An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation and Extraction of Water Samples
2.3. Cell Culture
2.4. MTS Assay
2.5. Dual-Luciferase Reporter Gene Assays for ERα, PR, GR, and MR
2.6. Non-Target Screening
2.7. Quality Assurance and Quality Control for OEs Extraction and Chemical Analysis
2.8. Data Analysis
3. Results and Discussion
3.1. Agonistic and Antagonistic Activity against OEs of Tap Water in ERα, PR, GR, and MR Assays
3.2. Effects of Boiling on Agonistic and Antagonistic Activity against ERα, PR, GR, and MR in Tap Water
3.3. Non-Target Analyses of Chemicals in Tap Water and Boiled Water Samples
3.4. Endocrine-Disrupting Effects of the (Tentatively) Identified Chemicals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, H.; Tröger, R.; Ahrens, L.; Wiberg, K.; Yin, D. Screening of organic micropollutants in raw and drinking water in the Yangtze River Delta, China. Environ. Sci. Eur. 2020, 32, 67. [Google Scholar] [CrossRef]
- Xu, M.; Huang, H.; Li, N.; Li, F.; Wang, D.; Luo, Q. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicol. Environ. Saf. 2019, 175, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhang, Y.; Quan, X. Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere 2020, 242, 125113. [Google Scholar] [CrossRef]
- Jin, X.; Liu, Y.; Qiao, X.; Guo, R.; Liu, C.; Wang, X.; Zhao, X. Risk assessment of organochlorine pesticides in drinking water source of the Yangtze River. Ecotoxicol. Environ. Saf. 2019, 182, 109390. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jin, L.; Zhao, Y.; Jiang, L.; Yao, S.; Zhou, W.; Lin, K.; Cui, C. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. Sci. Total Environ. 2021, 791, 148152. [Google Scholar] [CrossRef] [PubMed]
- Pironti, C.; Ricciardi, M.; Proto, A.; Bianco, P.M.; Montano, L.; Motta, O. Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. Water 2021, 13, 1347. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water. NPJ Clean Water 2019, 2, 4. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ. Int. 2017, 106, 207–233. [Google Scholar] [CrossRef]
- Silva, E.; Rajapakse, N.; Kortenkamp, A. Something from “nothing”—Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ. Sci. Technol. 2002, 36, 1751–1756. [Google Scholar] [CrossRef]
- Park, C.; Song, H.; Choi, J.; Sim, S.; Kojima, H.; Park, J.; Iida, M.; Lee, Y. The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor. Environ. Pollut. 2020, 260, 114036. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Liu, R.; Gan, J.; Liu, J.; Liu, W. Endocrine-Disrupting Effects of Pesticides through Interference with Human Glucocorticoid Receptor. Environ. Sci. Technol. 2015, 50, 435–443. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, R.; Niu, L.; Zhu, S.; Zhang, Q.; Zhao, M.; Liu, W.; Liu, J. Determination of endocrine-disrupting potencies of agricultural soils in China via a battery of steroid receptor bioassays. Environ. Pollut. 2018, 234, 846–854. [Google Scholar] [CrossRef]
- Rosenmai, A.K.; Lundqvist, J.; le Godec, T.; Ohisson, A.; Troger, R.; Hellman, B.; Oskarsson, A. In vitro bioanalysis of drinking water from source to tap. Water Res. 2018, 139, 272–280. [Google Scholar] [CrossRef]
- Conley, J.M.; Evans, N.; Mash, H.; Rosenblum, L.; Schenck, K.; Glassmeyer, S.; Furlong, E.T.; Kolpin, D.W.; Wilson, V.S. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 US drinking water treatment plants. Sci. Total Environ. 2017, 579, 1610–1617. [Google Scholar] [CrossRef] [PubMed]
- Neale, P.A.; Escher, B.I. In vitro bioassays to assess drinking water quality. Curr. Opin. Environ. Sci. Health 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Leusch, F.D.L.; Neale, P.A.; Hebert, A.; Scheurer, M.; Schriks, M.C.M. Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity: Suitability for drinking and environmental waters. Environ. Int. 2017, 99, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, E.L.; Singer, H.P.; Slobodnik, J.; Ipolyi, I.M.; Oswald, P.; Krauss, M.; Schulze, T.; Haglund, P.; Letzel, T.; Grosse, S.; et al. Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem. 2015, 407, 6237–6255. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Wang, X.; Wu, G.; Wang, L.; Geng, J.; Yu, N.; Wei, S. Screening priority indicator pollutants in full-scale wastewater treatment plants by non-target analysis. J. Hazard. Mater. 2021, 414, 125490. [Google Scholar] [CrossRef]
- Nürenberg, G.; Kunkel, U.; Wick, A.; Falås, P.; Joss, A.; Ternes, T.A. Nontarget analysis: A new tool for the evaluation of wastewater processes. Water Res. 2019, 163, 114842. [Google Scholar] [CrossRef] [PubMed]
- Gago-Ferrero, P.; Schymanski, E.L.; Bletsou, A.A.; Aalizadeh, R.; Hollender, J.; Thomaidis, N.S. Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environ. Sci. Technol. 2015, 49, 12333–12341. [Google Scholar] [CrossRef]
- van Leerdam, J.A.; Vervoort, J.; Stroomberg, G.; de Voogt, P. Identification of Unknown Microcontaminants in Dutch River Water by Liquid Chromatography-High Resolution Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Environ. Sci. Technol. 2014, 48, 12791–12799. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Huang, P.; Huang, Q.; Rao, K.; Lu, Z.; Xu, Y.; Gabrielsen, G.W.; Hallanger, I.; Ma, M.; Wang, Z. Organophosphorus flame retardants and persistent, bioaccumulative, and toxic contaminants in Arctic seawaters: On-board passive sampling coupled with target and non-target analysis. Environ. Pollut. 2019, 253, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Itzel, F.; Baetz, N.; Hohrenk, L.L.; Gehrmann, L.; Antakyali, D.; Schmidt, T.C.; Tuerk, J. Evaluation of a biological post-treatment after full-scale ozonation at a municipal wastewater treatment plant. Water Res. 2020, 170, 115316. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; McKenna, E.; Ferrer, I.; Thurman, E.M.; Taylor-Edmonds, L.; Hofmann, R.; Ishida, K.P.; Roback, S.L.; Plumlee, M.H.; Hanigan, D. Comparison of Oxidants Used in Advanced Oxidation for Potable Reuse: Non-Target Analysis and Bioassays. ACS EST Water 2023, 3, 690–700. [Google Scholar] [CrossRef]
- Albergamo, V.; Escher, B.I.; Schymanski, E.L.; Helmus, R.; Dingemans, M.M.L.; Cornelissen, E.R.; Kraak, M.H.S.; Hollender, J.; de Voogt, P. Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening. Environ. Sci. Water Res. Technol. 2020, 6, 103–116. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiao, X.; Meng, W.; Yu, X.; Cheng, H.; Shen, G.; Wang, X.; Tao, S. Drinking Water in Rural China: Water Sources, Treatment, and Boiling Energy. Environ. Sci. Technol. 2023, 57, 6465–6473. [Google Scholar] [CrossRef]
- Li, J.; Yu, N.; Zhang, B.; Jin, L.; Li, M.; Hu, M.; Zhang, X.; Wei, S.; Yu, H. Occurrence of organophosphate flame retardants in drinking water from China. Water Res. 2014, 54, 53–61. [Google Scholar] [CrossRef]
- Cohen, A.; Pillarisetti, A.; Luo, Q.; Zhang, Q.; Li, H.; Zhong, G.; Zhu, G.; Colford, J.M.; Smith, K.R.; Ray, I.; et al. Boiled or Bottled: Regional and Seasonal Exposures to Drinking Water Contamination and Household Air Pollution in Rural China. Environ. Health Perspect. 2020, 128, 127002. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, X.; Wagner, E.D.; Osiol, J.; Plewa, M.J. Boiling of Simulated Tap Water: Effect on Polar Brominated Disinfection Byproducts, Halogen Speciation, and Cytotoxicity. Environ. Sci. Technol. 2013, 48, 149–156. [Google Scholar] [CrossRef]
- Zhao, J.; Han, L.; Tan, S.; Chu, W.; Dong, H.; Zhou, Q.; Pan, Y. Revisiting the effect of boiling on halogenated disinfection byproducts, total organic halogen, and cytotoxicity in simulated tap water. Chemosphere 2022, 309, 136577. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Yang, M.; Tan, C.; Chu, W. The occurrence, characteristics, transformation and control of aromatic disinfection by-products: A review. Water Res. 2020, 184, 116076. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Hu, L.X.; Zhao, J.H.; Han, Y.; Liu, Y.S.; Zhao, J.L.; Yang, B.; Ying, G.G. Suspect, non-target and target screening of pharmaceuticals and personal care products (PPCPs) in a drinking water system. Sci. Total Environ. 2022, 808, 151866. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, H.; Zheng, W.W.; Wang, X.; Andersen, M.E.; Pi, J.B.; He, G.S.; Qu, W.D. Organic Extract Contaminants from Drinking Water Activate Nrf2-Mediated Antioxidant Response in a Human Cell Line. Environ. Sci. Technol. 2013, 47, 4768–4777. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, M.; Zhuang, S.; Yang, Y.; Yang, Y.; Liu, W. Low Concentrations of o,p’-DDT Inhibit Gene Expression and Prostaglandin Synthesis by Estrogen Receptor-Independent Mechanism in Rat Ovarian Cells. PLoS ONE 2012, 7, e49916. [Google Scholar] [CrossRef] [PubMed]
- Takeyoshi, M.; Yamasaki, K.; Sawaki, M.; Nakai, M.; Noda, S.; Takatsuki, M. The efficacy of endocrine disruptor screening tests in detecting anti-estrogenic receptor-ligand effects downstream of interactions. Toxicol. Lett. 2002, 126, 91–98. [Google Scholar] [CrossRef]
- Garcia, T.; Benhamou, B.; Gofflo, D.; Vergezac, A.; Philibert, D.; Chambon, P.; Gronemeyer, H. Switching agonistic, antagonistic, and mixed transcriptional responses to 11-beta-substituted progestins by mutation of the progesterone-receptor. Mol. Endocrinol. 1992, 6, 2071–2078. [Google Scholar] [PubMed]
- Nicolaides, N.C.; Roberts, M.L.; Kino, T.; Braatvedt, G.; Hurt, D.E.; Katsantoni, E.; Sertedaki, A.; Chrousos, G.P.; Charmandari, E. A Novel Point Mutation of the Human Glucocorticoid Receptor Gene Causes Primary Generalized Glucocorticoid Resistance Through Impaired Interaction With the LXXLL Motif of the p160 Coactivators: Dissociation of the Transactivating and Transreppressive Activities. J. Clin. Endocrinol. Metab. 2014, 99, E902–E907. [Google Scholar] [PubMed]
- Grossmann, C.; Benesic, A.; Krug, A.W.; Freudinger, R.; Mildenberger, S.; Gassner, B.; Gekle, M. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol. Endocrinol. 2005, 19, 1697–1710. [Google Scholar] [CrossRef] [PubMed]
- Conroy, O.; Sáez, A.E.; Quanrud, D.; Ela, W.; Arnold, R.G. Changes in estrogen/anti-estrogen activities in ponded secondary effluent. Sci. Total Environ. 2007, 382, 311–323. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Shen, Y.; Kong, D.; Teng, Y.; Wang, Y.; Li, J. An assessment of the presence and health risks of endocrine-disrupting chemicals in the drinking water treatment plant of Wu Chang, China. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1127–1137. [Google Scholar] [CrossRef]
- Valcarcel, Y.; Valdehita, A.; Becerra, E.; Lopez de Alda, M.; Gil, A.; Gorga, M.; Petrovic, M.; Barcelo, D.; Navas, J.M. Determining the presence of chemicals with suspected endocrine activity in drinking water from the Madrid region (Spain) and assessment of their estrogenic, androgenic and thyroidal activities. Chemosphere 2018, 201, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Lv, X.; Zeng, Y.; Jin, T.; Luo, L.; Zhang, B.; Zhang, G.; Wang, Y.; Feng, L.; Zhu, Y.; et al. Mutagenicity and estrogenicity of raw water and drinking water in an industrialized city in the Yangtze River Delta. Chemosphere 2017, 185, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhou, S.; Xiao, H.; Qiu, J.; Li, A.; Zhou, Q.; Pan, Y.; Hollert, H. Toxicological and chemical insights into representative source and drinking water in eastern China. Environ. Pollut. 2018, 233, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Rutishauser, B.V.; Pesonen, M.; Escher, B.I.; Ackermann, G.E.; Aerni, H.R.; Suter, M.J.F.; Eggen, R.I.L. Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. Environ. Toxicol. Chem. 2009, 23, 857–864. [Google Scholar] [CrossRef]
- Leusch, F.D.L.; De Jager, C.; Levi, Y.; Lim, R.; Puijker, L.; Sacher, F.; Tremblay, L.A.; Wilson, V.S.; Chapman, H.F. Comparison of Five in Vitro Bioassays to Measure Estrogenic Activity in Environmental Waters. Environ. Sci. Technol. 2010, 44, 3853–3860. [Google Scholar] [CrossRef]
- Leusch, F.D.L.; Neale, P.A.; Arnal, C.; Aneck-Hahn, N.H.; Balaguer, P.; Bruchet, A.; Escher, B.I.; Esperanza, M.; Grimaldi, M.; Leroy, G.; et al. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Res. 2018, 139, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Chevolleau, S.; Debrauwer, L.; Stroheker, T.; Viglino, L.; Mourahib, I.; Meireles, M.-H.; Grimaldi, M.; Balaguer, P.; di Gioia, L. A consolidated method for screening the endocrine activity of drinking water. Food Chem. 2016, 213, 274–283. [Google Scholar] [CrossRef]
- Bellet, V.; Hernandez-Raquet, G.; Dagnino, S.; Seree, L.; Pardon, P.; Bancon-Montiny, C.; Fenet, H.; Creusot, N.; Aït-Aïssa, S.; Cavailles, V.; et al. Occurrence of androgens in sewage treatment plants influents is associated with antagonist activities on other steroid receptors. Water Res. 2012, 46, 1912–1922. [Google Scholar] [CrossRef]
- Creusot, N.; Aït-Aïssa, S.; Tapie, N.; Pardon, P.; Brion, F.; Sanchez, W.; Thybaud, E.; Porcher, J.-M.; Budzinski, H. Identification of Synthetic Steroids in River Water Downstream from Pharmaceutical Manufacture Discharges Based on a Bioanalytical Approach and Passive Sampling. Environ. Sci. Technol. 2014, 48, 3649–3657. [Google Scholar] [CrossRef]
- Russo, G.; Laneri, S.; Di Lorenzo, R.; Neri, I.; Dini, I.; Ciampaglia, R.; Grumetto, L. Monitoring of Pollutants Content in Bottled and Tap Drinking Water in Italy. Molecules 2022, 27, 3990. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Hu, X.; Zhang, F.; Hu, G.; Hao, Y.; Zhang, X.; Liu, H.; Wei, S.; Wang, X.; Giesy, J.P.; et al. Occurrence of Thyroid Hormone Activities in Drinking Water from Eastern China: Contributions of Phthalate Esters. Environ. Sci. Technol. 2012, 46, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Escher, B.I.; Neale, P.A.; Leusch, F.D.L. Effect-based trigger values for in vitro bioassays: Reading across from existing water quality guideline values. Water Res. 2015, 81, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Brand, W.; de Jongh, C.M.; van der Linden, S.C.; Mennes, W.; Puijker, L.M.; van Leeuwen, C.J.; van Wezel, A.P.; Schriks, M.; Heringa, M.B. Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays. Environ. Int. 2013, 55, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.W.; Benjamin, M.M.; Korshin, G.V. Effects of thermal treatment on halogenated disinfection by-products in drinking water. Water Res. 2001, 35, 3545–3550. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Shi, W.; Wei, S.; Zhang, X.; Feng, J.; Hu, G.; Chen, S.; Giesy, J.P.; Yu, H. Occurrence and Potential Causes of Androgenic Activities in Source and Drinking Water in China. Environ. Sci. Technol. 2013, 47, 10591–10600. [Google Scholar] [CrossRef] [PubMed]
- Faber, A.-H.; Brunner, A.M.; Dingemans, M.M.L.; Baken, K.A.; Kools, S.A.E.; Schot, P.P.; de Voogt, P.; van Wezel, A.P. Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening. Sci. Total Environ. 2021, 794, 148727. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cao, M.; Pan, F.; Liu, J.; Wan, Y.; Wang, H.; Xia, W. Bentazone in water and human urine in Wuhan, central China: Exposure assessment. Environ. Sci. Pollut. Res. 2021, 29, 7089–7095. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef]
- Comoretto, L.; Arfib, B.; Chiron, S. Pesticides in the Rhône river delta (France): Basic data for a field-based exposure assessment. Sci. Total Environ. 2007, 380, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Orton, F.; Lutz, I.; Kloas, W.; Routledge, E.J. Endocrine Disrupting Effects of Herbicides and Pentachlorophenol: In Vitro and in Vivo Evidence. Environ. Sci. Technol. 2009, 43, 2144–2150. [Google Scholar] [CrossRef] [PubMed]
- Rodil, R.; Quintana, J.B.; Concha-Graña, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 2012, 86, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Palmiotto, M.; Castiglioni, S.; Zuccato, E.; Manenti, A.; Riva, F.; Davoli, E. Personal care products in surface, ground and wastewater of a complex aquifer system, a potential planning tool for contemporary urban settings. J. Environ. Manag. 2018, 214, 76–85. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, E.; O’Brien, J.W.; Verhagen, R.; Mueller, J.F. Annual release of selected UV filters via effluent from wastewater treatment plants in Australia. Chemosphere 2020, 247, 125887. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Yang, Q.; Sun, X.; Tian, L.; Deng, Y.; Wang, Y.; Wang, W.; Fan, X. Life cycle exposure to 2-phenylbenzimidazole-5-sulfonic acid disrupts reproductive endocrine system and induces transgenerational adverse effects in zebrafish. Front. Mar. Sci. 2023, 10, 1283816. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information PubChem Compound Summary for CID 13820511, Isorosmanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Isorosmanol (accessed on 21 December 2023).
- Mishra, R.K.; Robert-Peillard, F.; Ravier, S.; Coulomb, B.; Boudenne, J.-L. β-Hydroxymyristic acid as a chemical marker to detect endotoxins in dialysis water. Anal. Biochem. 2015, 470, 71–77. [Google Scholar] [CrossRef]
- Uhlig, S.; Negård, M.; Heldal, K.K.; Straumfors, A.; Madsø, L.; Bakke, B.; Eduard, W. Profiling of 3-hydroxy fatty acids as environmental markers of endotoxin using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2016, 1434, 119–126. [Google Scholar] [CrossRef]
- Steck, K.; Schmidt, C.; Stubenrauch, C. The Twofold Role of 12-Hydroxyoctadecanoic Acid (12-HOA) in a Ternary Water—Surfactant—12-HOA System: Gelator and Co-Surfactant. Gels 2018, 4, 78. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information PubChem Compound Summary for CID 8420, 2-Naphthalenesulfonic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2-Naphthalenesulfonic-acid (accessed on 21 December 2023).
- National Center for Biotechnology Information PubChem Compound Summary for CID 25457, 2-Dodecylbenzenesulfonic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2-Dodecylbenzenesulfonic-acid (accessed on 21 December 2023).
- Jensen, K.R.; Voorhees, K.J.; Dempsey, E.A.; Burton, J.; Ratcliff, M.A.; McCormick, R.L. Formation of 2,6-Di-tert-butyl-4-nitrophenol during Combustion of Diesel Fuel Antioxidant Precursors. Energy Fuels 2014, 28, 7038–7042. [Google Scholar] [CrossRef]
- Moldovan, Z.; Marincas, O.; Povar, I.; Lupascu, T.; Longree, P.; Rota, J.S.; Singer, H.; Alder, A.C. Environmental exposure of anthropogenic micropollutants in the Prut River at the Romanian-Moldavian border: A snapshot in the lower Danube river basin. Environ. Sci. Pollut. Res. 2018, 25, 31040–31050. [Google Scholar] [CrossRef] [PubMed]
- Fiocchetti, M.; Bastari, G.; Cipolletti, M.; Leone, S.; Acconcia, F.; Marino, M. The Peculiar Estrogenicity of Diethyl Phthalate: Modulation of Estrogen Receptor α Activities in the Proliferation of Breast Cancer Cells. Toxics 2021, 9, 237. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, S.; Iida, M.; Kobayashi, S.; Jin, K.; Matsuda, T.; Kojima, H. Differential effects of phthalate esters on transcriptional activities via human estrogen receptors α and β, and androgen receptor. Toxicology 2005, 210, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Ghisari, M.; Bonefeld-Jorgensen, E.C. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol. Lett. 2009, 189, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Ryu, J.C. Evaluation of estrogenic effects of phthalate analogues using in vitro and in vivo screening assays. Mol. Cell. Toxicol. 2006, 2, 106–113. [Google Scholar]
- Li, J.; Ma, M.; Wang, Z.J. In vitro profiling of endocrine disrupting effects of phenols. Toxicology In Vitro 2010, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Song, Q.; Chen, Y.; Zhou, Z.; Wang, P.; Liu, J.; Sun, Z.; Zhao, M. The potential endocrine disruption of pesticide transformation products (TPs): The blind spot of pesticide risk assessment. Environ. Int. 2020, 137, 105490. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, L.S.; Ghisari, M.; Bonefeld-Jorgensen, E.C. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicol. Appl. Pharmacol. 2013, 272, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Dogan, D.; Can, C. Endocrine disruption and altered biochemical indices in male Oncorhynchus mykiss in response to dimethoate. Pestic. Biochem. Physiol. 2011, 99, 157–161. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Liu, H.; Liu, W.; Liu, J. Novel Pathways of Endocrine Disruption Through Pesticides Interference With Human Mineralocorticoid Receptors. Toxicol. Sci. 2018, 162, 53–63. [Google Scholar] [CrossRef]
- Liu, C.S.; Du, Y.B.; Zhou, B.S. Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes. Aquat. Toxicol. 2007, 85, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, L.S.; Bonefeld-Jørgensen, E.C. Perfluorinated compounds affect the function of sex hormone receptors. Environ. Sci. Pollut. Res. 2013, 20, 8031–8044. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Schilirò, T.; Gea, M.; Bianchi, S.; Spinello, A.; Magistrato, A.; Gilardi, G.; Di Nardo, G. Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor. Int. J. Environ. Res. Public Health 2020, 17, 5664. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.Q.; Connolly, L.; Igout, A.; Nott, K.; Muller, M.; Scippo, M.L. In vitro profiling of the potential endocrine disrupting activities affecting steroid and aryl hydrocarbon receptors of compounds and mixtures prevalent in human drinking water resources. Chemosphere 2020, 258, 127332. [Google Scholar]
ERα | PR | GR | MR | |||||
---|---|---|---|---|---|---|---|---|
EEQ (ng/L) | TEQ (μg/L) | PEQ (ng/L) | REQ (ng/L) | HEQ (ng/L) | REQ (ng/L) | AEQ (ng/L) | SEQ (ng/L) | |
Tap water | - | 4.53 | 43.84 | 16.45 | - | 4.77 | 0.03 | 138.81 |
Boiled water | 0.34 | 3.67 | 29.51 | - | 3.22 | - | 0.01 | 54.55 |
Compound | Formula | ICL | HNC (M) | Bioactivity | |||||
---|---|---|---|---|---|---|---|---|---|
Endpoints | RIC20 (M) | RIC50 (M) | RIR (%) | RAC1.2 (M) | RAF | ||||
Dodecylbenzene sulfonic acid (DBSA) | C18H30O3S | 2a | 10−6 | NA | NA | NA | NA | NA | NA |
Isorosmanol (ISO) | C20H26O5 | 2a | 10−5 | ERα antagonistic activity | 9.99 × 10−6 | NA | 23.34 | NA | NA |
PR antagonistic activity | 8.15 × 10−6 | NA | 41.00 | NA | NA | ||||
GR antagonistic activity | 5.07 × 10−6 | 1.00 × 10−5 | 59.90 | NA | NA | ||||
MR antagonistic activity | 7.71 × 10−6 | 1.21 × 10−5 | 60.78 | NA | NA | ||||
Phenylbenzimidazole sulfonic acid (PBSA) | C13H10N2O3S | 2a | 10−4.5 | ERα agonistic activity | NA | NA | NA | 8.27 × 10−6 | 1.67 |
2-Naphthalene sulfonic acid (2-NSA) | C10H8O3S | 2a | 10−4 | NA | NA | NA | NA | NA | NA |
2,6-Di-tert-butyl-4-nitrophenol (DNP) | C14H21NO3 | 1 | 10−7 | NA | NA | NA | NA | NA | NA |
Bentazone (BEN) | C10H12N2O3S | 2a | 10−5 | NA | NA | NA | NA | NA | NA |
beta-Hydroxymyristic acid (3-HTA) | C14H28O3 | 1 | 10−4 | ERα antagonistic activity | NA | NA | 12.19 | NA | NA |
12-Hydroxyoctadecanoic acid (12-HA) | C18H36O3 | 1 | 10−4 | ERα antagonistic activity | 6.92 × 10−10 | NA | 37.67 | NA | NA |
Mixture a | NA | NA | 10−6 | ERα antagonistic activity | NA | NA | 38.17 | NA | NA |
PR antagonistic activity | 52.52 | ||||||||
GR antagonistic activity | 46.77 | ||||||||
MR antagonistic activity | 32.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, J. An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals. Toxics 2024, 12, 247. https://doi.org/10.3390/toxics12040247
Liu S, Liu J. An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals. Toxics. 2024; 12(4):247. https://doi.org/10.3390/toxics12040247
Chicago/Turabian StyleLiu, Siyuan, and Jing Liu. 2024. "An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals" Toxics 12, no. 4: 247. https://doi.org/10.3390/toxics12040247
APA StyleLiu, S., & Liu, J. (2024). An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals. Toxics, 12(4), 247. https://doi.org/10.3390/toxics12040247