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Abstract: The endocrine disruptive chemical DEHP is a plasticiser often found in marine waters.
Here, we assessed the effect of this additive on the number and size of eggs spawned by female
mussels during a synchronised spawning event. After achieving the ripeness of the gonads, mussels
of both sexes were exposed to two environmentally relevant concentrations of DEHP (nominal
concentrations 0.5 and 50 µg/L) for one week. A spawning event was then induced and eggs were
collected, counted, and their size measured (area and diameter). A slight but not significant effect
was observed in lowering the number of eggs spawned when increasing the DEHP concentration.
This effect was greater when adding spent gonads (possibly fully spawned females) to the total
number of females. A significant effect of the lower dose on the average egg sizes was noticed,
with a smaller area and diameter measured with respect to the control and the higher concentrated
treatments. These results once again underline the importance for ecotoxicological studies to address
the nonlinear dose-response effects of endocrine disruptive chemicals environmentally present at
concentrations in the order of just a few µg/L that could not elicit a strong defence mechanism at low
levels and be absorbed by filter feeder animals such as mussels.
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1. Introduction

Endocrine disrupting chemicals (EDCs) are exogenous substances or mixtures that
usually alter the production and the function of hormones and receptors or interact with
agonist or antagonist effects by hormone mimicking [1–3]. Generally, endocrine disrup-
tive substances can be of both natural and anthropogenic in nature. Examples include
oestrogens, phytoestrogens, plasticisers, pesticides, or herbicides [4–6]. Among the plastic
additives, phthalates have been widely used as emollients and plasticisers in polyvinyl
chloride (PVC) products [7–9], with an annual worldwide use of 8.4 million tonnes [10].
Phthalates could represent up to 50% of the total weight of certain plastic products [11,12]
and are typically found in the environment, affecting habitats and organisms [13,14]. These
additives leach from the plastic matrix as they are not chemically bonded to it, resulting in
a consequent ubiquitous presence in the environment [7,15,16]. In aqueous environments,
the migration of plastic chemical additives from everyday products has been highlighted
by [17], who discovered several leachates in water samples that are able to cause oxidative
response, antiandrogenic, and oestrogenic effects in humans and wildlife.

For humans, the skin route and inhalation are possible ways of phthalate absorption,
but the food chain remains the most probable, in particular for phthalates with a long
molecular chain such as di-2-ethylhexyl phthalate (DEHP, [16,18]). The daily human intake
of DEHP has been measured to be in the range of 0.004–70 µg/kg/day [19], with detectable
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levels found in the blood, breast milk, umbilical cord, and urine [8]. This is relevant consid-
ering that plasticisers such as phthalates appear to shorten gestational duration, diminish
sperm quality [20], and promote adipogenic activity, ultimately favouring obesity [21] in
mammals. In [22], rats daily exposed by gavage to 9–48 mg/kg for 28 days displayed effects
on the metabolic system and liver. Sex-related responses were also noted, with delayed
reproductive development in males and effects on the thyroid for female rats. Oocyte apop-
tosis and a decrease in the number of primordial follicles were observed in newborn mouse
ovaries cultured in vitro with 10–100 µM DEHP [23]. Fewer follicles were also counted
in neonatal female mice intraperitoneally injected with 2.5–10 mg/kg/day [24]. Despite
its restricted use in the European Union, especially in toys and childcare articles [25] and
the evidence of its toxicity for aquatic [26–29] and terrestrial [24,30] species, DEHP still
represents 40% of the global plastic softener market [10]. The natural production of DEHP
by red algae (e.g., Bangia atropurpurea) was reported by [31], but the levels related to such
natural sources are considered negligible compared to the massive levels of anthropogenic
production [8]. In the past, traces of DEHP have also been detected in cosmetics and per-
sonal care products such as nail polishes, sanitary pads, fragrances, and baby lotions [32,33].
In natural conditions, the DEHP half-life persistence in surface water and sediments was
evaluated to be 0.35–3.5 days [34]. Nevertheless, DEHP levels in Mediterranean coastal
sites are often detected with published concentrations from 0.6 µg/L [35] to 71.6 µg/L [36],
mainly due to the urban, industrial, and touristic impacts.

Molluscs such as mussels are considered non-controversial biomonitors and key
species for their habitats as they are capable of the high bioaccumulation and bioconcen-
tration of toxicants [37]. They are also common species for ecotoxicological experimental
exposures to pollutants such as metals or anthropogenic chemicals [38]. Mussels are also
used as distinctive indicators of health and food safety because of their position in the
food chain and their close relationship with the human diet [39,40]. There are documented
effects of plastic contamination on the reproductive cycle of Mytilus. As an example, styrene
particles at concentrations of 0.01–1000 µg/L impaired the normal embryo development of
M. galloprovincialis after a 48 h exposure [41]. Genotoxic effects of polystyrene microspheres
at a concentration of 106 particles/L were observed in the digestive glands and gills of M.
trossulus after 5 days of exposure [42]. Furthermore, endocrine disruptor plasticiser BPA
was noted to affect the full development of M. galloprovincialis larvae when the fertilised
eggs were exposed to concentrations of 0.01–1000 µg/L [43,44].

Recently, published papers on the DEHP effect on molluscs have focused frequently
on the consequences on the antioxidant system at various experimental timepoints, from
24 to 48 h in M. galloprovincialis [45] to 7–10 days in Pinctada martensii [46]. The DEHP
effects on Mytilus spp. range from alterations in antioxidant and peroxisomal enzyme
activities at high levels of 100–500 µg/L [47,48] to a hormetic effect on the expression of
oestrogen receptor-like [49] and stress-related genes [50] when environmentally relevant
concentrations are dosed. The hormetic effect is defined as a non-monotonic dose-response
action of some endocrine-active chemicals such as DEHP, which display a stronger effect at
low concentrations and a weaker or inhibited result at high levels [51–53]. The nonlinear
dose responses of EDCs such as DEHP is one of the main challenges for regulatory agencies
in the course of risk assessment. In fact, a linear extrapolation of the compound toxicity
from high-dosed experiments is not valid in most cases, as the occupancy of receptor-
mediated pathways can already saturate at low doses. Furthermore, xenoestrogens such as
EDCs modulate a physiologically active system, which in most cases already acts above the
threshold [54]. It is still unknown as to the range of environmentally relevant concentrations
at which DEHP affects the reproductive characteristics in Mytilus spp. This paper aims to
analyse the effect of short-term exposure to two environmentally relevant concentrations
of DEHP on the number and size of eggs spawned from females during a synchronised
reproductive event.
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2. Materials and Methods
2.1. Experimental Design

Adult blue mussels Mytilus edulis (Linnaeus 1759, n = 90; length mean ± standard
deviation = 5.7 cm ± 0.6 cm) were collected from the suspended rope farms of Cromarty
Mussels Ltd. in Cromarty Firth, Scotland, UK (57.40.741 N 4.06.062 W) in April 2021 and
transported to the aquarium facilities of the University of Hull. Mussels from the farm
population were identified as M. edulis in [55], with molecular identification through PCR
of the non-repetitive region Mytilus foot protein 1 mfp-1 [56] to verify the presence of M.
edulis (amplified segment at 180 bp). Neither hybrids with M. galloprovincialis (amplified
segment at 126 bp) nor other Mytilus species were present. Mussels were neither cleaned
from sand and mud nor scrubbed from seaweed and barnacles to avoid additional physical
stress. Spring months were chosen for the experiment as this is the period with the
highest likelihood of finding ripe gonads in mature to spawning stages [57]. In fact, in
the Northern Hemisphere, the gametogenesis cycle of M. edulis starts in late autumn
with declining temperatures, and the process continues over the winter months until
maturation and spawning in spring, summer, or early autumn [58], depending on the
geographic distribution [59], environmental conditions [60–62], nutrient availability, and
energy reserves [63–67]. Thirty mussels for each of the three treatments were randomly
divided into six 4-L continuously aerated glass tanks, for a total number of five mussels for
each replicate tank at a density of one mussel per 0.8 L. Mussels were kept at laboratory
conditions for 19 days in artificial saltwater (Premium REEF-Salt, Tropical Marine Centre©,
Chorleywood, UK) in a final number of 18 continuously aerated glass tanks and fed
with PhytoGreen-M phytoplankton (Brightwell Aquatics, Fort Payne, AL, USA). A longer
acclimation period (compared to the other exposure experiments described in [49,55] was
chosen in order to achieve ripeness of the gonads. Histological analysis to determine a
baseline gametogenesis status and assess the potential ripeness of the gonads (and thus the
readiness to the synchronised spawning event) was conducted on a subset of test mussels
that were collected alongside the individuals used for this experiment and kept in an
additional spare tank exposed to the same acclimation parameters. Mussels were kept in a
climate-controlled room where the temperature was progressively raised by a total of 2 ◦C
over the first week in order to avoid immediate temperature-induced shock and to facilitate
the maturation of gonads, as was observed in [49], where an increase in temperature was
noted to accelerate the mussel gametogenesis cycle.

After the acclimation period, mussels were exposed for seven days to two concen-
trations of DEHP (nominal concentrations 0.5 and 50 µg/L) for a final yield of three
experimental treatments (CTRL (0 µg DEHP/L), LOW DEHP, HIGH DEHP). Exposures
of 0.5 and 50 µg DEHP/L were chosen from the literature, in accordance with the levels
found in coastal waters [35,36]. A 7-day DEHP exposure was chosen accounting for the
non-persistence of DEHP in the environment [34,68]. Mussels were not fed during expo-
sure, and artificial saltwater was prepared the day before each water change to allow the
water temperature to adjust to the controlled room conditions. Water was partially (approx.
3 litres) changed every second day and DEHP was dosed right after (i.e., days 1, 3, and 5)
from a stock solution of 1 mg/mL DEHP (≥99.5% purity, Sigma Aldrich®, Gillingham, UK)
in ethanol (0.005% of the total water volume). Temperature, pH, and salinity were mea-
sured daily (Table 1) with a digital thermometer (Amarell Thermometer, Kreuzwertheim,
Germany), a pH-metre (Jenway, Bibby Scientific Limited, Stone, UK), and a digital seawater
refractometer (Hanna Instruments, Woonsocket, RI, USA). After seven days of exposure, the
animals were stimulated to spawn as described below (unlicensed animal ethics approval
reference no. #U080/FEC_2021_10, University of Hull). Eggs were collected from the tanks
with a single-use pipette and mussel gonads were dissected. Approximately 1.0 cm2 of left
gonad tissue was cut and immersed in 1 mL neutral-buffered 10% formalin solution (Sigma
Aldrich, Gillingham, UK) at room temperature for histological observations.
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Table 1. Experimental treatments and measurements of temperature and pH at salinity values of
35 ± 1. All parameters are expressed as mean ± standard deviation.

Name of Treatment Temperature (◦C) pH (Units)

CTRL (0 µg DEHP/L) 12.8 ± 0.4 7.9 ± 0.1
LOW DEHP (0.5 µg DEHP/L) 12.6 ± 0.3 7.8 ± 0.2
High DEHP (50 µg DEHP/L) 12.7 ± 0.3 7.8 ± 0.1

2.2. Spawning Induction

During the fertilisation event, eggs are released as an intermittent pink cloud, while
sperm is released in a thin, steady stream through the exhaling syphon cloud [69]. The KCl
method from [70] was chosen as a spawning inductor, and carried out as follows: mussels
were injected with 2 mL of 0.5 M KCl into the valve cavity and left for 2 h outside water.
Then, they were randomly divided into 5 tanks for each treatment (n = 6 per replicate tank
in a final volume of 2 L), considering that preliminary tests showed that mussels were more
likely to spawn when placed with conspecifics and not in individual jars. Mussels were
then left to spawn overnight in water.

2.3. Egg Counting and Size Measurement

Mussels were left to spawn overnight, and the morning after, water samples containing
eggs were transferred into 2 mL tubes and fixed with formalin 10%. Eight aliquots of
10 µL each were immediately observed under a ZEISS Discovery Zen light microscope
(Carl Zeiss, Cambridge, UK) with retro illumination and an Axiocam camera (Carl Zeiss,
Cambridge, UK). Pictures of each aliquot (8 aliquots for each of the 5 replicate tanks
for each treatment) were taken and later blindly analysed with the ImageJ software 1.8.0
(cell_counter plugin). Eggs were then counted and the size of one random egg per picture
(i.e., 8 eggs for each of the 5 replicate tanks for each treatment) was measured using
ImageJ 1.8.0. The egg diameter was then calculated from the area using the formula
diameter (D) = (

√
area (A)/Π) × 2. Mussel individuals were then sampled and tissues for

gonads were collected for histological analysis.

2.4. Histology Analysis to Determine Sex and Maturity Factor

Gonad samples from all individuals belonging to the experiment were fixed in 10%
buffered formalin (Sigma-Aldrich, Gillingham, UK) and then washed with 0.01 M PBS
(Sigma Aldrich, Irvine, UK), dehydrated with increasing ethanol (Fisher Scientific, Lough-
borough, UK) concentrations (70%, 90%, 100%) and cleared with Histoclear II (National
Diagnostics, Atlanta, GA, USA). The day after, the samples were embedded in paraffin wax
(VWR, Poole, UK) in an EG 1160 Paraffin Wax Embedding Centre (Leica Microsystems,
Milton Keynes, UK) and tissue sections (10 µm) of wax-embedded gonads were cut on a
Shandon Finesse® Manual Rotary Microtome 325 (Thermo Fisher Scientific, Loughborough,
UK). Slides were stained with Mayer’s haematoxylin solution (Sigma-Aldrich, Schnelldorf,
Germany) and eosin Y alcoholic solution (Sigma-Aldrich, Schnelldorf, Germany). Prior to
microscopic analysis, the microscope slides were coded in order to conduct a blind obser-
vation. Males and females were identified, and the following stages were blindly assessed
following the stage descriptions reported by [57], where each stage was categorised by
a maturity factor (MF): (i) spent/resting gonad (MF = 1, Figure 1G,H); (ii) development,
stages 1 and 3; (iii) development stage 5 (mature/ripe gonads, MF = 3, Figure 1A,B); (iv)
spawning stages 3 and 1 (MF = 4, Figure 1C–F). In particular, the following characteristics
were recognised in females: mature/ripe gonads displayed compacted and polygonal-
shape ova with some developing oocytes (Figure 1A), while spawning gonads showed
empty spaces in the follicles, with some residual mature eggs still present (Figure 1 C,E).
The sexual maturity index (SMI) was calculated according to the equation established
by [71]: SMI = Σ (proportion of each stage × maturity factor). No particular alterations were
found in the gonads between treatments after exposure to DEHP.
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Figure 1. Gametogenesis stages of 10 µm gonadal tissue sections after DEHP exposure and the
spawning induction in males and females stained with haematoxylin and eosin. Mature gonads
in females (A) and males (B), spawning stage 3 in females (C) and males (D), spawning stage 1 in
females (E) and males (F), empty spent follicles (G), and resting/spent stage (H). Scale bars represent
200 µm. Images were modified for brightness and contrast.

2.5. Respirometer Assay and Valve Behaviours

Behavioural and physiological analyses were carried out on adult blue mussels (n = 36;
mean length 5.5 cm ± 0.45 cm) collected from the same population in Cromarty Mussels
Ltd. (Cromarty Firth, UK) in January 2021 and kept for 19 days in the aquarium facilities
of the University of Hull at T = 8.62 ± 0.28 ◦C, pH = 8.08 ± 0.03, and 35 ± 1 psu salinity.
This additional analysis was performed to test the consequences on the behavioural and
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metabolic traits of blue mussels (i.e., respiration and valve movement) after a single-dose
exposure to the plastic additive DEHP and whether a non-monotonic, nonlinear dose
response could be related to the altered uptake or filtration activity of mussels. Mussels
were tested on day 1 (CTRL), and the following day (day 2), the same groups were exposed
to a single dose of either 0.5 µg/L (LOW DEHP) or 50 µg/L (HIGH DEHP) of DEHP
as follows: (I) mussels were individually placed into 200-mL jars and acclimated for
5 min; (II) after acclimation, 10 µL of either control seawater (on day 1) or DEHP (0.5 or
50 µg/L on day 2) was injected in the proximity of the gills; (III) after lid closure, the
valve behaviour was recorded on video, and oxygen consumption was measured with a
USB-powered fibre optic metre FireStingO2 for a 5-min assay. Each mussel was tested once
per day and at the same time over the two days in order to minimise animal stress and
the possible effects of circadian rhythm on valve movements [72–74]. As an estimator for
the basal metabolic rate, oxygen consumption (mg/L) was recorded by the respirometer
every 30 s to yield a total of 10 data points over the 5-min assay for each individual. The
5-min interval was chosen considering the filtration rate of 46–80 mL/min (230–400 mL in
5 min) for M. edulis individuals of 5.65 cm in length [75]. The partial oxygen consumption
∆mg/L for each time point t was calculated as follows: oxygen concentration (mg/L) at
time point (t)-oxygen concentration (mg/L) at time point (t − 1). Before the experiment,
blank tests were conducted in the same 200-mL jars in order to assess the background
microbial water consumption from the experimental water tanks. During the same 5-min
interval of the respirometer assay, the behaviours of the valves were recorded on video
as behavioural changes are usually recorded at the same time as physiological assays as
respiration is closely related to the activity and movements of the valves [76]. Videos were
then coded, and behaviours were scored blindly in order to remove possible observer bias.
The following valve behaviours were assessed for the same data points as the respirometer
test over the 5-min assay (10 data points of 30 s each): (I) valve status: valves were either
closed or open; (II) valve changes: number of changes between opening and closure or
vice versa (none, one, more than one); (III) valve openings: number of only opening events
(from closed to open, measure as none, one, more than one).

2.6. Statistical Analysis

Ordinal logistic regression was used to predict the ordinal dependent variables “Game-
togenesis stage”, assuming “DEHP” and “SEX” as independent variables. The dependent
variable “Gametogenesis stage” was measured at the ordinal level (i.e., a 3-point scale
ranging from “development” to “mature” to “spawning”). Independent variables “DEHP”
and “SEX” were considered categorical variables. Model uncertainty was assessed by
comparing the ∆AICc values and Akaike weights, in which higher values for ∆AICc in-
dicate second best to last parsimonious models of the set (Table 2). Model selection was
carried out in Rstudio with the AICcmodavg package [77] in R 3.6.2 (CRAN). Models with
∆AIC > 10 were omitted from consideration since they have considerably less support
compared to the best-fitting model [78]. Ordinal logistic regression was carried out using
the polr function (MASS package, [79]), calculating the p value by comparing the t-value
against the standard normal distribution (Table 3). The proportional odds assumption (test
of parallel lines) was tested using the ordinal package [80]. Since the sex of mussels could
not be determined through external morphology but only by histology, we investigated
whether the number of eggs observed was correlated with the number of females in the
tank post-histology. A significant correlation between the number of spawned eggs and
the number of females in the tanks was found by the Pearson’s test (p < 0.001, t = 3.63).
Therefore, the number of eggs per each of the eight aliquots was divided by the number of
females present in the tank before undertaking the statistical analysis. One female in the
HIGH DEHP treatment was taken out of the calculation due to displaying gonads in the
early developing state, and thus unlikely to spawn when induced.

During the histological observations, some microscopic analysis of the follicles resulted
in inconclusive results due to the display of undetermined sex traits (as shown in Figure 1G),
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characteristics of spent gonads. Considering that the observed undetermined gonads (n = 1
for CTRL, n = 1 for LOW DEHP, n = 4 for HIGH DEHP) could have been either spawned
males or females and that a mussel population usually displays a 1:1 ratio between sexes,
additional statistical analysis was carried out by adding 50% of the resting/spent gonads
(i.e., n = 0.5 for CTRL, n = 0.5 for LOW DEHP, n = 2 for HIGH DEHP), considering them as
possible fully spawned and spent females.

Table 2. Model classification, number of estimated parameters (K) for each model, Akaike information
criterion (AICc), delta AIC (∆AIC), Akaike weights (AICcWT), cumulative Akaike weights (CumWT),
and log-likelihood of each model (LL) for the two independent variables (+) sex (SEX) and DEHP
concentration (DEHP) and their interactions (*) on the gametogenesis stages.

Model (K) AICc; ∆AIC; AICcWT Cum WT; LL

SEX + DEHP (4) 118.15; 0.00; 0.47 0.47; −54.99
SEX (3) 118.82; 0.67; 0.67 0.80; −56.35

SEX * DEHP (5) 119.89; 1.74; 0.20 0.99; −54.82
DEHP (3) 126.92; 8.78; 0.01 1.0; −60.41

Table 3. Results of the ordinal logistic regression for the best model of treatments (SEX). Estimated
value, standard error, t-value, and p value for the independent variables sex and DEHP concentra-
tion (DEHP).

Variable Value; Std. Error t-Value; p Value

SEX −1.56; 0.50 −3.14; 0.002
DEHP −0.50; 0.31 −1.62; 0.104

The relative number of eggs was then analysed via the nonparametric Kruskal–Wallis
test (stats package) after verifying the non-normality (Shapiro–Wilk’s test) and homogeneity
(Levene’s test) of the dataset. Dunn’s test, a post hoc test suitable for nonparametric data,
was then used for comparisons between groups. Regarding the average egg size, the
area and diameter were analysed with the ANOVA test (stats package) after verifying the
normality (Shapiro–Wilk’s test) and homogeneity (Levene’s test) of the dataset. Tukey’s
multiple comparison test, which is suitable for comparing the means of normally distributed
data following parametric analysis, was then used for comparisons between groups.

Moreover, the partial oxygen consumption measurements over the 30-s data points
were analysed by ANOVA for Randomised Block Design after data normalisation (bestNor-
malize package, [81]) to determine the impact of treatments while correcting for time points
as a blocking factor. For valve behaviours, one-way PERMANOVA [82] using the Jaccard
dissimilarity matrix and 9999 permutations (vegan package, [83]) was applied to the valve
status (either “closed” or “open”), valve changes (number of changes between open and
closed valves and vice versa), and valve openings (number of valve opening events) to test
the effect of the DEHP exposures. All graphs were created using MATLAB R2022b.

3. Results

The most parsimonious ordered logistic regression model (SEX + DEHP) showed that
there was a significant difference between sexes (p SEX = 0.002, t-value = −3.14) and in
their SMIs. When analysing the effect of DEHP, there was no effect of the plasticiser on the
transition between stages (p > 0.05, Figure 2, Tables 2 and 3).

Similar to the sexual maturity index, the Kruskal–Wallis test highlighted a lowered but
slightly not significant effect of DEHP on the number of spawned eggs by females (p = 0.10,
KW chi-squared = 4.52, Figure 3).

The LOW and HIGH DEHP treatments showed the lowest average egg count in the
10 microlitre aliquots (57.1 ± 9.0 SEM eggs/female for LOW DEHP and 54.0 ± 8.9 SEM
egg/female for HIGH DEHP), lower when compared to the control spawned eggs
(77.0 ± 11.8 SEM eggs/female). Usually, M. edulis females emit ca. 106–109 eggs per
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female, depending on body size [84–86]. In this experiment, the female body sizes
were coherent between treatments (5.6 ± 0.7 cm in CTRL; 5.7 ± 0.5 cm in LOW DEHP;
5.9 ± 0.6 cm in HIGH DEHP), with no significant difference between groups (one-way
ANOVA p > 0.05). It is therefore unlikely that differing relative egg counts resulted from
different body sizes.
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associated SMIs.
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Figure 3. Total eggs for females counted in 10 microlitres (8 replicate aliquots counted in 5 tanks for
each treatment). Data are expressed as the mean ± standard error of the mean (SEM). Abbreviations
are CTRL (0 µg/L), LOW DEHP (0.5 µg/L), and HIGH DEHP (50 µg/L). Different shapes represent
different replicate tanks.

When adding 50% of the undetermined gonads (i.e., possible fully spawned females,
n = 0.5 for CTRL, n = 0.5 for LOW DEHP, n = 2 for HIGH DEHP) to the total number
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of females, the effect of DEHP was observed to intensify. In fact, adjusting the spawned
eggs by the additional spent gonads resulted in a mean ± standard error of the mean
SEM of 75.8 ± 12.0 eggs/female in CTRL, 52.8 ± 8.1 eggs/female for LOW DEHP, and
33.3 ± 4.9 egg/female for HIGH DEHP. In this case, the Kruskal–Wallis test uncovered a
significant effect of DEHP in lowering the egg count (p = 0.02, KW-H= 8.02, Figure 4).

For the egg area measurement (squared micrometre), ANOVA found an effect of
DEHP on the egg area (p < 0.001, F value = 7.63, Figures 5 and 6). Tukey’s test highlighted a
significant difference between the control eggs and those exposed to a low concentration
of DEHP (p = 0.04) and between the low and high DEHP treatment groups (p < 0.001).
In fact, LOW DEHP exposure had a significant effect in lowering the size of the eggs,
with the smallest cells observable in the tanks exposed to the low concentration of DEHP
(area = 2853 ± 67 SEM µm2; diameter = 60.1 ± 0.7 SEM µm), while the high concentration
treatments were of similar size to the control condition tanks. Specifically, the average
values for the HIGH DEHP groups were 3377 ± 100 SEM µm2 for the egg area and
65.3 ± 1.0 SEM µm for the egg diameter, while in the CTRL condition, the average area
was 3200 ± 101 SEM µm2 and the diameter = 63.5 ± 1.0 SEM µm.
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Figure 4. Counted eggs adjusted by adding 50% of the observed spent gonads to the total females in
10 microlitres (8 replicate aliquots counted in 5 tanks for each treatment). Data are expressed as the
mean ± standard error of the mean (SEM). Abbreviations are CTRL (0 µg/L), LOW DEHP (0.5 µg/L),
and HIGH DEHP (50 µg/L). Different shapes represent different replicate tanks. Kruskal–Wallis p
value is annotated in the top right corner.

Regarding the respirometer assay, the HIGH DEHP dose was found to be significantly
effective in increasing the oxygen consumption with respect to the CTRL, especially in
the first 180 s after injection in the proximity of the gills (p < 0.001, F value = 13.53). Even
though not significant, a lowered oxygen consumption was also observable in the LOW
DEHP mussels with respect to the CTRL group, especially in the first 180 s, highlighting an
inverted trend of the two concentrations on mussel oxygen consumption (Figure 7).
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Figure 5. Egg area (squared micrometre) for each treatment (8 replicate aliquots measured in 5 tanks
for each treatment). Data are expressed as the mean ± standard error of the mean (SEM). Abbrevi-
ations are CTRL (0 µg/L), LOW DEHP (0.5 µg/L), and HIGH DEHP (50 µg/L). Different shapes
represent different replicate tanks. ANOVA p values are annotated and differences between groups
are indicated by bars over the histograms.
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different replicate tanks. The grey line represents the minimum threshold of fertilised eggs reported
by [58]. ANOVA p values are annotated and differences between groups are indicated by bars over
the histograms.
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Figure 7. DEHP effect on the mg/L water oxygen concentration (consumed oxygen estimation)
throughout the 30−s time points on day 2 after an injection of (A) 0.5 µg DEHP/L or (B) 50 µg
DEHP/L.Abbreviations are CTRL (0 µg/L, in green), LOW DEHP (0.5 µg/L, in red), and HIGH
DEHP (50 µg/L, in blue), n = 17−18. Datapoints are expressed as the mean ± standard error of the
mean (SEM). ANOVA significant p values are annotated on the graphs.

No significant effects were observed for the low and high DEHP dose for valve move-
ments (p > 0.05, Figure 8). A trend in valves being closed more often was noted for the LOW
DEHP-treated mussels against the CTRL, both, however, were not statistically significant.
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Figure 8. Percentages of individuals with (A) open (green) or closed (purple) valves (modal values).
“Split” (blue) values indicate mussels that have spent an equal time in open and closed states exposed
to each of the two DEHP concentrations. (B) Percentages of individuals with more than one change
from open to closed valves or vice versa (green), one change (blue) or no changes from the initial
status (purple). (C) Percentages of individuals with more than opening events (from closed to open),
measured as none (purple), one (blue), more than one (green). Abbreviations are CTRL (0 µg/L),
LOW DEHP (0.5 µg/L), and HIGH DEHP (50 µg/L), n = 17–18.

4. Discussion

Exogenous factors such as temperature, food availability, nutrient quality, salinity,
circadian rhythm, or tides could control certain aspects of the reproductive cycle such
as duration and periodicity of the gametogenesis and larval stages [87–90]. Endogenous
factors and species-specific characteristics such as animal hormone levels or individual
responses to environmental conditions might also affect and regulate gametogenesis or
spawning [91]. Moreover, gametes in the water represent a chemical stimulus to ripe
mussels in order to induce spawning and increase the success of fertilisation [58]. As shown
in [49,55], DEHP in environmentally relevant concentrations does not seem to induce any
alteration of the gametogenesis stage in males or females. Likewise, here, even though a
small decrease in the SMI for females was noted with exposure to increasing concentrations
of DEHP, it was not significant. This does not preclude additional dysfunctions from the
endocrine disruptor DEHP on reproductive traits, as already shown for fish [26,92] or
crustaceans [93,94] at various concentrations from 0.02 to 500 µg/L.

A lowered but slightly not significant effect of DEHP was noted on the number of
spawned eggs. This attenuated response could be related to the fact that DEHP was
administered only during the terminal part of the gametogenesis cycle, when females
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were already in the final developing phase and the gametes were already present in the
gonads and just needed to grow to maturation, hence there was only very little effect
on the number spawned. However, it is important to highlight that when adding spent
gonads as possible fully spawned females to the statistical analysis, the effect of DEHP in
lowering the number of counted eggs was further pronounced, displaying a significant
difference between the treated individuals with respect to the control. In line with these
results, when exposed for a year to concentrations of 10–100 ng/L of tributyltin (TBT),
adult periwinkle Littorina littorea showed decreased egg production, but with marginal
effect after a short-term exposure of 9 days [95]. The exposure to the antiandrogenic
compound flutamide over a period of 21 days resulted in a decrease in eggs spawned per
female due to a delay in the maturation of eggs in fathead minnow Pimephales promelas [96].
Significant reductions in eggs spawned for females were also noted in Danio rerio exposed
long-term to concentrations >1.67 ng/L and 1500 µg/L of 17α-ethinylestradiol (EE2) and
BPA, respectively. The effects were often associated with increased vitellogenin plasma
levels and gonadal alterations, while exposure to the same compounds for a shorter time of
0–3 days post-fertilisation provoked no effect on spawned eggs [97]. A similar reduction
in female fecundity was found for D. rerio exposed to nonylphenol (100 µg/L) or EE2
(10 µg/L) for two months [98]. These effects could be caused by interference with mitosis,
cell cycle progression, protein metabolism, and/or the final maturation of oocytes [99].
The results from the literature might suggest a possible effect of EDCs on the number of
spawned egg if the females are exposed for a prolonged period over their gametogenesis,
even though a 7-day exposure was noted here to already induce a slight decrease in the
DEHP-treated groups.

For the egg area measurement (squared micrometre), there was an effect of DEHP on
lowering the egg size. This seems to confirm the non-monotonic dose-response effect of
endocrine disruptive chemicals such as DEHP. In the literature, the egg diameter of Mytilus
eggs is reported as being around 70 µm [84], and more specifically, fertilised eggs are usually
60–65 µm in diameter [58]. With respect to the CTRL and HIGH DEHP eggs, a higher
number of eggs shown for the LOW DEHP treatment fell below the threshold of 60 µm.
This could indicate a lower fertilisation rate with respect to the other two conditions, but
further studies are needed to address this particular risk to mussel reproductive outcomes.
Chemicals such as plasticisers or synthetic drugs are defined as selective modulators of
the endocrine system. This means that they often cause nonlinear responses and either
interfere with the synthesis and/or metabolism of hormones and their receptors [100,101].
In some cases, the resulting dose responses follow a biphasic curve characterised by
stimulation at low doses and inhibition at higher doses [102]. In fact, it is well-known that
some pollutants present dose responses that show not only linear, power, or exponential
distributions, but also a U-shape, inverted U-shape, J-shape, and inverted J-shape [102].
Inverted U-shape dose–response curves were, for example, observed for cadmium exposure
on the activity of superoxide dismutase (SOD) and catalase (CAT) in the earthworm
Eisenia fetida, while higher doses provoked the inhibition of these antioxidant enzymes,
possibly related to the activation of pathways of adaptation [103]. Several studies have
reported that low-concentration exposure to xenobiotics such as heavy metals could elicit an
adaptive mechanism characterised by increasing energy storage, which is overcompensated
by excessive energy consumption at higher doses, to balance the energy metabolism
and maintain homeostasis [104–107]. In [108], the sperm and embryos of sea urchins
Paracentrotus lividus and Sphaerechinus granularis exposed to vegetal- and chemical-based
tannins resulted in a general initial increase in the fertilisation rate at concentrations of
0.1–0.3 mg/L and a shift to toxicity at higher concentration doses. These types of hormetic
effects are also induced by natural and environmental factors such as temperature, ground-
level ozone, magnetic field, and radiation [109]. It is interesting to note that when increasing
the exposure concentrations, DEHP elicited two different response curves: a linear one
for the number of eggs spawned and a biphasic curve for the egg sizes. Considering
the number of spawned eggs, it is important to also note a slight trend towards a lower



Toxics 2024, 12, 172 14 of 19

proportion of spawning female gonads with high DEHP concentration, which could also
have affected the egg number.

In bivalves, gonads consist of branching tubules united to form ducts (that eventually
lead into a short gonoduct), with gametes situated in the epithelial lining that are subse-
quently shed into the water through the exhaling mantle opening [58]. In females, primary
oogonia follow repeated mitosis to secondary oogonia (5–7 µm diameter), which as primary
oocytes undergo meiosis until it is arrested at prophase I (as the remaining part of meiosis
is completed at fertilisation). Then, vitellogenesis takes place, when oocytes accumulate
nutritive substances such as lipid globules, vitellogenin (egg yolk vitellin precursor), and
cortical granules [110]. In invertebrates with internal fertilisation such as Caenorhabditis
elegans nematodes, it was recently described that low concentrations of DEHP can alter
meiotic processes such as increased meiotic double-strand breaks, defects in chromosome
remodelling at late prophase I, aberrant chromosome morphology in diakinesis oocytes,
and increased chromosome non-disjunction [111]. Contrary to our results, in [112], ex-
posure to the oestrogenic compound E2 of the Pacific oyster Crassostrea gigas for 40 days
increased the diameter and vitellin content in the oocytes, suggesting that the chemical E2
is involved in the vitellogenesis in female oysters. This could suggest that DEHP in mussels
might negatively affect the same pathway, affect the oocyte reserves, and eventually, the
size of the spawned eggs. Considering this, it is possible that in this experiment, low DEHP
exposure for one week affected the female oocytes by disrupting the meiotic process and/or
the accumulation of nutritive deposits during the final phase of vitellogenesis, eventually
impacting the egg size.

Exposure to external chemicals could also affect the valve activity and respiration
rate, eventually leading to changes in the filtration and absorption of toxicants. Here, the
HIGH DEHP dose was able to induce an increase in the respiration of mussels, especially
in the first minutes of exposure. On the contrary, this effect was not noticed for the LOW
DEHP exposure. Increased respiration rate was also observed in Wang et al. [113] when
mussels were exposed to plastic particles. This was explained as enhanced metabolic com-
pensation in response to environmental stressors, suggesting that a higher concentration
of the plasticiser DEHP could be sensed as a more threatening stimulus by the mussels
compared to the LOW DEHP dose, which could, in turn, bypass the defence mechanisms
and be absorbed by the animals during filtration, thus eliciting a stronger response in
reproductive outcomes.

5. Conclusions

In conclusion, a non-monotonic dose-response was observable for the plastic ad-
ditive DEHP during the synchronised reproductive event, especially on the size of the
eggs spawned. Females exposed to a low concentration of DEHP (nominal concentration
0.5 µg/L) for seven days spawned smaller eggs compared to the control and the higher
concentration (nominal concentration 50 µg/L, with regard to the measured egg area)
groups. Regarding the egg count, no significant effect was noted, even though the number
of spawned eggs decreased in the DEHP-treated groups, with the effect further pronounced
when considering undetermined sex gonads as possible fully spawned females. As al-
ready observed, a linear toxicity response was not observable for endocrine disrupting
chemicals such as DEHP, highlighting the importance of ecotoxicological studies to address
the effect of EDCs at low concentrations, which are the most prominent levels found in
natural environments. In fact, as this paper and many other studies before have underlined,
DEHP and other endocrine disruptors (used in herbicides, fungicides, insecticides, UV
screens, lubricants, and paints) could stimulate stronger effects and affect organisms at
low environmental concentrations. It is already known that non-monotonic responses to
endocrine-active chemicals are often related to receptor actions or the presence of antago-
nists, regulators, and co-activators [55,109,110]. From these preliminary results, it could
be also hypothesised that low concentrations exhibit strong responses as they are better
absorbed by filter feeders such as mussels, as higher levels may more likely be sensed as
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a threat and rapidly excreted or cause metabolic or behavioural changes. However, what
we did not investigate in this study was whether there are altered baseline tolerances of
these populations based on natural occurrences of environmental toxins. Thus, policies
regulating the use and disposition of these chemicals, along with the setting of new safe
environmental levels, should be developed.
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