Hemolytic Properties of Fine Particulate Matter (PM2.5) in In Vitro Systems
Abstract
:1. Introduction
2. Sampling and Experiments
2.1. Sample Collection
2.2. Preparation of PM2.5 Suspensions
2.3. Hemolysis Assay
2.4. Plasmid Scission Assay
2.5. Toxicity Index (TI)
2.6. Quality Assurance/Quality Control
2.7. Statistical Analysis
3. Results
3.1. Hemolysis of PM2.5 during a Pollution Episode
3.2. DNA Damage of PM2.5 during a Pollution Episode
4. Discussion
4.1. Comparison of Hemolysis Assay and Plasmid Scission Assay
4.2. Dose–Response Relationship between Hemolysis and PM2.5
4.3. Exposure Risk of PM2.5 during a Pollution Episode
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Zhang, T. Spatial-temporal variability of PM2.5 air quality in Beijing, China during 752 2013–2018. J. Environ. Manag. 2022, 262, 110263. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Shao, L.Y.; Wang, W.H.; Li, H.; Wang, X.M.; Li, Y.W.; Li, W.L.; Jones, T.; Zhang, D.Z. Air quality improvement in response to intensified control strategies in Beijing during 2013–2019. Sci. Total Environ. 2022, 744, 140776. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.L.; Wei, P.; Hu, J.N.; Chen, Y.J.; Shi, Y.P. Source apportionment and regional transport of PM2.5 during haze episodes in Beijing combined with multiple models. Atmos. Res. 2022, 266, 105957. [Google Scholar] [CrossRef]
- Guo, C.; Liu, T.; Zhao, X.H. Adverse health effects and mechanism of airborne fine particulate matter and the antagonistic effects of bioactive substances: A review of recent studies. J. Environ. Health 2014, 31, 185–188, (in Chinese with English abstract). [Google Scholar]
- Xiang, H.L.; Yang, J.; Qiu, Z.Z.; Lei, W.X.; Zeng, T.T.; Lan, Z.C. Health risk assessment of tunnel workers based on the investigation and analysis of occupational exposure to PM10. Environ. Sci. 2015, 36, 2768–2774, (in Chinese with English abstract). [Google Scholar]
- Song, X.Y.; Shao, L.Y.; Yang, S.H.; Song, R.Y.; Sun, L.M.; Cen, S.T. Trace elements pollution and toxicity of airborne PM10 in a coal industrial city. Atmos. Pollut. Res. 2015, 6, 469–475. [Google Scholar]
- Xiao, Z.H.; Shao, L.Y.; Zhang, N.; Wang, J.; Chuang, H.C.; Deng, Z.Z.; Wang, Z.; BeruBe, K. A toxicological study of inhalable particulates in an industrial region of Lanzhou City, northwestern China: Results from plasmid scission assay. Aeolian Res. 2014, 14, 25–34. [Google Scholar] [CrossRef]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Lin, H.; Tao, J.; Du, Y.; Tao, L.; Qian, Z.; Tian, L.; Zeng, W. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China. Environ. Pollut. 2016, 208 Pt B, 758–766. [Google Scholar] [CrossRef]
- Li, Y.W.; Shao, L.Y.; Wang, W.H.; Zhang, M.Y.; Feng, X.L.; Li, W.J.; Zhang, D.Z. Airborne fiber particles: Types, size and concentration observed in Beijing. Sci. Total Environ. 2020, 705, 135967. [Google Scholar] [CrossRef]
- Hayes, R.B.; Lim, C.; Zhang, Y.; Cromar, K.; Shao, Y.; Reynolds, H.R.; Silverman, D.T.; Jones, R.R.; Park, Y.; Jerrett, M.; et al. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int. J. Epidemiol. 2020, 49, 25–35. [Google Scholar] [CrossRef]
- Liu, T.; Meng, H.; Yu, M.; Xiao, Y.; Huang, B.; Lin, L. Urban-rural disparity of the short-term association of pm2.5with mortality and its attributable burden. Innovation 2021, 2, 100171. [Google Scholar] [PubMed]
- Slawsky, E.; Ward-Caviness, C.K.; Neas, L.; Devlin, R.B.; Cascio, W.E.; Russell, A.G.; Huang, R.; Kraus, W.E.; Hauser, E.; Diaz-Sanchez, D.; et al. Evaluation of PM2.5 air pollution sources and cardiovascular health. Environ. Epidemiol. 2021, 5, 157. [Google Scholar] [CrossRef]
- Cui, X.Q.; Zhou, T.; Shen, Y.; Rong, Y.; Zhang, Z.H.; Liu, Y.W.; Xiao, L.L.; Zhou, Y.; Li, W.; Chen, W.H. Different biological effects of PM2.5 from coal combustion, gasoline exhaust and urban ambient air relate to the PAH/metal compositions. Environ. Toxicol. Pharmacol. 2019, 69, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Xie, J.W.; Wong, C.K.C.; Chan, S.K.Y.; Abbaszade, G.; Schnelle-Kreis, J.; Zimmermann, R.; Li, J.; Zhang, G.; Fu, P.Q.; et al. Contributions of City-Specific Fine Particulate Matter (PM2.5) to Differential In Vitro Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China. Environ. Sci. Technol. 2019, 53, 2881–2891. [Google Scholar] [CrossRef]
- Tian, Y.X.; Li, Y.X.; Sun, S.J.; Dong, Y.R.; Tian, Z.J.; Zhan, L.S.; Wang, X.H. Effects of urban particulate matter on the quality of erythrocytes. Chemosphere 2023, 313, 137560. [Google Scholar] [CrossRef] [PubMed]
- Marín-Palma, D.; Fernandez, G.J.; Ruiz-Saenz, J.; Taborda, N.A.; Rugeles, M.T.; Hernandez, J.C. Particulate matter impairs immune system function by up-regulating inflammatory pathways and decreasing pathogen response gene expression. Sci. Rep. 2023, 13, 12773. [Google Scholar] [CrossRef]
- Kamonpan, F.; Supat, C.; Varunee, D.; Vipa, T.; Duangjai, S.; Ponlapat, R.; Tsukuru, U. Particulate Matter 2.5 and Hematological Disorders from Dust to Diseases: A Systematic Review of Available Evidence. Front. Med. 2021, 8, 692008. [Google Scholar]
- Hermosillo-Abundis, C.; Angulo-Molina, A.; Méndez-Rojas, M.A. Erythrocyte Vulnerability to Airborne Nanopollutants. Toxics 2024, 12, 92. [Google Scholar] [CrossRef]
- Marchini, T.; Wolf, D.; Michel, N.A.; Mauler, M.; Dufner, B.; Hoppe, N.; Beckert, J.; Jackel, M.; Magnani, N.; Duerschmied, D.; et al. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages. Basic Res. Cardiol. 2016, 111, 44. [Google Scholar] [CrossRef]
- Jin, S.P.; Li, Z.; Choi, E.K.; Lee, S.; Kim, Y.K.; Seo, E.Y.; Chung, J.H.; Cho, S. Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. J. Dermatol. Sci. 2018, 91, 175–183. [Google Scholar] [CrossRef]
- Velali, E.; Papachristou, E.; Pantazaki, A.; Choli-Papadopoulou, T.; Planou, S. Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition. Environ. Pollut. 2016, 208, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, F.; Kocyigit, A.; Onyuksel, H.; Dag, A.; Topcu, G. Cytotoxic, Apoptotic and Genotoxic Effects of Lipid-Based and Polymeric Nano Micelles, an in Vitro Evaluation. Toxics 2018, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Du, X.M.; Gao, S.X.; Hong, L.L.; Zheng, X.; Zhou, Q.Y.; Wu, J.H. Genotoxicity evaluation of titanium dioxide nanoparticles using the mouse lymphoma assay and the Ames test. Mutat. Res.-Gen. Tox. Environ. 2019, 838, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Quintana, R.; Serrano, J.; Gómez, V.; de Foy, B.; Miranda, J.; GarciaCuellar, C. The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO campaign. Environ. Pollut. 2011, 159, 3446–3454. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Pourpak, Z.; Naddafi, K.; Nodehi, R.N.; Nicknam, M.H.; Shamsipour, M.; Osornio-Vargas, A.R.; Hassanvand, M.S.; Alizadeh, Z.; Rezaei, S.; et al. Chemical composition of PM10 and its effect on in vitro hemolysis of human red blood cells (RBCs): A comparison study during dust storm and inversion. J. Environ. Health Sci. Eng. 2019, 17, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.L.; Shao, L.Y.; Xi, C.X.; Jones, T.; Zhang, D.Z.; BeruBe, K. Particle-induced oxidative damage by indoor size-segregated particulate matter from coal-burning homes in the Xuanwei lung cancer epidemic area, Yunnan Province, China. Chemosphere 2020, 256, 127058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Y.; Shao, L.Y.; Jones, T.; Hu, Y.; Adams, R.; BéruBé, K. Hemolysis of PM10 on RBCs in vitro: An indoor air study in a coal-burning lung cancer epidemic area. Geosci. Front. 2022, 13, 101176. [Google Scholar] [CrossRef]
- Pluciennik, K.; Sicinska, P.; Duchnowicz, P.; Bonarska-Kujawa, D.; Meczarska, K.; Solarska-Sciuk, K.; Miłowska, K.; Bukowska, B. The effects of non-functionalized polystyrene nanoparticles with different diameters on human erythrocyte membrane and morphology. Toxicol. In Vitro 2023, 91, 105634. [Google Scholar] [CrossRef]
- Mesdaghinia, A.; Pourpak, Z.; Naddafi, K.; Nodehi, R.N.; Alizadeh, Z.; Rezaei, S.; Faraji, M. An in vitro method to evaluate hemolysis of human red blood cells (RBCs) treated by airborne particulate matters (PM10). MethodsX 2019, 6, 156–161. [Google Scholar] [CrossRef]
- Georgakakou, S.; Gourgoulianis, K.; Daniil, Z.; Bontozoglou, V. Prediction of particle deposition in the lungs based on simple modeling of alveolar mixing. Respir. Physiol. Neurobiol. 2016, 225, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Olawoyin, R.; Schweitzer, L.; Zhang, K.Y.; Okareh, O.; Slates, K. Index analysis and human health risk model application for evaluating ambient air-heavy metal contamination in Chemical Valley Sarnia. Ecotoxicol. Environ. Saf. 2018, 148, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.Y.; Yang, H.; Tang, M.; Kong, L. Toxic effect of nanosized silica on erythrocytes in vitro. J. Environ. Occup. Med. 2009, 26, 53–56, (in Chinese with English abstract). [Google Scholar]
- Tong, Y.P.; Ni, X.B.; Zhang, Y.X.; Cheng, F.; Qiu, Z.J.; Tu, T.C.; Yao, S.D.; Zhang, G.L.; Ye, S.H. The study on free radical toxicological mechanism of aerosols. Acta Sci. Circum. 2001, 21, 654–659, (in Chinese with English abstract). [Google Scholar]
- Kreyling, W.G.; Semmler-Behnke, M.; Takenaka, S.; Moller, W. Differences in in the Biokinetics of Inhaled Nano-versus Micrometer-Sized Particles. Acc. Chem. Res. 2013, 46, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.L.; Shao, L.Y.; Jones, T.; Li, Y.W.; Cao, Y.X.; Zhang, M.Y.; Ge, S.Y.; Yang, C.X.; Lu, J.; BeruBe, K. Oxidative potential and water-soluble heavy metals of size-segregated airborne particles in haze and non-haze episodes: Impact of the “Comprehensive Action Plan” in China. Sci. Total Environ. 2022, 814, 152774. [Google Scholar] [CrossRef]
- Osornio-Vargas, A.R.; Serrano, J.; Rojas-Bracho, L.; Miranda, J.; Garcia-Cuellar, C.; Reyna, M.A.; Flores, G.; Zuk, M.; Quintero, M.; Vazquez, I.; et al. In vitro biological effects of airborne PM2.5 and PM10 from a semi-desert city on the Mexico-US border. Chemosphere 2011, 83, 618–626. [Google Scholar] [CrossRef]
Sample Number | Sampling Date | SamplingTime | Sampling Duration | Pollution Level | Weather | PM2.5 Mass Concentration (μg·m−3) |
---|---|---|---|---|---|---|
A | 12 October 2018 | 18:30–7:30 | 13 h | Low | Sunny | 71 |
B | 13 October 2018 | 8:30–16:30 | 8 h | Low | Sunny | 84 |
C | 13 October 2018 | 18:30–7:30 | 13 h | Medium | Sunny | 107 |
D | 14 October 2018 | 8:30–16:30 | 8 h | Medium | Sunny | 137 |
E | 14 October 2018 | 18:30–7:30 | 13 h | Heavy | Sunny | 173 |
F | 15 October 2018 | 8:30–16:30 | 8 h | Heavy | Sunny | 160 |
G | 15 October 2018 | 18:30–7:30 | 13 h | Heavy | Rain | 125 |
Sample Number | Dose Concentration (μg /mL) | ||||
---|---|---|---|---|---|
100 | 200 | 400 | 500 | 1000 | |
A | 5.55 ± 0.97 | 5.58 ± 0.51 | 6.39 ± 0.54 | 6.93 ± 0.64 | 7.38 ± 0.20 |
B | 5.47 ± 0.82 | 5.66 ± 0.67 | 6.46 ± 0.21 | 6.94 ± 0.49 | 7.75 ± 0.51 |
C | 5.11 ± 0.03 | 5.82 ± 0.22 | 6.24 ± 0.42 | 6.39 ± 0.62 | 7.13 ± 0.75 |
D | 5.49 ± 0.38 | 6.23 ± 0.38 | 6.65 ± 0.04 | 6.9 ± 0.96 | 7.13 ± 0.80 |
E | 2.26 ± 0.68 | 2.78 ± 0.20 | 3.62 ± 0.57 | 4.73 ± 0.62 | 5.97 ± 0.93 |
F | 2.14 ± 0.34 | 2.45 ± 0.14 | 3.56 ± 0.48 | 3.97 ± 0.83 | 4.45 ± 0.64 |
G | 1.98 ± 0.59 | 2.14 ± 0.90 | 3.33 ± 0.96 | 3.51 ± 0.25 | 4.14 ± 0.86 |
Sample Number | Dose Concentration (μg/mL) | |||||
---|---|---|---|---|---|---|
50 | 100 | 200 | 400 | 500 | 1000 | |
A | 28.74 | 31.00 | 33.48 | 33.64 | 34.50 | - |
B | 21.82 | 34.41 | 35.18 | 35.77 | 38.31 | - |
C | - | 21.40 | 21.59 | 27.51 | 32.80 | 34.29 |
D | - | 22.68 | 27.94 | 30.32 | 31.58 | 39.19 |
E | - | 28.21 | 31.81 | 33.13 | 34.07 | 35.01 |
F | - | 26.7 | 30.48 | 31.71 | 33.48 | 33.64 |
G | 17.06 | 18.73 | 20.24 | 22.83 | 24.04 | - |
Sample Number | Mass Concentration (μg/m3) | The Hemolysis of the Sample at a Dosage of 500 μg/mL for Samples | Toxicity Index (TI) |
---|---|---|---|
A | 71 | 6.36 | 492.03 |
B | 84 | 6.48 | 582.96 |
C | 107 | 6.94 | 683.73 |
D | 137 | 6.9 | 945.3 |
E | 173 | 4.73 | 818.29 |
F | 160 | 4.02 | 635.2 |
G | 125 | 3.97 | 438.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Zhang, M.; Shao, L.; Jones, T.P.; Feng, X.; Huang, M.; BéruBé, K.A. Hemolytic Properties of Fine Particulate Matter (PM2.5) in In Vitro Systems. Toxics 2024, 12, 246. https://doi.org/10.3390/toxics12040246
Bai J, Zhang M, Shao L, Jones TP, Feng X, Huang M, BéruBé KA. Hemolytic Properties of Fine Particulate Matter (PM2.5) in In Vitro Systems. Toxics. 2024; 12(4):246. https://doi.org/10.3390/toxics12040246
Chicago/Turabian StyleBai, Jiahui, Mengyuan Zhang, Longyi Shao, Timothy P. Jones, Xiaolei Feng, Man Huang, and Kelly A. BéruBé. 2024. "Hemolytic Properties of Fine Particulate Matter (PM2.5) in In Vitro Systems" Toxics 12, no. 4: 246. https://doi.org/10.3390/toxics12040246
APA StyleBai, J., Zhang, M., Shao, L., Jones, T. P., Feng, X., Huang, M., & BéruBé, K. A. (2024). Hemolytic Properties of Fine Particulate Matter (PM2.5) in In Vitro Systems. Toxics, 12(4), 246. https://doi.org/10.3390/toxics12040246