Effect of Fenton-Based Processes on Arsenic Removal in the Presence of Humic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Techniques
2.2.1. Sample Preparation
2.2.2. Determination of As(III) and As(V)
2.3. Experimental Design
2.4. Statistical Analysis
3. Results
3.1. Effect of HA Concentration in Fenton Process
3.2. Correlation Analysis of HA Concentrations and As(V) or As(III) Concentrations in Different Treatments
3.3. Effect of Fenton-like Treatment Under Different HA Concentrations
3.4. Correlation Analysis of HA Concentrations and As(V) or As(III) Concentrations in Fenton-like Treatment
3.5. Effect of Fenton and Fenton-like Treatment on TOC Removal, pH, and Redox Potential
4. Discussion
4.1. The Effect of a Rainwater-Borne H2O2-Induced Fenton Process on Changes in As Species in the Presence of HA
4.2. Effect of the Fe(III) Products in the Rainwater-Borne H2O2-Induced Fenton Process on Changes in As Species in the Presence of HA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Coomar, P.; Sarkar, S.; Johannesson, K.H.; Fryar, A.E.; Schreiber, M.E.; Ahmed, K.M.; Alam, M.A.; Bhattacharya, P.; Bundschuh, J.; et al. Arsenic and other geogenic contaminants in global groundwater. Nat. Rev. Earth Environ. 2024, 5, 312–328. [Google Scholar] [CrossRef]
- Raza, M.; Hussain, F.; Lee, J.Y.; Shakoor, M.B.; Kwon, K.D. Groundwater status in Pakistan: A review of contamination, health risks, and potential needs. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1713–1762. [Google Scholar] [CrossRef]
- Sevak, P.; Pushkar, B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. J. Environ. Manag. 2024, 349, 119504. [Google Scholar] [CrossRef]
- Stahl, M.O.; Harvey, C.F.; van Geen, A.; Sun, J.; Thi Kim Trang, P.; Mai Lan, V.; Phuong, T.M.; Viet, P.H.; Bostick, B.C. River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam. Water Resour. Res. 2016, 52, 6321–6334. [Google Scholar] [CrossRef]
- Wallis, I.; Prommer, H.; Berg, M.; Siade, A.J.; Sun, J.; Kipfer, R. The river–groundwater interface as a hotspot for arsenic release. Nat. Geosci. 2020, 13, 288–295. [Google Scholar] [CrossRef]
- Varner, T.S.; Kulkarni, H.V.; Nguyen, W.; Kwak, K.; Cardenas, M.B.; Knappett, P.S.; Ojeda, A.S.; Malina, N.; Bhuiyan, M.U.; Ahmed, K.M.; et al. Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna river, Bangladesh. Chemosphere 2022, 308, 136289. [Google Scholar] [CrossRef]
- Lawson, M.; Polya, D.A.; Boyce, A.J.; Bryant, C.; Mondal, D.; Shantz, A.; Ballentine, C.J. Pond-derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environ. Sci. Technol. 2013, 47, 7085–7094. [Google Scholar] [CrossRef]
- Herath, I.; Vithanage, M.; Bundschuh, J.; Maity, J.P.; Bhattacharya, P. Natural arsenic in global groundwaters: Distribution and geochemical triggers for mobilization. Curr. Pollut. Rep. 2016, 2, 68–89. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Yoshinaga, M.; Zhao, F.J.; Rosen, B.P. Earth abides arsenic biotransformations. Annu. Rev. Earth Planet. Sci. 2014, 42, 443–467. [Google Scholar] [CrossRef]
- Ying, J.; Fan, K.; Naizi, N.; Gustave, W.; Li, H.; Wang, H.; Bolan, N.; Qin, J.; Qiu, R. The impact of rainwater-borne H2O2-induced Fenton process on root iron plaque formation and arsenic accumulation in rice. Sci. Total Environ. 2024, 908, 168300. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, Y.; Li, S.; Li, H.; Lin, C. Potential effects of rainwater-borne H2O2 on competitive degradation of herbicides and in the presence of humic acid. Chemosphere 2017, 170, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Scaramboni, C.; Crispim, C.; Toledo, J., Jr.; Campos, M. Investigating hydrogen peroxide in rainwater of a typical midsized city in tropical Brazil using a novel application of a fluorometric method. Atmos. Environ. 2018, 176, 201–208. [Google Scholar] [CrossRef]
- Razzaq, U.; Nguyen, T.B.; Saleem, M.U.; Le, V.R.; Chen, C.W.; Bui, X.T.; Dong, C.D. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. Sci. Total Environ. 2024, 946, 174253. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Voegelin, A.; Zouboulis, A.I.; Hug, S.J. Enhanced As (III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values. J. Hazard. Mater. 2015, 297, 1–7. [Google Scholar] [CrossRef]
- Kumarathilaka, P.; Seneweera, S.; Meharg, A.; Bundschuh, J. Arsenic speciation dynamics in paddy rice soil-water environment: Sources, physico-chemical, and biological factors-a review. Water Res. 2018, 140, 403–414. [Google Scholar] [CrossRef]
- Qin, J.; Ying, J.; Li, H.; Qiu, R.; Lin, C. Rainwater input reduces greenhouse gas emission and arsenic uptake in paddy rice systems. Sci. Total Environ. 2023, 902, 166096. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Li, J.; Wu, F. Natural montmorillonite induced photooxidation of As (III) in aqueous suspensions: Roles and sources of hydroxyl and hydroperoxyl/superoxide radicals. J. Hazard. Mater. 2013, 260, 255–262. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.; Liu, S.; He, Z.; Wang, Y.; Qin, W.; Si, Y. Enhanced generation of reactive oxygen species by pyrite for As (III) oxidation and immobilization: The vital role of Fe (II). Chemosphere 2022, 309, 136793. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Q.; Song, Y.; Jia, F.; Yang, Y.; Li, H. Rational design of anti-interference Fe/Co MOF-coupled PMS process for As (III) removal in DOM-rich groundwater: 1O2-dominated As (III) oxidation and chemisorption of As (V). Chem. Eng. J. 2023, 470, 144386. [Google Scholar] [CrossRef]
- Wang, X.; Pu, L.; Sun, Z.; Fang, G.; Wang, Y.; Gu, C.; Gao, J. Comparative study of the photooxidation of arsenite mediated by dissolved and mineral-associated humic acid under light irradiation. J. Hazard. Mater. 2024, 462, 132759. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, J.; Kappeler, A.; Lindauer, U.; Kistler, D.; Berg, M.; Sigg, L. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum. Environ. Sci. Technol. 2006, 40, 6015–6020. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Zhang, Y.; Nie, X.; Tian, X.; Dai, C.; Shi, J. Colloidal iron species driven enhanced H2O2 decomposition into hydroxyl radicals for efficient removal of methylene blue from water. J. Hazard. Mater. 2023, 448, 130949. [Google Scholar] [CrossRef] [PubMed]
- Ritter, K.; Aiken, G.R.; Ranville, J.F.; Bauer, M.; Macalady, D.L. Evidence for the aquatic binding of arsenate by natural organic matter−suspended Fe (III). Environ. Sci. Technol. 2006, 40, 5380–5387. [Google Scholar] [CrossRef]
- Kong, Y.; Kang, J.; Shen, J.; Chen, Z.; Fan, L. Influence of humic acid on the removal of arsenate and arsenic by ferric chloride: Effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes. Environ. Sci. Pollut. Res. 2017, 24, 2381–2393. [Google Scholar] [CrossRef]
- Hug, S.J.; Leupin, O. Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37, 2734–2742. [Google Scholar] [CrossRef]
- Hao, L.; Liu, M.; Wang, N.; Li, G. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 2018, 8, 39545–39560. [Google Scholar] [CrossRef]
- Ahmad, A.; van Genuchten, C.M. Deep-dive into iron-based co-precipitation of arsenic: A review of mechanisms derived from synchrotron techniques and implications for groundwater treatment. Water Res. 2023, 249, 120970. [Google Scholar] [CrossRef]
- Fukushima, M.; Tatsumi, K. Degradation Characteristics of Humic Acid during Photo-Fenton Processes. Environ. Sci. Technol. 2001, 35, 3683–3690. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, S.; Qin, F.; Zheng, K.; Ye, X. Modeling the oxidation kinetics of Fenton’s process on the degradation of humic acid. J. Hazard. Mater. 2010, 179, 533–539. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, H.; Xia, J.; Nie, Z.; Fan, X.; Liu, H.; Zheng, L.; Zhang, L.; Yang, H. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization. J. Hazard. Mater. 2020, 384, 121359. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, K.; Li, H.; Feng, X.; Wang, L.; Liu, Q. Arsenopyrite weathering in acidic water: Humic acid affection and arsenic transformation. Water Res. 2021, 194, 116917. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Jiang, G.; Wan, Y.; Liu, J.; Pi, F. Nanomaterials-modulated Fenton reactions: Strategies, chemodynamic therapy and future trends. Chem. Eng. J. 2023, 466, 142960. [Google Scholar] [CrossRef]
- Georgi, A.; Schierz, A.; Trommler, U.; Horwitz, C.P.; Collins, T.J.; Kopinke, F.D. Humic acid modified Fenton reagent for enhancement of the working pH range. Appl. Catal. B Environ. 2007, 72, 26–36. [Google Scholar] [CrossRef]
- Xie, X.; Hu, Y.; Cheng, H. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process. Water Res. 2016, 89, 59–67. [Google Scholar] [CrossRef]
- Ai, Y.; Zhao, C.; Sun, L.; Wang, X.; Liang, L. Coagulation mechanisms of humic acid in metal ions solution under different pH conditions: A molecular dynamics simulation. Sci. Total Environ. 2020, 702, 135072. [Google Scholar] [CrossRef]
- Wang, C.; Tang, S.; Chen, H.; Cheng, T.; Zhang, D.; Pan, X. Alkalization-induced disintegration increased redox activity of solid humic acids and its soil biogeochemical implications. Sci. Total Environ. 2023, 891, 164486. [Google Scholar] [CrossRef]
- Lai, C.; Shi, X.; Li, L.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H.; Qin, L.; Zhang, M.; et al. Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review. Sci. Total Environ. 2021, 775, 145850. [Google Scholar] [CrossRef]
- Tan, W.; Xi, B.; Wang, G.; Jiang, J.; He, X.; Mao, X.; Gao, R.; Huang, C.; Zhang, C.; Li, D.; et al. Increased electron-accepting and decreased electron-donating capacities of soil humic substances in response to increasing temperature. Environ. Sci. Technol. 2017, 51, 3176–3186. [Google Scholar] [CrossRef]
- Saldaña-Robles, A.; Saldaña-Robles, N.; Saldaña-Robles, A.L.; Damian-Ascencio, C.; Rangel-Hernández, V.H.; Guerra-Sanchez, R. Arsenic removal from aqueous solutions and the impact of humic and fulvic acids. J. Clean. Prod. 2017, 159, 425–431. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Zhang, P.; Fu, Q.L.; Yu, C.; Yuan, S. Asymmetrical changes of electron-donating and electron-accepting capacities of natural organic matter during its interaction with Fe oxyhydroxides. Chem. Geol. 2024, 661, 122189. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Huang, Q.; Li, L.; Li, Y. Effect of Fenton-Based Processes on Arsenic Removal in the Presence of Humic Acid. Toxics 2024, 12, 845. https://doi.org/10.3390/toxics12120845
Xiong W, Huang Q, Li L, Li Y. Effect of Fenton-Based Processes on Arsenic Removal in the Presence of Humic Acid. Toxics. 2024; 12(12):845. https://doi.org/10.3390/toxics12120845
Chicago/Turabian StyleXiong, Wenming, Qixuan Huang, Langlang Li, and Yongjun Li. 2024. "Effect of Fenton-Based Processes on Arsenic Removal in the Presence of Humic Acid" Toxics 12, no. 12: 845. https://doi.org/10.3390/toxics12120845
APA StyleXiong, W., Huang, Q., Li, L., & Li, Y. (2024). Effect of Fenton-Based Processes on Arsenic Removal in the Presence of Humic Acid. Toxics, 12(12), 845. https://doi.org/10.3390/toxics12120845