (Location 2), and City Cabanas (Location 3), on PM2.5
concentrations. At the Westlands Roundabout, the score is strongly positive, around 10,
indicating that this location contributes significantly to higher PM2.5 levels, likely due
to heavy traffic and congestion. In contrast, Nyayo Roundabout shows a sharp drop in
the score to around −10, reflecting a negative impact on PM2.5 levels, possibly due to
smoother traffic flow or more favorable environmental conditions, which help reduce
pollution. Lastly, City Cabanas has a score close to 0, suggesting a neutral impact on PM2.5
concentrations, with minimal influence on pollution levels. The filled blue areas highlight
the magnitude of these effects, with Westlands being a significant contributor to pollution,
Nyayo acting as a reducer, and City Cabanas having a negligible impact.

Similarly, Figure 8 illustrates the relationship between humidity and its impact on
PM2.5 concentrations. As humidity increases from 15 to 65, its influence on PM2.5 levels fluc-
tuates in a nonlinear pattern. Initially, at lower humidity levels around 15 to 25, the score
shows a slight positive contribution, indicating a modest effect on PM2.5 concentrations.
As humidity rises to around 30, the score dips briefly, showing that moderate humidity has
a reducing effect, leading to a temporary decrease in concentrations. However, as humidity
continues to increase beyond 35, the score rises significantly, indicating that higher humid-
ity levels have a more pronounced positive impact on PM2.5 concentrations. This illustrates
that when humidity reaches around 40 to 55, the concentration of PM2.5 particles increases
considerably. Mechanisms such as particle deliquescence and aqueous-phase chemical
reactions play their roles at elevated humidity. Deliquescence occurs when hygroscopic
particles absorb moisture at specific humidity thresholds, transitioning from solid to aque-
ous phases, which enhances their ability to act as reaction sites for atmospheric chemicals.
This process facilitates the formation of secondary inorganic aerosols, notably ammonium
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nitrate, under humid conditions. Research indicates that ammonium nitrate formation
is more efficient in moist environments due to the increased solubility and reactivity of
precursor gases like ammonia and nitric acid in aqueous aerosols [52]. Furthermore, studies
have shown that the deliquescence and efflorescence relative humidities of aerosol particles
are critical in determining their phase states and subsequent chemical reactivity, directly
impacting PM2.5 levels [53]. The score peaks at the highest humidity levels, around 55 to
60, although the upward trend diminishes slightly towards the end, implying that while
very high humidity still increases PM2.5 levels, the effect stabilizes.
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Figure 8. Influence of humidity on PM2.5 concentrations.

Figure 9 illustrates the relationship between temperature and its impact on PM2.5
concentrations. As the temperature increases from 15 to 40, the score shows a clear down-
ward trend. Initially, at lower temperatures, particularly between 15 and 20, the score rises
significantly, indicating a strong positive influence on PM2.5 concentrations. However, as
temperatures exceed 20, the score begins to decline and eventually drops below 0 around
30, suggesting that higher temperatures have a diminishing effect, leading to no impact
on PM2.5 levels. This trend implies that as temperatures rise, the environment’s capacity
to maintain or increase PM2.5 concentrations decreases. The shaded area under the curve
highlights the range of scores corresponding to specific temperature intervals, with the light
green shading emphasizing the transition from a positive influence to a neutral or negative
effect. Overall, the plot indicates that while lower temperatures contribute significantly
to PM2.5 concentrations, higher temperatures are associated with a reduction in influence,
ultimately leading to negligible effects on pollution levels.



Toxics 2024, 12, 827 19 of 24
Toxics 2024, 12, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 9. Influence of temperature on PM2.5 concentrations. 

In the case of feature interaction, the EBM heatmap illustrates the interaction between 
humidity and hourly traffic volume, with a color gradient indicating the corresponding 
interaction scores, as shown in Figure 10. Areas with humidity levels below 40 are pre-
dominantly shaded in purple, illustrating a minimal effect on PM2.5 concentrations. In con-
trast, as humidity increases to between 40 and 60, the colors transition to yellow and or-
ange, indicating a strong positive influence on PM2.5 levels, particularly when combined 
with high traffic volumes (above 1500). This shows that optimal conditions for higher 
PM2.5 concentrations occur within this humidity and traffic volume range. The heatmap 
effectively communicates that higher humidity and traffic volumes can exacerbate air pol-
lution, making it essential to monitor these parameters for effective environmental man-
agement. 

 
Figure 10. EBM-based heatmap for the interaction of humidity and hourly traffic volume. 

4.4.2. EBM Local Interpretation 
In addition to providing a global interpretation of the overall model’s behavior, the 

EBM can also be used for local interpretation, offering insights into how individual fea-
tures influence the prediction for specific samples. In this study, we consider two ran-
domly selected samples, i.e., sample #12 and sample #38 of the testing dataset. For sample 
#12, as shown in Figure 11, the model reveals the contributions of various factors to the 
predicted outcome of 27.8, allowing us to understand the specific impact of the most im-

Figure 9. Influence of temperature on PM2.5 concentrations.

In the case of feature interaction, the EBM heatmap illustrates the interaction between
humidity and hourly traffic volume, with a color gradient indicating the corresponding
interaction scores, as shown in Figure 10. Areas with humidity levels below 40 are predom-
inantly shaded in purple, illustrating a minimal effect on PM2.5 concentrations. In contrast,
as humidity increases to between 40 and 60, the colors transition to yellow and orange,
indicating a strong positive influence on PM2.5 levels, particularly when combined with
high traffic volumes (above 1500). This shows that optimal conditions for higher PM2.5
concentrations occur within this humidity and traffic volume range. The heatmap effec-
tively communicates that higher humidity and traffic volumes can exacerbate air pollution,
making it essential to monitor these parameters for effective environmental management.
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4.4.2. EBM Local Interpretation

In addition to providing a global interpretation of the overall model’s behavior, the
EBM can also be used for local interpretation, offering insights into how individual features
influence the prediction for specific samples. In this study, we consider two randomly
selected samples, i.e., sample #12 and sample #38 of the testing dataset. For sample #12, as
shown in Figure 11, the model reveals the contributions of various factors to the predicted
outcome of 27.8, allowing us to understand the specific impact of the most important
features in this case. The feature with the strongest positive contribution is location (0.00),
which adds 10 units to the prediction. This indicates that the sample’s location is a key
driver in increasing the predicted value.
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On the other hand, humidity (19.80) has a significant negative contribution of approx-
imately −19.8 units, showing that the humidity levels, in this case, strongly reduce the
prediction. Finally, wind speed (5.40) also contributes negatively, lowering the predicted
value by −5.4 units, showing that higher wind speeds are associated with a reduction
in the outcome for this sample. In this local interpretation, we see that while location
plays a major positive role, humidity and wind speed act as substantial negative influ-
ences, shaping the final prediction together. This level of insight helps to explain why the
model predicted 27.8 for this particular sample, providing transparency into the model’s
decision-making process.

This local interpretation plot for sample #38 highlights how the top three factors,
temperature (38.20), location (0.00), and humidity (22.50), contribute to the model’s pre-
dicted value of 10.4, which is close to the actual value of 10.1, as shown by Figure 12.
Temperature (38.20) has the strongest negative influence on the prediction, reducing it by
approximately −10 units. This suggests that higher temperatures in this specific case lead
to a lower predicted outcome, making temperature one of the key drivers pushing the
prediction downward.
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In contrast, location (0.00) has a significant positive impact, contributing about five units
to the prediction. The specific location of this sample plays a major role in increasing the
predicted value, offsetting some of the negative effects from other factors. On the other
hand, humidity (22.50) has a substantial negative contribution, lowering the prediction by
about −7 units. This indicates that higher humidity levels for this sample are associated
with a decrease in the predicted value. Together, these three factors explain much of the
predicted outcome, with temperature and humidity reducing the value while location
increases it.

5. Conclusions and Recommendations

This study developed a Hybrid Explainable Boosting Machine (EBM) framework,
optimized with the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), to predict
vehicle-related PM2.5 concentrations along the Nairobi Expressway. The model effectively
captured the influence of environmental and traffic-related factors, providing both high
predictive accuracy and interpretability. The findings provide valuable insights for air
quality management in developing urban areas:

• The EBM-CMA-ES model was the best-performing model, achieving an MAE of 2.033
and an R2 of 0.843 on the testing set, significantly outperforming alternative models
like XGBoost, RF, and MLR.

• The MLR model performed the worst, with an MAE of 7.226 and an R2 of 0.438, indi-
cating its limitations in capturing the complex relationships between environmental
factors and PM2.5 levels.

• Based on the EBM global interpretation results, location was identified as the most crit-
ical factor influencing PM2.5 concentrations, with areas near the Westlands roundabout
showing the highest levels, likely due to traffic congestion.

• Humidity was found to have a strong positive effect on PM2.5 levels, with medium
to high humidity linked to increased particle concentrations. Elevated humidity
promotes hygroscopic growth, enabling fine particles to absorb water, increasing their
size and mass, which elevates PM2.5 concentrations. Humidity also enhances aerosol
acidity, facilitating secondary aerosol formation. These processes make humidity
a critical factor in increasing PM2.5 levels [54]. Temperature showed an inverse
relationship with PM2.5 concentrations, where higher temperatures were associated
with reduced PM2.5 levels, likely due to enhanced atmospheric mixing.

• The interaction between humidity and traffic volume was significant, demonstrating
that high traffic volume combined with increased humidity results in higher PM2.5
concentrations, highlighting the need for targeted interventions in such conditions.

5.1. Limitations of Study

This study has several limitations that may affect the generalizability and scope of its
findings. Firstly, data were only collected from three monitoring sites along the Nairobi
Expressway. This limited spatial coverage may reduce the model’s ability to generalize
to other urban regions with varying traffic patterns and environmental conditions. Areas
with different road configurations, traffic intensities, or urban layouts may exhibit different
PM2.5 concentrations, which the current study does not capture.

Moreover, this study considered a limited set of meteorological variables, including hu-
midity, temperature, and wind speed, and did not incorporate other potentially significant
factors, such as atmospheric pressure, precipitation, or pollutant interactions. The absence
of these variables may lead to an incomplete understanding of the factors influencing PM2.5
concentrations. Additionally, the model did not account for temporal dynamics, meaning it
did not consider how traffic patterns or weather conditions change over time (e.g., during
different seasons or times of the day), which could further affect PM2.5 levels.
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5.2. Future Recommendations

To enhance the accuracy and generalizability of the hybrid EBM-CMA-ES model,
future studies should focus on extending data collection over longer periods to capture
seasonal and long-term variations in air quality and traffic patterns. By increasing the
duration of data collection, the model can be more robust in accounting for temporal
dynamics, which are essential for understanding how factors like traffic volume and
meteorological conditions fluctuate over time. Additionally, expanding sensor coverage by
deploying more air quality monitoring stations along the expressway and in surrounding
areas will provide a more comprehensive understanding of PM2.5 distribution. This will
allow for a finer spatial analysis and improve the model’s ability to generalize to other
urban environments.

Incorporating additional meteorological factors, such as atmospheric pressure, pre-
cipitation, and solar radiation, will further enhance the model’s predictive capability
by accounting for a broader range of environmental influences on PM2.5 concentrations.
Policy interventions should be targeted in high-risk areas, such as the Westlands round-
about, particularly during periods of high traffic and humidity, when PM2.5 levels are
likely to peak. Future research should also explore the use of temporal models to account
for time-dependent changes in traffic and weather conditions, improving the accuracy
of air pollution forecasts and aiding in more informed decision-making for urban air
quality management.
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