Battle of the Bites: The Effect of Sewage Effluent Exposure on Mosquitofish Biocontrol of Mosquitoes in Residential Louisiana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Collection
2.2. Water Collection
2.3. Body Condition
2.4. Effluent-Contaminated Water Toxicity
2.5. Prey Capture Behavior
2.6. Statistical Analysis
3. Results
3.1. Site Comparison
3.2. Body Condition
3.3. Effluent-Contaminated Water Toxicity
3.4. Prey Capture Behavior
4. Discussion
4.1. Effluent-Contaminated Water Acute Toxicity
4.2. Effluent-Contaminated Water Chronic Toxicity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, S.; Basu, P. The Southern House Mosquito, Culex Quinquefasciatus: Profile of a Smart Vector. J. Entomol. Zool. Stud. 2016, 4, 73–81. [Google Scholar]
- Bermond, C.D. How Sewage Pollution Affects Distribution and Life History Traits of the Southern House Mosquito, Culex Quinquefasciatus. Master’s Thesis, The University of Southern Mississippi, Hattiesburg, MS, USA, 2023. [Google Scholar]
- Chaves, L.F.; Keogh, C.L.; Nguyen, A.M.; Decker, G.M.; Vazquez-Prokopec, G.M.; Kitron, U.D. Combined Sewage Overflow Accelerates Immature Development and Increases Body Size in the Urban Mosquito Culex Quinquefasciatus. J. Appl. Entomol. 2011, 135, 611–620. [Google Scholar] [CrossRef]
- Calhoun, L.M.; Avery, M.; Jones, L.; Gunarto, K.; King, R.; Roberts, J.; Burkot, T.R. Combined Sewage Overflows (CSO) Are Major Urban Breeding Sites for Culex Quinquefasciatus in Atlanta, Georgia. Am. J. Trop. Med. Hyg. 2007, 77, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Krol, L.; Gorsich, E.E.; Hunting, E.R.; Govender, D.; van Bodegom, P.M.; Schrama, M. Eutrophication Governs Predator-Prey Interactions and Temperature Effects in Aedes Aegypti Populations. Parasit. Vectors 2019, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- de Jesús Crespo, R.; Harrison, M.; Rogers, R.; Vaeth, R. Mosquito Vector Production across Socio-Economic Divides in Baton Rouge, Louisiana. Int. J. Environ. Res. Public Health 2021, 18, 1420. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. EPA No. 832-B-05-001 Handbook for Managing Onsite and Clustered (Decentralized) Wastewater Treatment Systems. 2005. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/onsite_handbook.pdf (accessed on 3 October 2023).
- Vazquez-Prokopec, G.M.; Vanden, E.J.L.; Kelly, R.; Mead, D.G.; Kolhe, P.; Howgate, J.; Kitron, U.; Burkot, T.R. The Risk of West Nile Virus Infection Is Associated with Combined Sewer Overflow Streams in Urban Atlanta, Georgia, USA. Environ. Health Perspect. 2010, 118, 1382–1388. [Google Scholar] [CrossRef]
- Burke, R.; Barrera, R.; Lewis, M.; Kluchinsky, T.; Claborn, D. Septic Tanks as Larval Habitats for the Mosquitoes Aedes Aegypti and Culex Quinquefasciatus in Playa-Playita, Puerto Rico. Med. Vet. Entomol. 2010, 24, 117–123. [Google Scholar] [CrossRef]
- Jordan, M. Evaluating the Impact of Onsite Wastewater Treatment Systems on Watershed Contamination, Choccolocco Creek Watershed, Alabama. Master’s Thesis, Auburn University, Auburn, AL, USA, 2022. [Google Scholar]
- Irion, K.S. A Deal with the Devil: How Politics, Expediency and Economics Resulted in the Proliferation of Onsite Wastewater Systems for Subdivisions in Louisiana and the Effect That the Adoption of TMDLS Is Having on Wastewater Treatment; St. Tammany Parish Mosquito Abatement Department: Slidell, LA, USA, 2016; p. 18. [Google Scholar]
- U.S. Environmental Protection Agency. Types of Septic Systems. Available online: https://www.epa.gov/septic/types-septic-systems (accessed on 3 October 2023).
- Nordlie, F.G. Physicochemical Environments and Tolerances of Cyprinodontoid Fishes Found in Estuaries and Salt Marshes of Eastern North America. Rev. Fish Biol. Fish. 2006, 16, 51–106. [Google Scholar] [CrossRef]
- Walton, W.E.; Henke, J.A.; Why, A.M. Gambusia affinis (Baird and Girard) and Gambusia holbrooki Girard (Mosquitofish). In A Handbook of Global Freshwater Invasive Species; Routledge: London, UK, 2012; pp. 261–273. [Google Scholar]
- St. Tammany Parish Mosquito Abatement Department. 2019 Annual Report; St. Tammany Parish Mosquito Abatement Department: Slidell, LA, USA, 2019; p. 8.
- Fryxell, D.C.; Arnett, H.A.; Apgar, T.M.; Kinnison, M.T.; Palkovacs, E.P. Sex Ratio Variation Shapes the Ecological Effects of a Globally Introduced Freshwater Fish. Proc. R. Soc. Lond. B Biol. Sci. 2015, 282, 20151970. [Google Scholar] [CrossRef]
- Fulton, T. The Rate of Growth of Fishes. In 22nd Annual Report of the Fishery Board of Scotland; Edinburgh: London, UK, 1904; Volume 3, pp. 141–241. [Google Scholar]
- Heincke, F. Bericht über die Untersuchungen der Biologischen Anstalt auf Helgoland zur Naturgeschichte der Nutzfische. Die Beteil. Dtschl. Der Int. Meeresforsch. 1908, 4/5, 67–155. [Google Scholar]
- Johnstone, J. Report on Measurements of Plaice Made during the Year 1911. Trans. Liverp. Biol. Soc. 1912, 26, 85–102. [Google Scholar]
- Nash, R.D.; Valencia, A.H.; Geffen, A.J. The Origin of Fulton’s Condition Factor—Setting the Record Straight. Fisheries 2006, 31, 236–238. [Google Scholar]
- Ragheb, E. Length-Weight Relationship and Well-Being Factors of 33 Fish Species Caught by Gillnets from the Egyptian Mediterranean Waters off Alexandria. Egypt. J. Aquat. Res. 2023, 49, 361–367. [Google Scholar] [CrossRef]
- Ricker, W.E. Computation and Interpretation of Biological Statistics of Fish Populations. Fish. Res. Board Can. Bull. 1975, 191, 1–382. [Google Scholar]
- Alcaraz, C.; García-Berthou, E. Life History Variation of Invasive Mosquitofish (Gambusia holbrooki) along a Salinity Gradient. Biol. Conserv. 2007, 139, 83–92. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed.; U.S. Environmental Protection Agency US EPA: Washington, DC, USA, 2002.
- Watson, R.J. The Effects of an Artificially Elevated Thermal Environment and Seasonal Acclimatization on the Thermal Tolerance of the Western Mosquitofish, Gambusia affinis; The University of Texas at Arlington: Arlington, TX, USA, 2008; ISBN 0-549-70788-3. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.K. What Is the Proper Way to Apply the Multiple Comparison Test? Korean J. Anesthesiol. 2018, 71, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, B.E.; Herren, L.W.; Paule, A.L. Septic Systems Contribute to Nutrient Pollution and Harmful Algal Blooms in the St. Lucie Estuary, Southeast Florida, USA. Harmful Algae 2017, 70, 1–22. [Google Scholar] [CrossRef]
- Felix, J.D.; Campbell, J. Investigating Reactive Nitrogen Sources That Stimulate Algal Blooms in Baffin Bay; Corpus Christi: Coastal Bend Bays and Estuaries Program: Corpus Christi, TX, USA, 2019. [Google Scholar]
- Fitzpatrick, S.W.; Gerberich, J.C.; Kronenberger, J.A.; Angeloni, L.M.; Funk, W.C. Locally Adapted Traits Maintained in the Face of High Gene Flow. Ecol. Lett. 2015, 18, 37–47. [Google Scholar] [CrossRef]
- Purcell, K.M.; Klerks, P.L.; Leberg, P.L. Adaptation to Sea Level Rise: Does Local Adaptation Influence the Demography of Coastal Fish Populations? J. Fish Biol. 2010, 77, 1209–1218. [Google Scholar] [CrossRef]
- Tobler, M.; DeWitt, T.J.; Schlupp, I.; García de León, F.J.; Herrmann, R.; Feulner, P.G.D.; Tiedemann, R.; Plath, M. Toxic Hydrogen Sulfide and Dark Caves: Phenotypic and Genetic Divergence across Two Abiotic Environmental Gradients in Poecilia mexicana. Evolution 2008, 62, 2643–2659. [Google Scholar] [CrossRef] [PubMed]
- Bhanot, R.; Hundal, S.S. Acute Toxic Effects of Untreated Sewage Water in Labeo Rohita (Hamilton, 1822). J. Entomol. Zool. Stud. 2019, 7, 1351–1355. [Google Scholar]
- Kaur, R.; Dua, A. 96 h LC50, Behavioural Alterations and Histopathological Effects Due to Wastewater Toxicity in a Freshwater Fish Channa Punctatus. Environ. Sci. Pollut. Res. 2015, 22, 5100–5110. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Dua, A. Acute Toxicity, Behavioural and Morphological Alterations in Indian Carp, Labeo rohita H., on Exposure to Municipal Wastewater of Tung Dhab Drain, Punjab, India. Int. J. Sci. Res. 2014, 3, 1716–1720. [Google Scholar]
- Reddy, P.B. Study on the Toxic Effects of Wastewater in Catfish (Heteropneustes fossilis). Life Sci. Int. Res. J. 2018, 5, 165–174. [Google Scholar]
- Patil, V.K.; David, M. Behaviour and Respiratory Dysfunction as an Index of Malathion Toxicity in the Freshwater Fish, Labeo Rohita (Hamilton). Turk. J. Fish. Aquat. Sci. 2008, 8, 233–237. [Google Scholar]
- Ruffier, P.J.; Boyle, W.C.; Kleinschmidt, J. Short-Term Acute Bioassays to Evaluate Ammonia Toxicity and Effluent Standards. J. Water Pollut. Control Fed. 1981, 53, 367–377. [Google Scholar]
- Pandian, T.J.; Sheela, S.G. Hormonal Induction of Sex Reversal in Fish. Aquaculture 1995, 138, 1–22. [Google Scholar] [CrossRef]
- Angus, R.A.; McNatt, H.B.; Howell, W.M.; Peoples, S.D. Gonopodium Development in Mormal Male and 11-Ketotestosterone-Treated Female Mosquitofish (Gambusia affinis): A Quantitative Study Using Computer Image Analysis. Gen. Comp. Endocrinol. 2001, 123, 222–234. [Google Scholar] [CrossRef]
- Hou, L.; Chen, S.; Chen, H.; Ying, G.; Chen, D.; Liu, J.; Liang, Y.; Wu, R.; Fang, X.; Zhang, C.; et al. Rapid Masculinization and Effects on the Liver of Female Western Mosquitofish (Gambusia affinis) by Norethindrone. Chemosphere 2019, 216, 94–102. [Google Scholar] [CrossRef]
- Martin, S.; Hitch, A.; Purcell, K.; Klerks, P.; Leberg, P. Life History Variation along a Salinity Gradient in Coastal Marshes. Aquat. Biol. 2009, 8, 15–28. [Google Scholar] [CrossRef]
- Rautenberg, G.E.; Amé, M.V.; Monferrán, M.V.; Bonansea, R.I.; Hued, A.C. A Multi-Level Approach Using Gambusia affinis as a Bioindicator of Environmental Pollution in the Middle-Lower Basin of Suquía River. Ecol. Indic. 2015, 48, 706–720. [Google Scholar] [CrossRef]
- Tran, N.K.; Kwan, T.N.; Purser, J.; Patil, J.G. Masculinization of Adult Gambusia holbrooki: A Case of Recapitulation of Protogyny in a Gonochorist? Biology 2022, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.R. Morphometric Analysis of Endocrine Status in Western Mosquitofish (Gambusia affinis) Inhabiting Bayou DeSiard (Ouachita Parish, LA). Master’s Thesis, University of Louisiana at Monroe, Monroe, LA, USA, 2023. [Google Scholar]
- Polverino, G.; Karakaya, M.; Spinello, C.; Soman, V.R.; Porfiri, M. Behavioural and Life-History Responses of Mosquitofish to Biologically Inspired and Interactive Robotic Predators. J. R. Soc. Interface 2019, 16, 20190359. [Google Scholar] [CrossRef] [PubMed]
- Deaton, R.; Cureton, J.C. Female Masculinization and Reproductive Life History in the Western Mosquitofish (Gambusia affinis). Environ. Biol. Fishes 2011, 92, 551–558. [Google Scholar] [CrossRef]
- Hou, L.-P.; Yang, Y.; Shu, H.; Ying, G.-G.; Zhao, J.-L.; Fang, G.-Z.; Xin, L.; Shi, W.-J.; Yao, L.; Cheng, X.-M. Masculinization and Reproductive Effects in Western Mosquitofish (Gambusia affinis) after Long-Term Exposure to Androstenedione. Ecotoxicol. Environ. Saf. 2018, 147, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Parks, L.G.; Lambright, C.S.; Orlando, E.F.; Guillette, L.J., Jr.; Ankley, G.T.; Gray, L.E., Jr. Masculinization of Female Mosquitofish in Kraft Mill Effluent-Contaminated Fenholloway River Water Is Associated with Androgen Receptor Agonist Activity. Toxicol. Sci. 2001, 62, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.E.; Bailey, R.M. The Poeciliid Fishes (Cyprinodontiformes): Their Structure, Zoogeography, and Systematics. Bull. AMNH 1963, 126, 176. [Google Scholar]
- Leusch, F.D.L.; Chapman, H.F.; Kay, G.W.; Gooneratne, S.R.; Tremblay, L.A. Anal Fin Morphology and Gonadal Histopathology in Mosquitofish (Gambusia holbrooki) Exposed to Treated Municipal Sewage Effluent. Arch. Environ. Contam. Toxicol. 2006, 50, 562–574. [Google Scholar] [CrossRef]
- Turner, C.L. Morphogenesis of the Gonopodium in Gambusia affinis Affinis. J. Morphol. 1941, 69, 161–185. [Google Scholar] [CrossRef]
- Howell, W.M.; Denton, T.E. Gonopodial Morphogenesis in Female Mosquitofish, Gambusia affinis Affinis, Masculinized by Exposure to Degradation Products from Plant Sterols. Environ. Biol. Fishes 1989, 24, 43–51. [Google Scholar] [CrossRef]
- Sholdt, L.L.; Ehrhardt, D.A.; Michael, A.G. A Guide to the Use of the Mosquito Fish, Gambusia affinis for Mosquito Control; Navy Environmental and Preventive Medicine Unit No. 2: Norfolk, VA, USA, 1972. [Google Scholar]
- Liney, K.E.; Hagger, J.A.; Tyler, C.R.; Depledge, M.H.; Galloway, T.S.; Jobling, S. Health Effects in Fish of Long-Term Exposure to Effluents from Wastewater Treatment Works. Environ. Health Perspect. 2006, 114, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Bahamonde, P.A.; Munkittrick, K.R.; Martyniuk, C.J. Intersex in Teleost Fish: Are We Distinguishing Endocrine Disruption from Natural Phenomena? Gen. Comp. Endocrinol. 2013, 192, 25–35. [Google Scholar] [CrossRef]
- Howell, W.M.; Black, D.A.; Bortone, S.A. Abnormal Expression of Secondary Sex Characters in a Population of Mosquitofish, Gambusia affinis Holbrooki: Evidence for Environmentally-Induced Masculinization. Copeia 1980, 1980, 676–681. [Google Scholar] [CrossRef]
- Jenkins, J.A.; Goodbred, S.L.; Sobiech, S.A.; Olivier, H.M.; Draugelis-Dale, R.O.; Alvarez, D.A. Effects of Wastewater Discharges on Endocrine and Reproductive Function of Western Mosquitofish (Gambusia spp.) and Implications for the Threatened Santa Ana Sucker (Catostomus santaanae); U.S. Department of the Interior, Geological Survey: Washington, DC, USA, 2009; ISBN 1-4959-2591-9.
- Jobling, S.; Nolan, M.; Tyler, C.R.; Brighty, G.; Sumpter, J.P. Widespread Sexual Disruption in Wild Fish. Environ. Sci. Technol. 1998, 32, 2498–2506. [Google Scholar] [CrossRef]
- Huang, G.-Y.; Liu, Y.-S.; Chen, X.-W.; Liang, Y.-Q.; Liu, S.-S.; Yang, Y.-Y.; Hu, L.-X.; Shi, W.-J.; Tian, F.; Zhao, J.-L.; et al. Feminization and Masculinization of Western Mosquitofish (Gambusia affinis) Observed in Rivers Impacted by Municipal Wastewaters. Sci. Rep. 2016, 6, 20884. [Google Scholar] [CrossRef]
- Brockmeier, E.K.; Ogino, Y.; Iguchi, T.; Barber, D.S.; Denslow, N.D. Effects of 17β-Trenbolone on Eastern and Western Mosquitofish (Gambusia holbrooki and G. affinis) Anal Fin Growth and Gene Expression Patterns. Aquat. Toxicol. 2013, 128–129, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.L. Gonopodial Characteristics Produced in the Anal Fins of Females of Gambusia affinis Affinis by Treatment with Ethinyl Testosterone. Biol. Bull. 1941, 80, 371–383. [Google Scholar] [CrossRef]
- Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O. Demasculinization of Male Fish by Wastewater Treatment Plant Effluent. Aquat. Toxicol. 2011, 103, 213–221. [Google Scholar] [CrossRef]
- Steinbach, C.; Císař, P.; Šauer, P.; Klicnarová, J.; Schmidt-Posthaus, H.; Golovko, O.; Kocour Kroupová, H. Synthetic Progestin Etonogestrel Negatively Affects Mating Behavior and Reproduction in Endler’s Guppies (Poecilia wingei). Sci. Total Environ. 2019, 663, 206–215. [Google Scholar] [CrossRef]
- Matkin, C.; Felgenhauer, B.; Klerks, P. Gonadal Histology of Adult Western Mosquitofish (Gambusia affinis) Following Early Life Exposure to 17α-Ethynylestradiol, 17β-Trenbolone, and/or Atrazine. Res. Prepr. 2021. [Google Scholar] [CrossRef]
- Hinck, J.E.; Blazer, V.S.; Schmitt, C.J.; Papoulias, D.M.; Tillitt, D.E. Widespread Occurrence of Intersex in Black Basses (Micropterus spp.) from U.S. Rivers, 1995–2004. Aquat. Toxicol. 2009, 95, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Cyrana, M.V.; Ledet, A.J.; Bart, H.L., Jr. Ovarian Masculinization and Reproductive Impairment in 3 Species of Groundfish in and around the Hypoxic Zone in the Gulf of Mexico. Fish. Bull. 2023, 121, 36–49. [Google Scholar] [CrossRef]
- Fentress, J.A.; Steele, S.L.; Bart, H.L.; Cheek, A.O. Reproductive Disruption in Wild Longear Sunfish (Lepomis megalotis) Exposed to Kraft Mill Effluent. Environ. Health Perspect. 2006, 114, 40–45. [Google Scholar] [CrossRef] [PubMed]
Pair 1: Mandeville (Control) and Slidell (Exposed) | Pair 2: Abita Springs (Control) and Covington (Exposed) | |||||
---|---|---|---|---|---|---|
Trait | r2 | F1,11 | p | r2 | F1,7 | p |
pH | 0.116 | 1.438 | 0.2557 | 0.040 | 0.289 | 0.6078 |
Oxidation-reduction potential (mV) | 0.627 | 18.457 | 0.0013 | 0.003 | 0.024 | 0.8822 |
Conductivity (µS/cm) | 0.802 | 44.646 | <0.0001 | 0.092 | 0.709 | 0.4275 |
Salinity (psu) | 0.818 | 49.294 | <0.0001 | 0.059 | 0.440 | 0.5282 |
Total dissolved solids (mg/L) | 0.805 | 45.417 | <0.0001 | 0.057 | 0.422 | 0.5365 |
Temperature (°C) | 0.029 | 0.328 | 0.5783 | 0.298 | 2.972 | 0.1284 |
Dissolved oxygen (mg/L) | 0.055 | 0.645 | 0.4391 | 0.382 | 4.335 | 0.0758 |
Pair 1: Mandeville (Control) and Slidell (Exposed) | Pair 2: Abita Springs (Control) and Covington (Exposed) | |||||
---|---|---|---|---|---|---|
Trait | r2 | F1,47 | p | r2 | F1,48 | p |
Standard Length (mm) | 0.274 | 17.707 | 0.0001 | 0.054 | 2.746 | 0.104 |
Total Weight (g) | 0.144 | 7.911 | 0.0071 | 0.013 | 0.636 | 0.429 |
Gonad Weight (g) | 0.107 | 5.638 | 0.0217 | 0.036 | 1.793 | 0.1869 |
Somatic index (SI) | 0.252 | 15.832 | 0.0002 | 0.090 | 4.723 | 0.0347 |
Somatic index, eviscerated (SIE) | 0.211 | 12.554 | 0.0009 | 0.073 | 3.769 | 0.0581 |
Gonadosomatic index (GSI) | 0.006 | 0.266 | 0.6085 | 0.002 | 0.084 | 0.7737 |
Trait | r2 | F1,47 | p |
---|---|---|---|
Standard Length (mm) | 0.155 | 8.629 | 0.0051 |
Total Weight (g) | 0.130 | 7.008 | 0.011 |
Gonad Weight (g) | 0.134 | 7.282 | 0.0096 |
Somatic index (SI) | 0.001 | 0.052 | 0.8207 |
Somatic index, eviscerated (SIE) | 0.004 | 0.211 | 0.648 |
Gonadosomatic index (GSI) | 0.002 | 0.110 | 0.7417 |
Population | Concentration (%) | Mean | SE | Min | Max | r2 | F4,35 | p |
---|---|---|---|---|---|---|---|---|
Mandeville (control) | 0 | 98.3 | 1.66 | 86.7 | 100 | 0.92 | 94.32 | <0.0001 |
45 | 40.0 | 15.94 | 0 | 100 | 0.14 | 1.38 | 0.2593 | |
90 | 3.4 | 1.27 | 0 | 6.7 | 0.16 | 1.64 | 0.1865 | |
Abita Springs (control) | 0 | 97.5 | 2.50 | 80 | 100 | 0.84 | 46.19 | <0.0001 |
45 | 74.2 | 11.98 | 13.3 | 100 | 0.41 | 6.11 | 0.0008 | |
90 | 63.3 | 14.80 | 0 | 100 | 0.30 | 3.75 | 0.0121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kane, E.A.; Yadav, S.V.K.; Fogle, A.; D’Souza, N.A.; DeLisi, N.; Caillouët, K.A. Battle of the Bites: The Effect of Sewage Effluent Exposure on Mosquitofish Biocontrol of Mosquitoes in Residential Louisiana. Toxics 2024, 12, 259. https://doi.org/10.3390/toxics12040259
Kane EA, Yadav SVK, Fogle A, D’Souza NA, DeLisi N, Caillouët KA. Battle of the Bites: The Effect of Sewage Effluent Exposure on Mosquitofish Biocontrol of Mosquitoes in Residential Louisiana. Toxics. 2024; 12(4):259. https://doi.org/10.3390/toxics12040259
Chicago/Turabian StyleKane, Emily A., Shubham V. K. Yadav, Adeline Fogle, Nigel A. D’Souza, Nicholas DeLisi, and Kevin A. Caillouët. 2024. "Battle of the Bites: The Effect of Sewage Effluent Exposure on Mosquitofish Biocontrol of Mosquitoes in Residential Louisiana" Toxics 12, no. 4: 259. https://doi.org/10.3390/toxics12040259
APA StyleKane, E. A., Yadav, S. V. K., Fogle, A., D’Souza, N. A., DeLisi, N., & Caillouët, K. A. (2024). Battle of the Bites: The Effect of Sewage Effluent Exposure on Mosquitofish Biocontrol of Mosquitoes in Residential Louisiana. Toxics, 12(4), 259. https://doi.org/10.3390/toxics12040259