Facile Synthesis of a Novel AgIO3/CTF Heterojunction and Its Adsorption–Photocatalytic Performance with Organic Pollutants
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of the Photocatalysts
2.3. Characterization of Photocatalysts
2.4. Adsorption–Photocatalytic Degradation of Antibiotics
2.5. Radical Quenching Experiment
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devi, L.G.; Srinivas, M. Hydrothermal synthesis of reduced graphene oxide-CoFe2O4 heteroarchitecture for high visible light photocatalytic activity: Exploration of efficiency, stability and mechanistic pathways. J. Environ. Chem. Eng. 2017, 5, 3243–3255. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, H.Y.; Hong, S.; Lee, S.; Lee, S.; Park, B.S.; Park, H.; Lee, C.; Lee, J. Effects of inorganic oxidants on kinetics and mechanisms of WO3-mediated photocatalytic degradation. Appl. Catal. B Environ. 2015, 162, 515–523. [Google Scholar] [CrossRef]
- Martins, V.L.; Ogden, M.D.; Jones, M.R.; Trowsdale, S.A.; Hall, P.J.; Jensen, H.S. Opportunities for Coupled Electrochemical and Ion-exchange Technologies to Remove Recalcitrant Micropollutants in Water. Sep. Purif. Technol. 2020, 239, 116522. [Google Scholar] [CrossRef]
- Bui, X.T.; Vo, T.P.; Ngo, H.H.; Guo, W.S.; Nguyen, T.T. Multicriteria Assessment of Advanced Treatment Technologies for Micropollutants Removal at Large-Scale Applications. Sci. Total Environ. 2016, 563–564, 1050–1067. [Google Scholar] [CrossRef]
- Danish, M.; Muneer, M. Excellent visible-light-driven Ni-ZnS/g-C3N4 photocatalyst for enhanced pollutants degradation performance: Insight into the photocatalytic mechanism and adsorption isotherm. Appl. Surf. Sci. 2021, 563, 150262. [Google Scholar] [CrossRef]
- Nava-Andrade, K.; Carbajal-Arízaga, G.G.; Obregón, S.; Rodríguez-González, V. Layered double hydroxides and related hybrid materials for removal of pharmaceutical pollutants from water. J. Environ. Manag. 2021, 288, 112399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tan, G.Q.; Wang, M.; Li, B.; Dang, M.Y.; Wang, Y.; Zhang, B.X.; Ren, H.J.; Xia, A. The formation of direct Z-scheme Ag/BiOCl/AgIO3 heterojunction and its degradation stability. Appl. Surf. Sci. 2020, 530, 147228. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, J.; Zhang, H.; Pei, Y.S. Facile synthesis of a novel AgIO3/BiVO4 photocatalyst with two-step charge separation to enhance visible-light-driven photocatalytic performance for carbamazepine degradation. Sep. Purif. Technol. 2021, 276, 119273. [Google Scholar] [CrossRef]
- Carpenter, C.M.G.; Helbling, D.E. Removal of Micropollutants in Biofilters: Hydrodynamic Effects on Biofilm Assembly and Functioning. Water Res. 2017, 120, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Du, J.; Ma, X.; Shi, Y.; Fang, X.; Liu, D.; Wei, S.; Liu, Z.; Cao, Y.; Lin, B.; et al. Design of Bi4O5Br2/g-C3N4 heterojunction for efficient photocatalytic removal of persistent organic pollutants from water. EcoEnergy 2023, 1, 197–206. [Google Scholar] [CrossRef]
- Weng, B.; Lu, K.Q.; Tang, Z.; Chen, H.M.; Xu, Y.J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 2018, 9, 1543. [Google Scholar] [CrossRef]
- Wang, A.; Du, M.; Ni, J.; Liu, D.; Pan, Y.; Liang, X.; Liu, D.; Ma, J.; Wang, J.; Wang, W. Enhanced and synergistic catalytic activation by photoexcitation driven S−scheme heterojunction hydrogel interface electric field. Nat. Commun. 2023, 14, 6733. [Google Scholar] [CrossRef]
- Li, X.F.; Chen, W.Y.; Ma, L.M.; Huang, Y.X.; Wang, H.W. Characteristics and Mechanisms of Catalytic Ozonation with Fe-shaving-based Catalyst in Industrial Wastewater Advanced Treatment. J. Clean. Prod. 2019, 222, 174–181. [Google Scholar] [CrossRef]
- Díez-Mato, E.; Cortezón-Tamarit, F.C.; Bogialli, S.; Garcia-Fresnadillo, D.; Marazuela, M.D. Phototransformation of Model Micropollutants in Water Samples by Photocatalytic Singlet Oxygen Production in Heterogeneous Medium. Appl. Catal. B Environ. 2014, 160–161, 445–455. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, Z.L.; Lyu, M.Q.; Luo, B.; Wang, S.C.; Liu, G.; Cheng, H.M.; Wang, L.Z. Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Adv. Mater. 2019, 31, 1801369. [Google Scholar] [CrossRef]
- Zou, L.; Wang, H.R.; Wang, X. High Efficient Photodegradation and Photocatalytic Hydrogen Production of CdS/BiVO4 Heterostructure through Z-Scheme Process. ACS Sustain. Chem. Eng. 2017, 5, 303–309. [Google Scholar] [CrossRef]
- Wang, L.; Jin, P.; Duan, S.; Huang, J.W.; She, H.D.; Wang, Q.Z.; An, T.C. Accelerated Fenton-Like Kinetics by Visible-Light-Driven Catalysis over Iron(III) Porphyrin Functionalized Zirconium MOF: Effective Promotion on the Degradation of Organic Contaminants. Environ. Sci.-Nano 2019, 6, 2652–2661. [Google Scholar] [CrossRef]
- Jansson, I.; Suárez, S.; Garcia-Garcia, F.J.; Sanchez, B. Zeolite–TiO2 Hybrid Composites for Pollutant Degradation in Gas Phase. Appl. Catal. B Environ. 2015, 178, 100–107. [Google Scholar] [CrossRef]
- Wei, P.F.; Qi, M.Z.; Wang, Z.P.; Ding, S.Y.; Yu, W.; Liu, Q.; Wang, L.K.; Wang, H.Z.; An, W.K.; Wang, W. Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. J. Am. Chem. Soc. 2018, 140, 4623–4631. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.F.; Shi, J.L.; Ma, Y.; Lin, G.Q.; Lang, X.J.; Wang, C. Designed Synthesis of a 2D Porphyrin-Based sp2 Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 6430–6434. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Zhang, F.; Zhang, W.B.; Qiang, P.R.; Yu, K.J.; Fu, X.B.; Wu, D.Q.; Bi, S.; Zhang, F. Semiconducting 2D Triazine-Cored Covalent Organic Frameworks with Unsubstituted Olefin Linkages. J. Am. Chem. Soc. 2019, 141, 14272–14279. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhou, D.M.; Xu, Z.Y.; Zheng, S.R. Adsorptive Removal of Pharmaceutical Antibiotics from Aqueous Solution by Porous Covalent Triazine Frameworks. Environ. Pollut. 2017, 226, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.Q.; Geng, K.Y.; Fu, S.; Addicoat, M.A.; Zheng, W.H.; Xie, S.L.; Hu, J.S.; Hou, X.D.; Wu, X.; Jiang, Q.H.; et al. Module-Patterned Polymerization towards Crystalline 2D sp2-Carbon Covalent Organic Framework Semiconductors. Angew. Chem. Int. Ed. 2022, 61, e20211502. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.H.; Pei, J.J.; Tang, H.; Yu, S.P.; Yang, L.M.; Shi, H.; Yu, K.; Zhang, K.; Luo, X.B. Defect-Rich Porous Carbon with Anti-Interference Capability for Adsorption of Bisphenol A Via Long-Range Hydrophobic Interaction Synergized with Short-Range Dispersion Force. J. Hazard. Mater. 2021, 403, 123705. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Zhang, C.L.; Cai, S.L.; Lei, X.H.; Altoe, V.; Hong, F.; Urban, J.J.; Ciston, J.; Chan, E.M.; Liu, Y. Facile Transformation of Imine Covalent Organic Frameworks into Ultrastable Crystalline Porous Aromatic Frameworks. Nat. Commun. 2018, 9, 2998. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.Q.; Lan, Z.A.; Jiang, Q.H.; Geng, K.Y.; Li, G.S.; Wang, X.C.; Jiang, D.L. 2D sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water. Chem 2019, 5, 1632–1647. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, J.W.; Yang, Q.; Dang, Z.; Zhang, L.J. Effect of Carbon Chain Structure on The Phthalic Acid Esters (Paes) Adsorption Mechanism by Mesoporous Cellulose Biochar. Chem. Eng. J. 2019, 362, 383–391. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, S.H.; Su, Y.L.; Wu, D.; Zhao, Y.P.; Xie, B. Removal of Microplastics from Aqueous Solutions by Magnetic Carbon Nanotubes. Chem. Eng. J. 2021, 406, 126804. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, L.; Guo, L.H.; Zhang, H. Online Detection of Reactive Oxygen Species in Ultraviolet (UV)-Irradiated Nano-TiO2 Suspensions by Continuous Flow Chemiluminescence. Anal. Chem. 2014, 86, 10535–10539. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Jiang, X.; Chen, S.F.; Meng, S.G.; Fu, X.L. Design of a Direct Z-Scheme Photocatalyst: Preparation and Characterization of Bi2O3/g-C3N4 with High Visible Light Activity. J. Hazard. Mater. 2014, 280, 713–722. [Google Scholar] [CrossRef]
Photocatalyst | Catalyst Loading (g L−1) | PMS (mM) | Pollutants | TargetsConc. (mM) | Removal Efficiency % (min) | Ref. |
---|---|---|---|---|---|---|
RGO-CoFe2O4 | 0.4 | 0.1 | 4-Chlorophenol | 0.077 | ~100 (60) | [1] |
Pt/WO3 | 0.5 | 1 | 4-Chlorophenol | 0.1 | ~86 (100) | [2] |
This work | 0.1 | 0.65 | 4-Chlorophenol | 0.1 | ~100 (180) | |
Ni-ZnS/g-C3N4 | 1 | 0 | Paracetamol | 0.03 | ~86 (100) | [5] |
ZnAlCe-MMO | 0.5 | 1 | Paracetamol | 0.01 | ~99 (240) | [6] |
This work | 0.1 | 0.65 | Paracetamol | 0.1 | ~78 (180) | |
BiOCl/Fe3O4 | 0.6 | 0 | Carbamazepine | 0.008 | ~75 (60) | [8] |
Ag/AgCl/Bi4Ti3O12 | 1 | 0 | Carbamazepine | 0.021 | ~82 (120) | [9] |
TiO2@SiO2@Fe3O4 | 1 | 0 | Carbamazepine | 0.008 | ~71 (540) | [10] |
This work | 0.4 | 1.3 | Carbamazepine | 0.021 | ~72 (180) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Ye, T.; Chen, Y.; Chu, B.; Chen, H.; Hu, J.; Yu, Y. Facile Synthesis of a Novel AgIO3/CTF Heterojunction and Its Adsorption–Photocatalytic Performance with Organic Pollutants. Toxics 2024, 12, 133. https://doi.org/10.3390/toxics12020133
Shen L, Ye T, Chen Y, Chu B, Chen H, Hu J, Yu Y. Facile Synthesis of a Novel AgIO3/CTF Heterojunction and Its Adsorption–Photocatalytic Performance with Organic Pollutants. Toxics. 2024; 12(2):133. https://doi.org/10.3390/toxics12020133
Chicago/Turabian StyleShen, Liqiang, Tingting Ye, Yehui Chen, Bei Chu, Hui Chen, Jinxing Hu, and Yan Yu. 2024. "Facile Synthesis of a Novel AgIO3/CTF Heterojunction and Its Adsorption–Photocatalytic Performance with Organic Pollutants" Toxics 12, no. 2: 133. https://doi.org/10.3390/toxics12020133
APA StyleShen, L., Ye, T., Chen, Y., Chu, B., Chen, H., Hu, J., & Yu, Y. (2024). Facile Synthesis of a Novel AgIO3/CTF Heterojunction and Its Adsorption–Photocatalytic Performance with Organic Pollutants. Toxics, 12(2), 133. https://doi.org/10.3390/toxics12020133