Antibiotic Residues in UK Foods: Exploring the Exposure Pathways and Associated Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Online Diet Survey
2.2. Antibiotic Quantification in Food and Drink
2.2.1. Antibiotics, Chemicals, and Reagents
2.2.2. Low-Temperature Partitioning Extraction (LTPE)
2.2.3. LC–MS Analysis
2.2.4. Method Validation
2.3. Estimated Meal Intake (EMI)
2.4. Statistical Analysis
3. Results
3.1. Demographical Profiles and Overall Consumption Trend
3.2. Meat Consumption
3.3. Dairy Consumption
3.4. Water Consumption
3.5. Antibiotic Detection and Quantification from the Meat Samples
3.6. Estimated Meal Intake (EMI) of Antibiotics from Each Meal
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Kong, L.; Gao, H.; Cheng, X.; Wang, X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front. Microbiol. 2022, 13, 822689. [Google Scholar] [CrossRef]
- Akram, F.; Imtiaz, M.; Haq, I.U. Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microb. Pathog. 2023, 174, 105923. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016. [Google Scholar]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- van Staa, T.P.; Palin, V.; Li, Y.; Welfare, W.; Felton, T.W.; Dark, P.; Ashcroft, D.M. The effectiveness of frequent antibiotic use in reducing the risk of infection-related hospital admissions: Results from two large population-based cohorts. BMC Med. 2020, 18, 40. [Google Scholar] [CrossRef]
- Andrew Bamidele, F.; Oluwakamisi Festus, A. Veterinary Drug Residues in Meat and Meat Products: Occurrence, Detection and Implications. In Veterinary Medicine and Pharmaceuticals; Samuel Oppong, B., Mani, S., Reimmel Kwame, A., Ramkumar, P.K., Eds.; IntechOpen: Rijeka, Croatia, 2019; p. Ch. 5. [Google Scholar]
- Treiber, F.M.; Beranek-Knauer, H. Antimicrobial Residues in Food from Animal Origin-A Review of the Literature Focusing on Products Collected in Stores and Markets Worldwide. Antibiotics 2021, 10, 534. [Google Scholar] [CrossRef]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef]
- FAO. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production; FAO: Rome, Italy, 2016; p. 56. [Google Scholar]
- Morehead, M.S.; Scarbrough, C. Emergence of Global Antibiotic Resistance. Prim. Care 2018, 45, 467–484. [Google Scholar] [CrossRef]
- Okaiyeto, S.A.; Sutar, P.P.; Chen, C.; Ni, J.-B.; Wang, J.; Mujumdar, A.S.; Zhang, J.-S.; Xu, M.-Q.; Fang, X.-M.; Zhang, C.; et al. Antibiotic Resistant Bacteria in Food Systems: Current Status, Resistance Mechanisms, and Mitigation Strategies. Agric. Commun. 2024, 2, 100027. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, V.O.; Duffy, B. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 2012, 31, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Ali Mirza, S.; Afzaal, M.; Begum, S.; Arooj, T.; Almas, M.; Ahmed, S.; Younus, M. Chapter 11—Uptake mechanism of antibiotics in plants. In Antibiotics and Antimicrobial Resistance Genes in the Environment; Hashmi, M.Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 183–188. [Google Scholar]
- FAO. Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; p. 152. [Google Scholar]
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 22, 55. [Google Scholar]
- Food and Drug Administration. Guidance for Industry: Estimating Dietary Intake of Substances in Food; Food and Drug Administration: Maryland, United States, 2018. [Google Scholar]
- Silva, T.L.R.; Queiroz, M.E.L.R.d.; Neves, A.A.; Vieira, P.A.F.; Oliveira, A.F.d.; Oliveira, M.G.d.A. Miniaturized Liquid-Liquid Extraction with Low-Temperature Partitioning Technique (LLE/LTP) for Pesticide Analysis in a Biological Matrix by Gas Chromatography. Química Nova 2021, 44, 804–808. [Google Scholar] [CrossRef]
- Matharu, R.K.; Ahmed, J.; Seo, J.; Karu, K.; Golshan, M.A.; Edirisinghe, M.; Ciric, L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers 2022, 14, 5155. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Guidance Document on Pesticide Analytical Methods for Risk Assessment and Post-approval Control and Monitoring Purposes; European Commission: Luxembourg, 2023. [Google Scholar]
- Schiller, C.; Fröhlich, C.P.; Giessmann, T.; Siegmund, W.; Mönnikes, H.; Hosten, N.; Weitschies, W. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 2005, 22, 971–979. [Google Scholar] [CrossRef]
- Government UK. National Diet and Nutrition Survey: Diet, Nutrition and Physical Activity in 2020: A Follow up Study during COVID-19; Government UK: London, UK, 2021; Volume 54.
- Murray, K.; Hoad, C.L.; Mudie, D.M.; Wright, J.; Heissam, K.; Abrehart, N.; Pritchard, S.E.; Al Atwah, S.; Gowland, P.A.; Garnett, M.C.; et al. Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans. Mol. Pharm. 2017, 14, 2629–2638. [Google Scholar] [CrossRef]
- Gaal, S.; Kerr, M.A.; Ward, M.; McNulty, H.; Livingstone, M.B.E. Breakfast Consumption in the UK: Patterns, Nutrient Intake and Diet Quality. A Study from the International Breakfast Research Initiative Group. Nutrients 2018, 10, 999. [Google Scholar] [CrossRef]
- Hansen, J.; Sparleanu, C.; Liang, Y.; Büchi, J.; Bansal, S.; Caro, M.Á.; Staedtler, F. Exploring cultural concepts of meat and future predictions on the timeline of cultured meat. Future Foods 2021, 4, 100041. [Google Scholar] [CrossRef]
- Wang, Y.; Uffelman, C.N.; Bergia, R.E.; Clark, C.M.; Reed, J.B.; Cross, T.L.; Lindemann, S.R.; Tang, M.; Campbell, W.W. Meat Consumption and Gut Microbiota: A Scoping Review of Literature and Systematic Review of Randomized Controlled Trials in Adults. Adv. Nutr. 2023, 14, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Ueland, Ø.; Rødbotten, R.; Varela, P. Meat consumption and consumer attitudes—A Norwegian perspective. Meat. Sci. 2022, 192, 108920. [Google Scholar] [CrossRef] [PubMed]
- Spence, C. Explaining seasonal patterns of food consumption. Int. J. Gastron. Food Sci. 2021, 24, 100332. [Google Scholar] [CrossRef]
- Foster, E.; Lee, C.; Imamura, F.; Hollidge, S.E.; Westgate, K.L.; Venables, M.C.; Poliakov, I.; Rowland, M.K.; Osadchiy, T.; Bradley, J.C.; et al. Validity and reliability of an online self-report 24-h dietary recall method (Intake24): A doubly labelled water study and repeated-measures analysis. J. Nutr. Sci. 2019, 8, e29. [Google Scholar] [CrossRef]
- Nishi, S.K.; Babio, N.; Paz-Graniel, I.; Serra-Majem, L.; Vioque, J.; Fitó, M.; Corella, D.; Pintó, X.; Bueno-Cavanillas, A.; Tur, J.A.; et al. Water intake, hydration status and 2-year changes in cognitive performance: A prospective cohort study. BMC Med. 2023, 21, 82. [Google Scholar] [CrossRef] [PubMed]
- Kenney, E.L.; Long, M.W.; Cradock, A.L.; Gortmaker, S.L. Prevalence of Inadequate Hydration Among US Children and Disparities by Gender and Race/Ethnicity: National Health and Nutrition Examination Survey, 2009–2012. Am. J. Public Health 2015, 105, e113–e118. [Google Scholar] [CrossRef]
- Guelinckx, I.; Iglesia, I.; Bottin, J.H.; De Miguel-Etayo, P.; González-Gil, E.M.; Salas-Salvadó, J.; Kavouras, S.A.; Gandy, J.; Martinez, H.; Bardosono, S.; et al. Intake of water and beverages of children and adolescents in 13 countries. Eur. J. Nutr. 2015, 54 (Suppl S2), 69–79. [Google Scholar] [CrossRef]
- Vanhaecke, T.; Bretin, O.; Poirel, M.; Tap, J. Drinking Water Source and Intake Are Associated with Distinct Gut Microbiota Signatures in US and UK Populations. J. Nutr. 2022, 152, 171–182. [Google Scholar] [CrossRef]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014, 7, 17–44. [Google Scholar] [CrossRef]
- Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef] [PubMed]
- Hosseinlou, A.; Khamnei, S.; Zamanlu, M. The effect of water temperature and voluntary drinking on the post rehydration sweating. Int. J. Clin. Exp. Med. 2013, 6, 683–687. [Google Scholar] [PubMed]
- Shirreffs, S.M.; Watson, P.; Maughan, R.J. Milk as an effective post-exercise rehydration drink. Br. J. Nutr. 2007, 98, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kavouras, S.A. Hydration, dehydration, underhydration, optimal hydration: Are we barking up the wrong tree? Eur. J. Nutr. 2019, 58, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed]
- Jammoul, A.; El Darra, N. Evaluation of Antibiotics Residues in Chicken Meat Samples in Lebanon. Antibiotics 2019, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, 1315497. [Google Scholar] [CrossRef]
- Lucchetti, D.; Fabrizi, L.; Guandalini, E.; Podestà, E.; Marvasi, L.; Zaghini, A.; Coni, E. Long depletion time of enrofloxacin in rainbow trout (Oncorhynchus mykiss). Antimicrob. Agents Chemother. 2004, 48, 3912–3917. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Qin, L.T.; Pang, X.R.; Zeng, H.H.; Liang, Y.P.; Mo, L.Y.; Wang, D.Q.; Dai, J.F. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China. Sci. Total Environ. 2020, 708, 134552. [Google Scholar] [CrossRef]
- Fick, J.; Söderström, H.; Lindberg, R.H.; Phan, C.; Tysklind, M.; Larsson, D.G. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 2009, 28, 2522–2527. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Mo, Y.; Wu, Z.; Rad, S.; Song, X.; Zeng, H.; Bashir, S.; Kang, B.; Chen, Z. Occurrence, distribution, and health risk assessment of quinolone antibiotics in water, sediment, and fish species of Qingshitan reservoir, South China. Sci. Rep. 2020, 10, 15777. [Google Scholar] [CrossRef] [PubMed]
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Azizul Karim Hussani, S.M. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Okocha, R.C.; Olatoye, I.O.; Adedeji, O.B. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev. 2018, 39, 21. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Smith, B.I.; Donovan, G.A.; Risco, C.; Littell, R.; Young, C.; Stanker, L.H.; Elliott, J. Comparison of various antibiotic treatments for cows diagnosed with toxic puerperal metritis. J. Dairy Sci. 1998, 81, 1555–1562. [Google Scholar] [CrossRef]
- Holman, D.B.; Yang, W.; Alexander, T.W. Antibiotic treatment in feedlot cattle: A longitudinal study of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota. Microbiome 2019, 7, 86. [Google Scholar] [CrossRef]
- Rayner, C.; Munckhof, W.J. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Int. Med. J. 2005, 35 (Suppl. S2), S3–S16. [Google Scholar] [CrossRef]
- EU. Health and Food Audits and Analysis Programme 2017; European Commission: Luxembourg, 2017; p. 57. [Google Scholar]
- Erdogan, A.; Gurses, M.; Turkoglu, H.; Sert, S. Fixing the time of the milk ripening depending on the content of immobilized johourt ferment. Pak. J. Biol. Sci. 2001, 4, 886–887. [Google Scholar] [CrossRef]
- Christian, A.; Vivian Etsiapa, B.; Crystal Ngofi, Z.; Frank Boateng, O. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In Antimicrobial Resistance; Yashwant, K., Ed.; IntechOpen: Rijeka, Croatia, 2018; p. Ch. 3. [Google Scholar]
- Weill, F.X.; Guesnier, F.; Guibert, V.; Timinouni, M.; Demartin, M.; Polomack, L.; Grimont, P.A. Multidrug resistance in Salmonella enterica serotype Typhimurium from humans in France (1993 to 2003). J. Clin. Microbiol. 2006, 44, 700–708. [Google Scholar] [CrossRef]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Vet. Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef]
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Elsaidy, N.; Abouelenien, F.; Kirrella, G.A.K. Impact of using raw or fermented manure as fish feed on microbial quality of water and fish. Egypt. J. Aquat. Res. 2015, 41, 93–100. [Google Scholar] [CrossRef]
- Ke, F.; Gao, Y.; Liu, L.; Zhang, C.; Wang, Q.; Gao, X. Comparative analysis of the gut microbiota of grass carp fed with chicken faeces. Environ. Sci. Pollut. Res. Int. 2020, 27, 32888–32898. [Google Scholar] [CrossRef] [PubMed]
- Black, K.D.; Hansen, P.K.; Holmer, M. Salmon Aquaculture Dialogue: Working Group Report on Benthic Impacts and Farm Siting; Scottish Association for Marine Science: Oban, Scotland; Institute for Marine Science: Bergen, Norway; University of Southern Denmark: Odense, Denmark, 2008; p. 54. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, N.; Laffite, A.; Graham, N.D.; Meijer, M.; Prabakar, K.; Mubedi, J.I.; Elongo, V.; Mpiana, P.T.; Ibelings, B.W.; Wildi, W.; et al. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environ. Sci. Technol. 2015, 49, 6528–6537. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.; Aga, D.S.; Wester, A.L. Retrospective analysis of the global antibiotic residues that exceed the predicted no effect concentration for antimicrobial resistance in various environmental matrices. Environ. Int. 2020, 141, 105796. [Google Scholar] [CrossRef]
- Reungoat, J.; Escher, B.I.; Macova, M.; Keller, J. Biofiltration of wastewater treatment plant effluent: Effective removal of pharmaceuticals and personal care products and reduction of toxicity. Water Res 2011, 45, 2751–2762. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Q.; Zhang, C.; Li, H.; Song, W.; Zhang, N.i.; Jia, X. Removal of typical antibiotics in the advanced treatment process of productive drinking water. Desalination Water Treat. 2016, 57, 11386–11391. [Google Scholar] [CrossRef]
- Paredes, L.; Fernandez-Fontaina, E.; Lema, J.M.; Omil, F.; Carballa, M. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems. Sci. Total Environ. 2016, 551–552, 640–648. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Government, UK. Cook to a Safe Minimum Internal Temperature; Government, UK: London, UK, 2023.
- Shaltout, F. Impacts Of Different Types Of Cooking And Freezing On Antibiotic Residues In Chicken Meat. Food Sci. Nutr. 2019, 5, 45. [Google Scholar] [CrossRef]
- Abou-Raya, S.; Shalaby, A.R.; Salama, N.; Mehaya, F. Effect of Ordinary Cooking Procedures on Tetracycline Residues in Chicken Meat. J. Food Drug Anal. 2013, 21, 80–86. [Google Scholar] [CrossRef]
- Shalaby, A.R.; Salama, N.A.; Abou-Raya, S.H.; Emam, W.H.; Mehaya, F.M. Validation of HPLC method for determination of tetracycline residues in chicken meat and liver. Food Chem. 2011, 124, 1660–1666. [Google Scholar] [CrossRef]
- Moats, W.A. The effect of processing on veterinary residues in foods. Adv. Exp. Med. Biol. 1999, 459, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Salama, N.A.; Abou-Raya, S.H.; Shalaby, A.R.; Emam, W.H.; Mehaya, F.M. Incidence of tetracycline residues in chicken meat and liver retailed to consumers. Food Addit. Contam. Part B Surveill 2011, 4, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Fahim, H.; Shaltout, F.; El Shatter, M.A. Evaluate antibiotic residues in beef and effect of cooking and freezing on it. Benha Vet. Med. J. 2019, 36, 109–116. [Google Scholar] [CrossRef]
- Furusawa, N.; Hanabusa, R. Cooking effects on sulfonamide residues in chicken thigh muscle. Food Res. Int. 2002, 35, 37–42. [Google Scholar] [CrossRef]
- Salaramoli, J.; Heshmati, A.; Kamkar, A.; Hassan, J. Effect of cooking procedures on tylosin residues in chicken meatball. J. Für. Verbraucherschutz Und Leb. 2015, 11, 53–60. [Google Scholar] [CrossRef]
- Sobral, M.M.C.; Cunha, S.C.; Faria, M.A.; Ferreira, I.M. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018, 17, 309–333. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Armougom, F.; Carrière, F.; Bachar, D.; Laugier, R.; Lagier, J.-C.; Robert, C.; Michelle, C.; Henrissat, B.; Raoult, D. A Metagenomic Investigation of the Duodenal Microbiota Reveals Links with Obesity. PLoS ONE 2015, 10, e0137784. [Google Scholar] [CrossRef] [PubMed]
- Korsten, S.G.P.J.; Smits, E.A.W.; Garssen, J.; Vromans, H. Modeling of the luminal butyrate concentration to design an oral formulation capable of achieving a pharmaceutical response. PharmaNutrition 2019, 10, 100166. [Google Scholar] [CrossRef]
Season (Year) | Participant Age | |||||
20s (18–29) | 30s (30–39) | 40s (40–49) | 50s (50–59) | 60s (60–69) | 70s (>70) | |
n | n | n | n | n | n | |
Summer (2021) a | 39 | 13 | 8 | 0 | 1 | 0 |
Winter (2022) b | 33 | 17 | 15 | 11 | 3 | 1 |
Total (n = 141; 21/22) | 62 | 30 | 23 | 11 | 4 | 1 |
Season (Year) | Types of Diet | |||||
Omnivorous | Vegetarian | Vegan | Protein-based | Halal | Unknown | |
n | n | n | n | n | n | |
Summer (2021) a | 30 | 3 | 2 | 1 | 0 | 15 |
Winter (2022) b | 70 | 6 | 0 | 0 | 2 | 2 |
Total (n = 141; 21/22) | 100 | 9 | 2 | 1 | 2 | 17 |
Antibiotics | TMDI (μg/person/day; JECFA) | ADI (μg/kg/day; JECFA) | MRL (μg/kg; JECFA) | LOD (μg/L) | LOQ (μg/L) | |
---|---|---|---|---|---|---|
Beef, Chicken, Pork, and Fish | Dairy | |||||
Amoxicillin (AMOX) | 31.0 | 2.00 | 50.0 | 4.00 | 10.3 | 31.3 |
Ampicillin (AMP) | 31.0 | 2.00 | 50.0 | NA | 11.0 | 33.4 |
Oxytetracycline (OTC) | 370 | 30.0 | 200 | 100 | 8.50 | 25.8 |
Tetracycline (TC) | 370 | 30.0 | 200 | NA | 10.9 | 33.2 |
Ciprofloxacin (CIP) | NA | 2.00 | 39.0 | NA | 8.93 | 27.1 |
Enrofloxacin (ENR) | NA | 2.00 | 39.0 | NA | 11.7 | 35.5 |
Sulfodiazine (SDZ) | 87.5 | 50.0 | 100 | NA | 8.32 | 25.2 |
Trimethoprim (TMP) | NA | 4.20 | 50.0 | 50.0 | 12.5 | 38.0 |
Erythromycin (ENR) | × 104 | 700 | 100 | NA | 5.75 | 17.4 |
Tylosin (TYL) | 230 | 30.0 | 100 | NA | 10.0 | 30.4 |
Type | Name | Concentration of Antibiotics (μg/kg or μg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TET | OTC | TMP | SDZ | CIP | ENR | AMOX | AMP | TYL | ERY | ||
Beef | Ribeye * | - | - | 90.10 | - | - | 616.8 | 674.4 | 1187 | - | - |
Beef | Corned beef | - | - | 113.7 | - | - | 62.79 | 1941 | 271.5 | - | - |
Beef | Meatballs | - | - | 173.6 | - | - | 2021 | - | 348.6 | - | - |
Beef | Sirloin * | - | - | 88.90 | - | - | 675.2 | 646.5 | 659.7 | - | - |
Beef | Burger patty * | - | - | 221.0 | - | - | 1446 | 310.9 | 708.4 | - | - |
Beef | Rump * | - | - | 111.2 | - | - | 451.8 | 775.7 | 988.8 | - | - |
Beef | Diced beef * | - | - | 78.57 | - | - | 300.9 | 484.5 | 538.0 | - | - |
Beef | Minced beef * | - | - | 264.9 | - | - | 170.3 | 1612 | 632.8 | - | - |
Chicken | Drumsticks * | - | 116.0 | 111.3 | 654.0 | - | - | 1199 | - | - | - |
Chicken | Thighs * | - | - | 197.8 | 1349 | - | - | 1535 | - | - | - |
Chicken | Whole chicken | - | - | 336.2 | 3743 | 151.4 | - | - | - | - | - |
Chicken | Organic whole chicken | - | - | 114.1 | 987.0 | 56.78 | - | 1405 | - | - | - |
Chicken | Organic drumsticks | - | 96.27 | 96.87 | 856.6 | - | - | 1403 | - | - | - |
Chicken | Organic thighs | - | - | 55.23 | 1029 | - | - | 1140 | - | - | - |
Chicken | Chicken wings | - | - | 67.52 | 674.6 | - | 5976 | 589.5 | - | - | - |
Chicken | Free-range eggs | - | - | - | - | - | - | 715.6 | - | - | - |
Chicken | Organic free-range eggs | - | - | - | - | - | - | 818.9 | - | - | - |
Chicken | Organic chicken breast fillets | - | - | 75.71 | 20.00 | - | - | 233.0 | - | - | - |
Chicken | Chicken breast fillets * | 171.6 | - | 214.8 | 53.19 | 321.3 | - | 1421 | - | 327.8 | - |
Dairy | Whole milk | - | - | 95.92 | - | - | - | - | 36.61 | - | - |
Dairy | Semi-skimmed milk * | - | - | 171.3 | - | - | - | 760.0 | - | - | - |
Dairy | Organic semi-skimmed milk | - | - | 96.40 | - | - | - | - | - | - | - |
Dairy | Skimmed milk | - | - | 288.8 | - | - | - | 481.6 | - | - | - |
Fish | Mackerel fillets | 391.0 | 374.5 | - | - | - | - | - | - | - | - |
Fish | Salmon fillets | - | - | 191.2 | - | - | - | - | 415.8 | - | - |
Fish | Tuna Chunks in sunflower oil | - | - | 76.39 | 765.3 | - | - | 2968 | - | - | - |
Fish | Cod fillets | 648.3 | 1299 | - | - | - | 205.4 | - | - | - | - |
Fish | Haddock fillets | 279.3 | 220.6 | - | - | - | 538.6 | - | - | - | - |
Pork | Salami slices * | - | - | 81.25 | - | 425.1 | 4221 | 6867 | - | - | - |
Pork | Pork sausages * | - | - | - | - | - | 5497 | 216.7 | - | - | - |
Pork | Salty canned pork | - | - | 184.6 | 77.91 | - | - | - | - | - | - |
Pork | Smoked streaky bacon rashers | - | - | 222.2 | - | - | - | - | - | - | - |
Pork | Unsmoked streaky bacon rashers | - | - | 120.0 | - | - | - | - | - | - | - |
Pork | British pork ribs | - | - | 170.5 | 34.80 | - | - | - | - | - | - |
Pork | British pork chops | - | - | 461.7 | 116.2 | - | - | 1616 | - | - | - |
Pork | British pork belly slices | - | - | 107.6 | - | - | - | - | - | - | - |
Pork | British pork loin | - | - | 185.4 | 1118 | - | - | - | - | - | - |
Pork | Smoked back bacon rashers | - | - | 123.1 | - | - | 61.68 | - | - | - | - |
Pork | Unsmoked back bacon rashers | - | - | 157.0 | - | - | 37.24 | - | - | - | - |
Pork | Ham slices * | - | 71.83 | 305.1 | - | - | - | 2388 | - | - | - |
Day | Meals | Estimated Antibiotic Intake per Meal (mg/L) | ||
---|---|---|---|---|
Amoxicillin | Ampicillin | Enrofloxacin | ||
1st | Breakfast | 141.3 | - | 64.20 |
Lunch | 399.4 | - | - | |
Dinner | <ADI a | <ADI | - | |
2nd | Breakfast | 132.5 | <ADI | 80.30 |
Lunch | 170.7 | 193.5 | 194.4 | |
Dinner | 408.1 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.; Kloprogge, F.; Smith, A.M.; Karu, K.; Ciric, L. Antibiotic Residues in UK Foods: Exploring the Exposure Pathways and Associated Health Risks. Toxics 2024, 12, 174. https://doi.org/10.3390/toxics12030174
Seo J, Kloprogge F, Smith AM, Karu K, Ciric L. Antibiotic Residues in UK Foods: Exploring the Exposure Pathways and Associated Health Risks. Toxics. 2024; 12(3):174. https://doi.org/10.3390/toxics12030174
Chicago/Turabian StyleSeo, Jegak, Frank Kloprogge, Andrew M. Smith, Kersti Karu, and Lena Ciric. 2024. "Antibiotic Residues in UK Foods: Exploring the Exposure Pathways and Associated Health Risks" Toxics 12, no. 3: 174. https://doi.org/10.3390/toxics12030174
APA StyleSeo, J., Kloprogge, F., Smith, A. M., Karu, K., & Ciric, L. (2024). Antibiotic Residues in UK Foods: Exploring the Exposure Pathways and Associated Health Risks. Toxics, 12(3), 174. https://doi.org/10.3390/toxics12030174