Dietary Exposure and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Black Tea Consumed in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Consumption Data of Tea Infusion and Drinks
2.2. Sample Collection, Analysis of the PAH4 in Black Tea Infusion and Drinks
2.3. Handling of Non-Detected Results
2.4. Dietary Risk Assessment
2.5. Risk–Benefit Assessment
3. Results
3.1. Concentration of PAH4 in Tea Infusion and Drinks
3.2. Handling of Non-Detected Results
3.3. Dietary Risk Assessment
3.3.1. Estimated Daily Intake (EDI)
3.3.2. Margin of Exposure (MOE)
4. Discussion
4.1. Dietary Risk Assessment
4.2. Risk–Benefit Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). International Tea Market: Market Situation, Prospects and Emerging Issues; FAO: Rome, Italy, 2022; pp. 3–5. Available online: https://www.fao.org/documents/card/en?details=cc0238en (accessed on 2 September 2023).
- Textor, C. Tea Production in Taiwan from 2011 to 2021. 2022. Available online: https://www.statista.com/statistics/321788/taiwan-tea-production/ (accessed on 18 August 2023).
- Taipei Economic and Cultural Office in Ho Chi Minh City. Taiwan Is the Largest Export Market for Vietnamese Tea. 2022. Available online: https://www.roc-taiwan.org/vnsgn/post/36507.html (accessed on 12 August 2023).
- Wang, C.; Han, J.; Pu, Y.; Wang, X. Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. Appl. Sci. 2022, 12, 5874. [Google Scholar] [CrossRef]
- Huang, M.; Penning, P.M. Polycyclic Aromatic Hydrocarbons. In Encyclopedia of Food Safety; Motarjemi, Y., Moy, G., Todd, E., Eds.; Academic Press: San Diego, CA, USA, 2014; Volume 2, pp. 416–423. [Google Scholar]
- Barone, G.; Giacominelli-Stuffler, R.; Storelli, M.M. Evaluation of trace metal and polychlorinated biphenyl levels in tea brands of different origin commercialized in Italy. Food Chem. Toxicol. 2016, 87, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Tu, Y.; Zhu, L. Concentrations and health risk of polycyclic aromatic hydrocarbons in tea. Food Chem. Toxicol. 2005, 43, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wu, H.; Wang, C.; Guo, X.; Du, J.; Du, L. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples. Food Chem. 2016, 99, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.R.; Bzdusek, P.A. PAHs in sediments of the Black River and the Ashtabula River, Ohio: Source apportionment by factor analysis. Water Res. 2005, 39, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Lee, S.H.; Kim, Y.Y.; Shin, H.S. Polycyclic Aromatic Hydrocarbon Risk Assessment and Analytical Methods Using QuEchERS Pretreatment for the Evaluation of Herbal Medicine Ingredients in Korea. Foods 2021, 10, 2200. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Polycyclic Aromatic Hydrocarbons in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 724, 1–114. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 182–189. [Google Scholar] [CrossRef]
- da Silva Junior, F.C.; Felipe, M.B.M.C.; de Castro, D.E.F.D.; Araújo, S.C.S.; Sisenando, H.C.N.; de Medeiros, S.R.B. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. Environ. Pollut. 2021, 278, 116838. [Google Scholar] [CrossRef]
- Vondráček, J.; Machala, M. The role of metabolism in toxicity of polycyclic aromatic hydrocarbons and their non-genotoxic modes of action. Curr. Drug Metab. 2021, 22, 584–595. [Google Scholar] [CrossRef]
- Boström, C.E.; Gerde, P.; Hanberg, A.; Jernström, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110, 451–488. [Google Scholar] [CrossRef]
- Tuominen, J.; Salomaa, S.; Pyysalo, H.; Skytta, E.; Tikkanen, L.; Nurmela, T.; Sorsa, M.; Pohjola, V.; Sauri, M.; Himberg, K. Polynuclear aromatic compounds and genotoxicity in particulate and vapor phases of ambient air: Effect of traffic, season, and meteorological conditions. Environ. Sci. Technol. 1988, 22, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Reisen, F.; Arey, J. Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin. Environ. Sci. Technol. 2005, 39, 64–73. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2018. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans (accessed on 1 September 2023).
- Agency for Toxic Substances and Disease Registry (ATSDR). Case Studies in Environmental Medicine: Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs). 2009. Available online: https://www.atsdr.cdc.gov/csem/pah/docs/pah.pdf (accessed on 9 September 2023).
- Taiwan Food and Drug Administration (TFDA). Sanitation Standard for Contaminants and Toxins in Food. 2022. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=L0040138 (accessed on 15 September 2023).
- Taiwan Food and Drug Administration (TFDA). Guidelines for Reducing the Content of Polycyclic Aromatic Hydrocarbons in Food. 2021. Available online: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f637460439088132140&type=3&iid=3395 (accessed on 15 September 2023). (In Chinese)
- Chen, S.; Kao, T.H.; Chen, C.J.; Huang, C.W.; Chen, B.H. Reduction of carcinogenic polycyclic aromatic hydrocarbons in meat by sugar-smoking and dietary exposure assessment in Taiwan. J. Agric. Food Chem. 2013, 61, 7645–7653. [Google Scholar] [CrossRef] [PubMed]
- Kao, T.H.; Chen, S.; Huang, C.W.; Chen, C.J.; Chen, B.H. Occurrence and exposure to polycyclic aromatic hydrocarbons in kindling-free-charcoal grilled meat products in Taiwan. Food Chem. Toxicol. 2014, 71, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Bertinetti, I.A.; Ferreira, C.D.; Monks, J.L.F.; Sanches-Filho, P.J.; Elias, M.C. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in rice subjected to drying with different fuels plus temperature, industrial processes and cooking. J. Food Compos. Anal. 2018, 66, 109–115. [Google Scholar] [CrossRef]
- Danyi, S.; Brose, F.; Brasseur, C.; Schneider, Y.J.; Larondelle, Y.; Pussemier, L. Analysis of EU priority polycyclic aromatic hydrocarbons in food supplements using high performance liquid chromatography coupled to an ultraviolet, diode array or fluorescence detector. Anal. Chim. Acta 2009, 633, 293–299. [Google Scholar] [CrossRef] [PubMed]
- German-Hernandez, M.; Pino, V.; Anderson, J.L.; Afonso, A.M. Use of ionic liquid aggregates of 1-hexadecyl-3-butyl imidazolium bromide in a focused-microwave assisted extraction method followed by high-performance liquid chromatography with ultraviolet and fluorescence detection to determine the 15+1 EU priority PAHs in toasted cereals (“gofios”). Talanta 2011, 85, 1199–1206. [Google Scholar] [CrossRef]
- Kao, T.H.; Chen, S.; Chen, C.J.; Huang, C.W.; Chen, B.H. Evaluation of analysis of polycyclic aromatic hydrocarbons by QuEChERS and GC-MS and their formation in poultry meat as affected by marinating and frying. J. Agric. Food Chem. 2012, 60, 1380–1389. [Google Scholar] [CrossRef]
- Chen, B.H.; Inbaraj, B.S.; Hsu, K.C. Recent advances in the analysis of polycyclic aromatic hydrocarbons in food and water. J. Food Drug Anal. 2022, 30, 494–522. [Google Scholar] [CrossRef]
- Harrison, D.M.; Chang, W.C.; Lin, H.T. Rapid analytical method to monitor the background concentration of PAHs in commercial black tea leaves and infusions. Foods 2024. submitted. [Google Scholar]
- Health Promotion Administration, Ministry of Health and Welfare. Nutrition and Health Survey in Taiwan (NAHSIT). 2015. Available online: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1077&pid=6201 (accessed on 1 September 2023).
- Taiwan Food and Drug Administration (TFDA); National Health Research Institute (NHRI). National Food Consumption Database. 2017. Available online: https://tnfcds.nhri.edu.tw/ (accessed on 1 September 2023). (In Chinese)
- Huang, P.C.; Lin, H.T. Food Intake Survey and Background Concentration of Polycyclic Aromatic Hydrocarbons in Deep-Fried, Barbecued, and Pan-Fried Foods. J. Agric. For. 2023, 70, 37–50. Available online: https://www.jaf.nchu.edu.tw/70-1 (accessed on 28 August 2023). (In Chinese).
- European Union. Commission Regulation (EU) No 836/2011. Official Journal of European Union L 215/9 836/2011 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32011R0836 (accessed on 15 August 2023).
- Taiwan Food and Drug Administration (TFDA). Validation Specification for Food Chemical Inspection Methods. 2021. Available online: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f637713826789525112&type=2&cid=38868 (accessed on 10 August 2023). (In Chinese)
- WHO/IPCS. Principles and Methods for the Risk Assessment of Chemicals in Foods; WHO/IPCS: Geneva, Switzerland, 2008; Available online: https://www.who.int/publications/i/item/9789241572408 (accessed on 20 August 2023).
- GEMS/Food-EURO. Report on a Workshop in the Frame of GEMS/Food-EURO, EUR/HFA Target 22. In Proceedings of the 2nd Workshop on Reliable Evaluation of Low-Level Contamination of Food, Kulmbach, Germany, 26–27 May 1995; pp. 26–27. [Google Scholar]
- European Food Safety Authority (EFSA). Statement on the applicability of the Margin of Exposure approach for the safety assessment of impurities which are both genotoxic and carcinogenic in substances added to food/feed. EFSA J. 2012, 10, 2578. [Google Scholar]
- Assunção, R.; Pires, S.M.; Nauta, M. Risk-Benefit Assessment of Foods. EFSA J. 2019, 17, 170917. Available online: https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2019.e170917 (accessed on 31 August 2021).
- Chiang, S.M.; Ueng, K.C.; Chen, H.S.; Wu, C.J.; Yang, Y.S.; Yang, D.J. Effects of Manufacturing Procedures and Preparation conditions on European Union Priority Polycyclic Aromatic Hydrocarbons in Oolong Tea Samples. Food Chem. 2021, 358, 129885. [Google Scholar] [CrossRef] [PubMed]
- Phan Thi, L.A.; Ngoc, N.T.; Quynh, N.T.; Thanh, N.V.; Kim, T.T.; Anh, D.H.; Viet, P.H. Polycyclic aromatic hydrocarbons (PAHs) in dry tea leaves and tea infusions in Vietnam: Contamination levels and dietary risk assessment. Environ. Geochem. Health 2020, 42, 2853–2863. [Google Scholar] [CrossRef]
- Ciemniak, A.; Kuźmicz, K.; Rajkowska-Myśliwiec, M.; Cadena, F.M. Assessing the Contamination Levels of Dried Teas and Their Infusions by Polycyclic Aromatic Hydrocarbons (PAHs). J. Consum. Prot. Food Saf. 2019, 14, 263–274. [Google Scholar] [CrossRef]
- Lee, J.G.; Lim, T.; Kim, S.H.; Kang, D.H.; Yoon, H.J. Determination and risk characterization of polycyclic aromatic hydrocarbons of tea by using the Margin of Exposure (MOE) approach. Food Sci. Biotechnol. 2018, 27, 1843–1856. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Rabassa, M.; Cherubini, A.; Urpí-Sardà, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C. High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults. J. Nutr. 2013, 143, 1445–1450. [Google Scholar] [CrossRef]
Tea Infusions | PAHs (µg/kg) | ||||
---|---|---|---|---|---|
BaA | CHR | BbF | BaP | PAH4 | |
LB | 0.017 | 0.014 | 0.000 | 0.005 | 0.036 |
UB | 0.114 | 0.137 | 0.130 | 0.022 | 0.403 |
Population Group (Age) | BaP | PAH4 | ||
---|---|---|---|---|
EDI_CO_LB | EDI_CO_UB | EDI_CO_LB | EDI_CO_UB | |
ng/kg BW/day | ||||
6–12 | 0.047 | 0.206 | 0.340 | 3.763 |
12–16 | 0.040 | 0.174 | 0.287 | 3.169 |
16–18 | 0.041 | 0.181 | 0.298 | 3.291 |
19–65 | 0.055 | 0.240 | 0.395 | 4.369 |
>65 | 0.053 | 0.234 | 0.386 | 4.268 |
Population Group (Age) | BaP | PAH4 | ||
---|---|---|---|---|
EDI_WG_LB | EDI_WG_UB | EDI_WG_LB | EDI_WG_UB | |
ng/kg BW/day | ||||
6–12 | 0.014 | 0.063 | 0.104 | 1.147 |
12–16 | 0.014 | 0.063 | 0.104 | 1.152 |
16–18 | 0.016 | 0.071 | 0.117 | 1.294 |
19–65 | 0.025 | 0.108 | 0.179 | 1.975 |
>65 | 0.016 | 0.068 | 0.113 | 1.246 |
Population Group (Age) | BaP | PAH4 | ||
---|---|---|---|---|
MOE_CO_LB | MOE_CO_UB | MOE_CO_LB | MOE_CO_UB | |
6–12 | 1,485,000 | 339,000 | 999,000 | 90,000 |
12–16 | 1,763,000 | 402,000 | 1,186,000 | 107,000 |
16–18 | 1,697,000 | 388,000 | 1,143,000 | 103,000 |
19–65 | 1,279,000 | 292,000 | 861,000 | 78,000 |
>65 | 1,309,000 | 299,000 | 881,000 | 80,000 |
Population Group (Age) | BaP | PAH4 | ||
---|---|---|---|---|
MOE_WG_LB | MOE_WG_UB | MOE_WG_LB | MOE_WG_UB | |
6–12 | 4,871,000 | 1,112,000 | 3,278,000 | 296,000 |
12–16 | 4,850,000 | 1,107,000 | 3,264,000 | 295,000 |
16–18 | 4,319,000 | 986,000 | 2,907,000 | 262,000 |
19–65 | 2,829,000 | 646,000 | 1,904,000 | 172,000 |
>65 | 4,486,000 | 1,024,000 | 3,019,000 | 272,000 |
Country | Risk Assessment | Population | Results | Reference | |
---|---|---|---|---|---|
Taiwan | MOE | Age 6–12 | BaP PAH4 | 1,112,000 296,000 | This study |
Age 12–16 | BaP PAH4 | 1,107,000 295,000 | |||
Age 16–18 | BaP PAH4 | 986,000 262,000 | |||
Age 19–65 | BaP PAH4 | 646,000 172,000 | |||
Age > 65 | BaP PAH4 | 1,024,000 272,000 | |||
Vietnam | MOE | Whole population | BaP PAH4 | 2,506,928 2,391,604 | Phan Thi et al. (2020) [40] |
Poland | MOE | Whole population | BaP PAH4 | 897,000 830,000 | Ciemniak et al. (2019) [41] |
South Korea | MOE | Whole population | PAH4 | 4,430,000 | Lee et al. (2018) [42] |
Type of Effect | End Point | Human Health Relationship |
---|---|---|
Risk | Kidney disease | Increased risk of kidney disease due to PAH |
Risk | Liver disease | Increased risk of liver disease due to PAH |
Risk | Cancer | Increased risk of some cancers due to PAH |
Benefit | Cancer | Reduced risk of some cancers due to phenolic compounds |
Benefit | Heart disease | Reduced risk of heart disease due to flavonoids |
Benefit | Diabetes | Reduced risk of diabetes due to catechins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, D.M.; Chang, W.-C.; Lin, H.-T. Dietary Exposure and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Black Tea Consumed in Taiwan. Toxics 2024, 12, 134. https://doi.org/10.3390/toxics12020134
Harrison DM, Chang W-C, Lin H-T. Dietary Exposure and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Black Tea Consumed in Taiwan. Toxics. 2024; 12(2):134. https://doi.org/10.3390/toxics12020134
Chicago/Turabian StyleHarrison, Drewyan Minelly, Wei-Chung Chang, and Hsin-Tang Lin. 2024. "Dietary Exposure and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Black Tea Consumed in Taiwan" Toxics 12, no. 2: 134. https://doi.org/10.3390/toxics12020134
APA StyleHarrison, D. M., Chang, W. -C., & Lin, H. -T. (2024). Dietary Exposure and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Black Tea Consumed in Taiwan. Toxics, 12(2), 134. https://doi.org/10.3390/toxics12020134