Toxic Effects of Rare Earth Elements on Human Health: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
3. Rare Earth Exposure
4. Rare Earth Toxicity
4.1. Respiratory System
4.2. Nervous System
4.3. Cardiovascular System
4.4. Reproductive System
4.5. Other Systems
5. Toxicity Mechanisms
5.1. Genetics
5.2. Epigenetics
5.3. Altered Signaling Pathways
6. Conclusions
7. Challenges and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, A.; Scott, J.W.; Green, L.A. Rare earth elements in plastics. Sci. Total Environ. 2021, 774, 145405. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, N.; Le Jean, M.; Armengaud, J.; Schikora, A.; Chalot, M.; Gross, E.M.; Blaudez, D. Combined omics approaches reveal distinct responses between light and heavy rare earth elements in Saccharomyces cerevisiae. J. Hazard. Mater. 2022, 425, 127830. [Google Scholar] [CrossRef] [PubMed]
- Zapp, P.; Schreiber, A.; Marx, J.; Kuckshinrichs, W. Environmental impacts of rare earth production. MRS Bull. 2022, 47, 267–275. [Google Scholar] [CrossRef]
- Marginson, H.; MacMillan, G.A.; Grant, E.; Gérin-Lajoie, J.; Amyot, M. Rare earth element bioaccumulation and cerium anomalies in biota from the Eastern Canadian subarctic (Nunavik). Sci. Total Environ. 2023, 879, 163024. [Google Scholar] [CrossRef]
- Han, G.; Liu, M.; Li, X.; Zhang, Q. Sources and geochemical behaviors of rare earth elements in suspended particulate matter in a wet-dry tropical river. Environ. Res. 2023, 218, 115044. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef]
- Pan, Y.; Li, H. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China. Environ. Manag. 2016, 57, 879–893. [Google Scholar] [CrossRef] [PubMed]
- Cirtiu, C.M.; Valcke, M.; Gagné, M.; Bourgault, M.H.; Narame, C.; Gadio, S.; Poulin, P.; Ayotte, P. Biological monitoring of exposure to rare earth elements and selected metals in the Inuit population of Nunavik, Canada. Chemosphere 2022, 289, 133142. [Google Scholar] [CrossRef]
- Qiao, X.; Cui, W.; Gao, S.; Zhi, Q.; Li, B.; Fan, Y.; Liu, L.; Gao, J.; Tan, H. Occupational exposure to rare earth elements: Assessment of external and internal exposure. Environ. Pollut. 2022, 309, 119801. [Google Scholar] [CrossRef]
- Huo, W.; Zhu, Y.; Li, Z.; Pang, Y.; Wang, B.; Li, Z. A pilot study on the association between rare earth elements in maternal hair and the risk of neural tube defects in north China. Environ. Pollut. 2017, 226, 89–93. [Google Scholar] [CrossRef]
- Wang, S.; Yu, R.; Hu, G.; Hu, Q.; Zheng, Q. Distribution and source of rare earth elements in PM2.5 in Xiamen, China. Environ. Toxicol. Chem. 2017, 36, 3217–3222. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Ge, J.; Wang, L.; Wan, X.; Guo, G.; Liang, T.; Bolan, N.; Rennert, T.; Rinklebe, J. Hair-biomonitoring assessment of rare-earth-element exposure in residents of the largest rare-earth mining and smelting area of China. Environ. Int. 2023, 179, 108177. [Google Scholar] [CrossRef] [PubMed]
- Brouziotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of rare earth elements: An overview on human health impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Squadrone, S.; Brizio, P.; Stella, C.; Mantia, M.; Battuello, M.; Nurra, N.; Sartor, R.M.; Orusa, R.; Robetto, S.; Brusa, F.; et al. Rare earth elements in marine and terrestrial matrices of Northwestern Italy: Implications for food safety and human health. Sci. Total Environ. 2019, 660, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Z.; Chen, Z.; Zhang, Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere 2013, 93, 1240–1246. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.S.; van der Ent, A.; Morel, J.L.; Zheng, H.X.; Wang, G.B.; Tang, Y.T.; Qiu, R.L. Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere 2021, 282, 131096. [Google Scholar] [CrossRef]
- Mitsumori, L.M.; Bhargava, P.; Essig, M.; Maki, J.H. Magnetic resonance imaging using gadolinium-based contrast agents. Top. Magn. Reson. Imaging 2014, 23, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Cashion, W.; Weisbord, S.D. Radiographic Contrast Media and the Kidney. Clin. J. Am. Soc. Nephrol. 2022, 17, 1234–1242. [Google Scholar] [CrossRef]
- Pagano, G.; Thomas, P.J.; Di Nunzio, A.; Trifuoggi, M. Human exposures to rare earth elements: Present knowledge and research prospects. Environ. Res. 2019, 171, 493–500. [Google Scholar] [CrossRef]
- Rim, K.T.; Koo, K.H.; Park, J.S. Toxicological evaluations of rare earths and their health impacts to workers: A literature review. Saf. Health Work. 2013, 4, 12–26. [Google Scholar] [CrossRef]
- Han, Y.; Lee, D.K.; Kim, S.H.; Lee, S.; Jeon, S.; Cho, W.S. High inflammogenic potential of rare earth oxide nanoparticles: The New Hazardous Entity. Nanotoxicology 2018, 12, 712–728. [Google Scholar] [CrossRef]
- Li, K.; Liang, T.; Wang, L.; Tian, S. Inhalation exposure and potential health risk estimation of lanthanides elements in PM2.5 associated with rare earth mining areas: A case of Baotou city, northern China. Environ. Geochem. Health 2018, 40, 2795–2805. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liang, T.; Zhang, Q.; Li, K. Rare earth element components in atmospheric particulates in the Bayan Obo mine region. Environ. Res. 2014, 131, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhong, B.; Liang, T.; Xing, B.; Zhu, Y. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Sci. Total Environ. 2016, 572, 1–8. [Google Scholar] [CrossRef]
- Gerhardsson, L.; Wester, P.O.; Nordberg, G.F.; Brune, D. Chromium, cobalt and lanthanum in lung, liver and kidney tissue from deceased smelter workers. Sci. Total Environ. 1984, 37, 233–246. [Google Scholar] [CrossRef]
- Waring, P.M.; Watling, R.J. Rare earth deposits in a deceased movie projectionist: A new case of rare earth pneumoconiosis? Med. J. Aust. 1990, 153, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Crosera, M.; Monai, M.; Montini, T.; Fornasiero, P.; Bovenzi, M.; Adami, G.; Turco, G.; Filon, F.L. Cerium Oxide Nanoparticles Absorption through Intact and Damaged Human Skin. Molecules 2019, 24, 3759. [Google Scholar] [CrossRef]
- Qiu, F.; Zhang, H.; Cui, Y.; Zhang, L.; Zhou, W.; Huang, M.; Xia, W.; Xu, S.; Li, Y. Associations of maternal urinary rare earth elements individually and in mixtures with neonatal size at birth. Environ. Pollut. 2024, 343, 123163. [Google Scholar] [CrossRef]
- Freitas, R.; Cardoso, C.E.D.; Costa, S.; Morais, T.; Moleiro, P.; Lima, A.F.D.; Soares, M.; Figueiredo, S.; Águeda, T.L.; Rocha, P.; et al. New insights on the impacts of e-waste towards marine bivalves: The case of the rare earth element Dysprosium. Environ. Pollut. 2020, 260, 113859. [Google Scholar] [CrossRef]
- Fang, X.; Peng, B.; Guo, X.; Wu, S.; Xie, S.; Wu, J.; Yang, X.; Chen, H.; Dai, Y. Distribution, source and contamination of rare earth elements in sediments from lower reaches of the Xiangjiang River, China. Environ. Pollut. 2023, 336, 122384. [Google Scholar] [CrossRef]
- Yan, Y.; Chi, H.F.; Liu, J.R.; Hu, G.R.; Yu, R.L.; Huang, H.B.; Lin, C.Q. Provenance and bioaccessibility of rare earth elements in atmospheric particles in areas impacted by the optoelectronic industry. Environ. Pollut. 2020, 263 Pt A, 114349. [Google Scholar] [CrossRef]
- Liu, W.S.; Guo, M.N.; Liu, C.; Yuan, M.; Chen, X.T.; Huot, H.; Zhao, C.M.; Tang, Y.T.; Morel, J.L.; Qiu, R.L. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere 2019, 216, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Bakhshalizadeh, S.; Liyafoyi, A.R.; Mora-Medina, R.; Ayala-Soldado, N. Bioaccumulation of rare earth elements and trace elements in different tissues of the golden grey mullet (Chelon auratus) in the southern Caspian Sea. Environ. Geochem. Health 2023, 45, 6533–6542. [Google Scholar] [CrossRef] [PubMed]
- Odnevall, I.; Brookman-Amissah, M.; Stábile, F.; Ekvall, M.T.; Herting, G.; Bermeo Vargas, M.; Messing, M.E.; Sturve, J.; Hansson, L.A.; Isaxon, C.; et al. Characterization and Toxic Potency of Airborne Particles Formed upon Waste from Electrical and Electronic Equipment Waste Recycling: A Case Study. ACS Environ. Au. 2023, 3, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.L.; Zhu, W.Z.; Gao, Z.H.; Meng, Y.X.; Peng, R.L.; Lu, G.C. Distribution characteristics of rare earth elements in children’s scalp hair from a rare earths mining area in southern China. J. Environ. Sci. Health Part A 2004, 39, 2517–2532. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Deng, L.; Wang, W.; Li, Y.; Wang, L.; Liang, T.; Liao, X.; Cho, J.; Sonne, C.; Shiung Lam, S.; et al. Potentially toxic elements in human scalp hair around China’s largest polymetallic rare earth ore mining and smelting area. Environ. Int. 2023, 172, 107775. [Google Scholar] [CrossRef] [PubMed]
- Gong, H., Jr. Uncommon causes of occupational interstitial lung diseases. Curr. Opin. Pulm. Med. 1996, 2, 405–411. [Google Scholar] [CrossRef]
- Censi, P.; Tamburo, E.; Speziale, S.; Zuddas, P.; Randazzo, L.A.; Punturo, R.; Cuttitta, A.; Aricò, P. Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout. J. Hazard. Mater. 2011, 186, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Toya, T.; Takata, A.; Otaki, N.; Takaya, M.; Serita, F.; Yoshida, K.; Kohyama, N. Pulmonary toxicity induced by intratracheal instillation of coarse and fine particles of cerium dioxide in male rats. Ind Health. 2010, 48, 3–11. [Google Scholar] [CrossRef]
- Nakamura, Y.; Tsumura, Y.; Tonogai, Y.; Shibata, T.; Ito, Y. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam. Appl. Toxicol. 1997, 37, 106–116. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, J.; Meng, H.; Yin, Y.; Zhen, H.; Zheng, X.; Shi, H.; Wu, X.; Zu, Y.; Wang, B.; et al. Rare Earth Elements Lanthanum and Praseodymium Adversely Affect Neural and Cardiovascular Development in Zebrafish (Danio rerio). Environ. Sci. Technol. 2021, 55, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiao, H.J.; Qi, T.; Chen, D.L.; Long, H.M.; Liu, S.H. Rare earths exposure and male infertility: The injury mechanism study of rare earths on male mice and human sperm. Environ. Sci. Pollut. Res. Int. 2015, 22, 2076–2086. [Google Scholar] [CrossRef] [PubMed]
- Gaman, L.; Radoi, M.P.; Delia, C.E.; Luzardo, O.P.; Zumbado, M.; Rodríguez-Hernández, Á.; Stoian, I.; Gilca, M.; Boada, L.D.; Henríquez-Hernández, L.A. Concentration of heavy metals and rare earth elements in patients with brain tumours: Analysis in tumour tissue, non-tumour tissue, and blood. Int. J. Environ. Health Res. 2021, 31, 741–754. [Google Scholar] [CrossRef]
- Wei, J.; Wang, C.; Yin, S.; Pi, X.; Jin, L.; Li, Z.; Liu, J.; Wang, L.; Yin, C.; Ren, A. Concentrations of rare earth elements in maternal serum during pregnancy and risk for fetal neural tube defects. Environ. Int. 2020, 137, 105542. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Liu, G.F.; Chen, J.; Chen, Y.; Lin, R.H.; He, H.X.; Chen, J.P. Rare-earth Nanoparticle-induced Cytotoxicity on Spatial Cognition Memory of Mouse Brain. Chin. Med. J. 2017, 130, 2720–2725. [Google Scholar] [CrossRef] [PubMed]
- Gaman, L.; Delia, C.E.; Luzardo, O.P.; Zumbado, M.; Badea, M.; Stoian, I.; Gilca, M.; Boada, L.D.; Henríquez-Hernández, L.A. Serum concentration of toxic metals and rare earth elements in children and adolescent. Int. J. Environ. Health Res. 2020, 30, 696–712. [Google Scholar] [CrossRef]
- Gao, J.; Wang, S.; Tang, G.; Wang, Z.; Wang, Y.; Wu, Q.; Yang, X.; Liu, Y.; Hu, L.; He, B.; et al. Inflammation and accompanied disrupted hematopoiesis in adult mouse induced by rare earth element nanoparticles. Sci. Total Environ. 2022, 831, 155416. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, W.; Shu, F.; Fan, Y.; Yang, N.; Wu, T.; Ji, L.; Xie, W.; Bade, R.; Jiang, S.; et al. Nd2O3 Nanoparticles Induce Toxicity and Cardiac/Cerebrovascular Abnormality in Zebrafish Embryos via the Apoptosis Pathway. Int. J. Nanomed. 2020, 15, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Shen, T.; Li, J.; Qian, J.; Zhang, J.; Zhou, G.; Tong, J. SF-1 mediates reproductive toxicity induced by Cerium oxide nanoparticles in male mice. J. Nanobiotechnol. 2019, 17, 41. [Google Scholar] [CrossRef]
- Ray, J.G.; Vermeulen, M.J.; Bharatha, A.; Montanera, W.J.; Park, A.L. Association Between MRI Exposure During Pregnancy and Fetal and Childhood Outcomes. JAMA 2016, 316, 952–961. [Google Scholar] [CrossRef]
- Darrah, T.H.; Prutsman-Pfeiffer, J.J.; Poreda, R.J.; Ellen Campbell, M.; Hauschka, P.V.; Hannigan, R.E. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 2009, 1, 479–488. [Google Scholar] [CrossRef]
- Galusha, A.L.; Kruger, P.C.; Howard, L.J.; Parsons, P.J. An assessment of exposure to rare earth elements among patients receiving long-term parenteral nutrition. J. Trace Elem. Med. Biol. 2018, 47, 156–163. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Yang, Z.; Wang, K. Bone Mineral Density in Population Long-Term Exposed to Rare Earth Elements from a Mining Area of China. Biol. Trace Elem. Res. 2021, 199, 453–464. [Google Scholar] [CrossRef]
- Shankar, V.S.; Alam, A.S.; Bax, C.M.; Bax, B.E.; Pazianas, M.; Huang, C.L.; Zaidi, M. Activation and inactivation of the osteoclast Ca2+ receptor by the trivalent cation, La3+. Biochem. Biophys. Res. Commun. 1992, 187, 907–912. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, H.; Ma, Y.; Bai, W.; Zhang, Z.; Lu, K.; Ding, Y.; Zhao, Y.; Chai, Z. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 2010, 21, 285103. [Google Scholar] [CrossRef] [PubMed]
- Nemery, B. Metal toxicity and the respiratory tract. Eur. Respir. J. 1990, 3, 202–219. [Google Scholar] [CrossRef]
- Snow, S.J.; McGee, J.; Miller, D.B.; Bass, V.; Schladweiler, M.C.; Thomas, R.F.; Krantz, T.; King, C.; Ledbetter, A.D.; Richards, J.; et al. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicol. Sci. 2014, 142, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Nnomo Assene, A.; Dieme, D.; Jomaa, M.; Côté, J.; Bouchard, M. Toxicokinetic study of scandium oxide in rats. Toxicol. Lett. 2024, 392, 56–63. [Google Scholar] [CrossRef]
- Kim, Y.H.; Boykin, E.; Stevens, T.; Lavrich, K.; Gilmour, M.I. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches. J. Nanobiotechnol. 2014, 12, 47. [Google Scholar] [CrossRef]
- Keller, J.; Wohlleben, W.; Ma-Hock, L.; Strauss, V.; Gröters, S.; Küttler, K.; Wiench, K.; Herden, C.; Oberdörster, G.; van Ravenzwaay, B.; et al. Time course of lung retention and toxicity of inhaled particles: Short-term exposure to nano-Ceria. Arch. Toxicol. 2014, 88, 2033–2059. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, X.; Yang, W.; Fan, J.; Tang, L.; Wang, C.; Yu, Z.; Jia, X.D.; Fan, B. Subchronic toxicity of cerium nitrate by 90-day oral exposure in wistar rats. Regul. Toxicol. Pharmacol. 2019, 108, 104474. [Google Scholar] [CrossRef]
- Ma, J.; Bishoff, B.; Mercer, R.R.; Barger, M.; Schwegler-Berry, D.; Castranova, V. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis. Toxicol. Appl. Pharmacol. 2017, 323, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Wahab, R.; Siddiqui, M.A.; Farshori, N.N.; Saquib, Q.; Ahmad, N.; Al-Khedhairy, A.A. Neodymium oxide nanostructures and their cytotoxic evaluation in human cancer cells. J. Trace Elem. Med. Biol. 2022, 73, 127029. [Google Scholar] [CrossRef]
- Chen, X.A.; Cheng, Y.E.; Rong, Z. Recent results from a study of thorium lung burdens and health effects among miners in China. J. Radiol. Prot. 2005, 25, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Gosens, I.; Mathijssen, L.E.; Bokkers, B.G.; Muijser, H.; Cassee, F.R. Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology 2014, 8, 643–653. [Google Scholar] [CrossRef]
- Han, L.; Jiang, C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm. Sin. B 2021, 11, 2306–2325. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, S.; Shao, P.; Zhang, H.; Wu, D.; Yang, W.; Feng, J. Bioelectrical activity of the central nervous system among populations in a rare earth element area. Biol. Trace Elem. Res. 1997, 57, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhang, J.; Yu, S.; Ding, Z.; Song, H.; Wang, Y.; Li, Y. Lanthanum Chloride Causes Neurotoxicity in Rats. by Upregulating miR-124 Expression and Targeting PIK3CA to Regulate the PI3K/Akt Signaling Pathway. Biomed. Res. Int. 2020, 2020, 5205142. [Google Scholar] [CrossRef]
- Li, Z.; Liang, T.; Li, K.; Wang, P. Exposure of children to light rare earth elements through ingestion of various size fractions of road dust in REEs mining areas. Sci. Total Environ. 2020, 743, 140432. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Gao, L.; Li, Y.; Wu, S.; Lu, X.; Yang, J.; Cai, Y. Lanthanum damages learning and memory and suppresses astrocyte-neuron lactate shuttle in rat hippocampus. Exp. Brain Res. 2017, 235, 3817–3832. [Google Scholar] [CrossRef]
- Xiao, X.; Yong, L.; Jiao, B.; Yang, H.; Liang, C.; Jia, X.; Liu, Z.; Sang, Y.; Song, Y. Postweaning exposure to lanthanum alters neurological behavior during early adulthood in rats. Neurotoxicology 2021, 83, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, M.; Hu, J.; Li, Z.; Wu, T.; Bao, J.; Wu, S.; Lei, L.; He, D. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere 2017, 181, 55–62. [Google Scholar] [CrossRef]
- Lin, C.; Liu, G.; Huang, Y.; Liu, S.; Tang, B. Rare-earth nanoparticles induce depression, anxiety-like behavior, and memory impairment in mice. Food Chem. Toxicol. 2021, 156, 112442. [Google Scholar] [CrossRef] [PubMed]
- Bower, D.V.; Richter, J.K.; von Tengg-Kobligk, H.; Heverhagen, J.T.; Runge, V.M. Gadolinium-Based MRI Contrast Agents Induce Mitochondrial Toxicity and Cell Death in Human Neurons, and Toxicity Increases With Reduced Kinetic Stability of the Agent. Investig. Radiol. 2019, 54, 453–463. [Google Scholar] [CrossRef]
- Bai, Y.; Long, C.; Hu, G.; Zhou, D.; Gao, X.; Chen, Z.; Wang, T.; Yu, S.; Han, Y.; Yan, L. Association of blood chromium and rare earth elements with the risk of DNA damage in chromate exposed population. Environ. Toxicol. Pharmacol. 2019, 72, 103237. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Dai, Y.; Yuan, Z.; Li, J. Effects of rare earth elements on telomerase activity and apoptosis of human peripheral blood mononuclear cells. Biol. Trace Elem. Res. 2007, 116, 53–59. [Google Scholar] [CrossRef]
- Wingard, C.J.; Walters, D.M.; Cathey, B.L.; Hilderbrand, S.C.; Katwa, P.; Lin, S.; Ke, P.C.; Podila, R.; Rao, A.; Lust, R.M.; et al. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology 2011, 5, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Cheng, Z.; Hu, R.; Cui, Y.; Cai, J.; Li, N.; Gui, S.; Sang, X.; Sun, Q.; Wang, L.; et al. Immune dysfunction and liver damage of mice following exposure to lanthanoids. Environ. Toxicol. 2014, 29, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Gojova, A.; Guo, B.; Kota, R.S.; Rutledge, J.C.; Kennedy, I.M.; Barakat, A.I. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environ. Health Perspect. 2007, 115, 403–409. [Google Scholar] [CrossRef]
- Kennedy, I.M.; Wilson, D.; Barakat, A.I.; HEI Health Review Committee. Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Res. Rep. Health Eff. Inst. 2009, 136, 3–32. [Google Scholar]
- Miller, H.A.; Schake, M.A.; Bony, B.A.; Curtis, E.T.; Gee, C.C.; McCue, I.S.; Ripperda, T.J., Jr.; Chatzizisis, Y.S.; Kievit, F.M.; Pedrigi, R.M. Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis. PLoS ONE 2021, 16, e0260606. [Google Scholar] [CrossRef]
- Lee, W.Y.; Park, H.J. Toxicity of cerium oxide nanoparticles on neonatal testicular development in mouse organ culture. Reprod. Toxicol. 2022, 111, 120–128. [Google Scholar] [CrossRef]
- Li, M.; Zhuang, L.; Zhang, G.; Lan, C.; Yan, L.; Liang, R.; Hao, C.; Li, Z.; Zhang, J.; Lu, Q.; et al. Association between exposure of light rare earth elements and outcomes of in vitro fertilization-embryo transfer in North China. Sci. Total Environ. 2021, 762, 143106. [Google Scholar] [CrossRef]
- Zhong, H.; Geng, Y.; Chen, J.; Gao, R.; Yu, C.; Yang, Z.; Chen, X.; Mu, X.; Liu, X.; He, J. Maternal exposure to CeO2NPs during early pregnancy impairs pregnancy by inducing placental abnormalities. J. Hazard. Mater. 2020, 389, 121830. [Google Scholar] [CrossRef]
- Liu, L.; Wang, L.; Ni, W.; Pan, Y.; Chen, Y.; Xie, Q.; Liu, Y.; Ren, A. Rare earth elements in umbilical cord and risk for orofacial clefts. Ecotoxicol. Environ. Saf. 2021, 207, 111284. [Google Scholar] [CrossRef]
- Nemati, A.; Beyranvand, F.; Assadollahi, V.; Salahshoor, M.R.; Alasvand, M.; Gholami, M.R. The effect of different concentrations of cerium oxide during pregnancy on ovarian follicle development in neonatal mice. Birth Defects Res. 2021, 113, 349–358. [Google Scholar] [CrossRef]
- Cui, X.; Jiang, S.; Liu, L.; Tang, X.; Chen, Y. Effect of low-dose lanthanum carbonate on calcium and phosphorus metabolism in Asian Patients with end-stage renal disease, maintenance hemodialysis and hyperphosphatemia. Afr. Health Sci. 2022, 22, 362–368. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, S.; Shao, P.; Zhang, H.; Wu, D.; Yang, W.; Feng, J.; Feng, L. Investigation on liver function among population in high background of rare earth area in South China. Biol. Trace Elem. Res. 2005, 104, 1–8. [Google Scholar] [CrossRef]
- Chen, F.; Deng, Q.; Wu, Y.; Wu, Y.; Chen, J.; Chen, Y.; Lin, L.; Qiu, Y.; Pan, L.; Zheng, X.; et al. U-Shaped Relationship of Rare Earth Element Lanthanum and Oral Cancer Risk: A Propensity Score-Based Study in the Southeast of China. Front. Public Health 2022, 10, 905690. [Google Scholar] [CrossRef]
- Hao, Z.; Li, Y.; Li, H.; Wei, B.; Liao, X.; Liang, T.; Yu, J. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study. Chemosphere 2015, 128, 161–170. [Google Scholar] [CrossRef]
- Guo, C.; Wei, Y.; Yan, L.; Li, Z.; Qian, Y.; Liu, H.; Li, Z.; Li, X.; Wang, Z.; Wang, J. Rare earth elements exposure and the alteration of the hormones in the hypothalamic-pituitary-thyroid (HPT) axis of the residents in an e-waste site: A cross-sectional study. Chemosphere 2020, 252, 126488. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yang, J.; Yu, M.; Sun, W.; Han, Y.; Lu, X.; Jin, C.; Wu, S.; Cai, Y. Lanthanum Impairs Learning and Memory by Activating Microglia in the Hippocampus of Mice. Biol. Trace Elem. Res. 2022, 200, 1640–1649. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Guida, M.; Tommasi, F.; Oral, R. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 2015, 115, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, O.A.; Akinloye, O.; Adaramoye, O.A. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia 2018, 50, e12920. [Google Scholar] [CrossRef] [PubMed]
- Martín-Aguilar, L.; Presas-Rodriguez, S.; Rovira, À.; Capellades, J.; Massuet-Vilamajó, A.; Ramió-Torrentà, L.; Tintoré, M.; Brieva-Ruiz, L.; Moral, E.; Cano-Orgaz, A.; et al. Gadolinium-enhanced brain lesions in multiple sclerosis relapse. Neurologia (Engl. Ed.) 2022, 37, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Chen, H.P.; Leung, C.M.; Chen, H.L.; Tsai, S.S.; Hsu, P.C. Effects of indium chloride exposure on sperm morphology and DNA integrity in rats. J. Food Drug Anal. 2015, 23, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, Q.; Wu, S.; Xi, Q.; Cai, Y. Effects of lanthanum chloride on glutamate level, intracellular calcium concentration and caspases expression in the rat hippocampus. Biometals 2013, 26, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Alarifi, S.; Ali, H.; Alkahtani, S.; Alessia, M.S. Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int. J. Nanomed. 2017, 12, 4541–4551. [Google Scholar] [CrossRef]
- Han, G.; Tan, Z.; Jing, H.; Ning, J.; Li, Z.; Gao, S.; Li, G. Comet Assay Evaluation of Lanthanum Nitrate DNA Damage in C57-ras Transgenic Mice. Biol. Trace Elem. Res. 2021, 199, 3728–3736. [Google Scholar] [CrossRef]
- Porosnicu, I.; Butnaru, C.M.; Tiseanu, I.; Stancu, E.; Munteanu, C.V.A.; Bita, B.I.; Duliu, O.G.; Sima, F. Y2O3 Nanoparticles and X-ray Radiation-Induced Effects in Melanoma Cells. Molecules 2021, 26, 3403. [Google Scholar] [CrossRef]
- Mittal, S.; Pandey, A.K. Cerium oxide nanoparticles induced toxicity in human lung cells: Role of ROS mediated DNA damage and apoptosis. Biomed. Res. Int. 2014, 2014, 891934. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bu, N.; Yun, Y.; Shi, X.; Wang, S.; Gao, Y. RNA-Seq Analysis of Testes from Mice Exposed to Neodymium Oxide. Toxics 2023, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jia, Y.; Zhang, X.; Chen, S.; Wang, S.; Zhu, J.; Zheng, L.; Chen, Z.; Huang, L. Identification of the function and regulatory network of circ_009773 in DNA damage induced by nanoparticles of neodymium oxide. Toxicol In Vitro 2022, 78, 105271. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Zhang, X.; Gao, L.; Xue, H.; Liu, L.; Wang, S.; Chen, S.; Huang, L. LncRNA loc105377478 promotes NPs-Nd2O3-induced inflammation in human bronchial epithelial cells through the ADIPOR1/NF-κB axis. Ecotoxicol. Environ. Saf. 2021, 208, 111609. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xiong, J.; Guo, L.; Miao, L.; Liu, S.; Guo, F. The effects of lanthanum chloride on proliferation and apoptosis of cervical cancer cells: Involvement of let-7a and miR-34a microRNAs. Biometals 2015, 28, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Cocom, L.M.; Juárez-Méndez, L.; Rincón, S.; Rivera-Villanueva, J.M.; Nic-Can, G.I.; Zepeda, A. Induction of cytotoxic effects and changes in DNA methylation-related gene expression in a human fibroblast cell line by the metal-organic framework [H2NMe2]3 [Tb(III)(2,6 pyridinedicarboxylate)3] (Tb-MOF). Environ. Sci. Pollut. Res. Int. 2023, 30, 46685–46696. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, H.; Lee, H.; Lee, H. Dopant-Dependent Toxicity of CeO2 Nanoparticles Is Associated with Dynamic Changes in H3K4me3 and H3K27me3 and Transcriptional Activation of NRF2 Gene in HaCaT Human Keratinocytes. Int. J. Mol. Sci. 2021, 22, 3087. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cheng, J.; Cheng, Z.; Hu, R.; Cai, J.; Gao, G.; Cui, Y.; Wang, L.; Hong, F. Molecular mechanism of inflammatory response in mouse liver caused by exposure to CeCl3. Environ. Toxicol. 2013, 28, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.M.; Nalabotu, S.K.; Manne, N.D.; Kolli, M.B.; Nandyala, G.; Arvapalli, R.; Ma, J.Y.; Blough, E.R. Exposure to Cerium Oxide Nanoparticles Is Associated With Activation of Mitogen-activated Protein Kinases Signaling and Apoptosis in Rat Lungs. J. Prev. Med. Public Health 2015, 48, 132–141. [Google Scholar] [CrossRef]
- Li, R.; Yu, L.; Qin, Y.; Zhou, Y.; Liu, W.; Li, Y.; Chen, Y.; Xu, Y. Protective effects of rare earth lanthanum on acute ethanol-induced oxidative stress in mice via Keap 1/Nrf2/p62 activation. Sci. Total Environ. 2021, 758, 143626. [Google Scholar] [CrossRef]
- Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Ali, B.H. Aortic Oxidative Stress, Inflammation and DNA Damage Following Pulmonary Exposure to Cerium Oxide Nanoparticles in a Rat Model of Vascular Injury. Biomolecules 2019, 9, 376. [Google Scholar] [CrossRef]
- Huang, L.H.; Yang, H.; Su, X.; Gao, Y.R.; Xue, H.N.; Wang, S.H. Neodymium Oxide Induces Cytotoxicity and Activates NF-κB and Caspase-3 in NR8383 Cells. Biomed. Environ. Sci. 2017, 30, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zhou, L.; Liu, Z.; Zou, L.; Xiao, M.; Huang, C.; Xie, Z.; He, H.; Guo, Y.; Cao, Y.; et al. Ceria nanoparticles promoted the cytotoxic activity of CD8+ T cells by activating NF-κB signaling. Biomater. Sci. 2019, 7, 2533–2544. [Google Scholar] [CrossRef] [PubMed]
Element | Section Studied | Toxicity Outcome | Reference | |
---|---|---|---|---|
Respiratory system | Y | Endotracheal | Dyspnea and pulmonary edema, pleural effusions | [21] |
Ce | Environmental exposure, skin contact | Extrapulmonary translocation, interstitial lung disease, pulmonary fibrosis, pneumoconiosis, cytotoxicity | [37] | |
La | Environmental exposure | Phosphate deposition, pulmonary fibrosis | [38] | |
Ce | Occupational exposure, environmental exposure | Cytotoxicity, genotoxicity, lung cancer, inflammation, granulomas, mobilization | [39] | |
Dy | Endotracheal instillation | Lung injury, oxidative stress, inflammatory response | [40] | |
Sm | Endotracheal | Lung injury, inflammatory response, pulmonary fibrosis | [41] | |
Th | Environmental exposure, skin contact | Dyspnea, pneumoconiosis, lung cancer | [42] | |
Nervous system | Gd | Iatrogenic exposure | Deposits in the brain, brain damage | [43] |
Nd | Environmental exposure, food chain | Fetal neural tube defects | [44] | |
La | Environmental exposure, skin contact, food chain | Learning and memory impairment, decreased spatial discrimination, cytotoxicity, memory disorders | [45] | |
Cardiovascular system | Ce | Environmental exposure, | The hemoglobin level is reduced, anemia | [46] |
Gd | Endotracheal instillation | Cytotoxicity, hematopoietic destruction | [47] | |
La | Occupational exposure | Deposition in blood vessels | [41] | |
Nd | Environmental exposure, skin contact, food chain | DNA damage, cytotoxicity, abnormal cardiovascular and cerebrovascular development | [48] | |
Reproductive system | Ce | Environmental exposure, oral administration | Oxidative stress, placental dysfunction, fetal abortion, growth restriction | [49] |
Gd | Iatrogenic exposure | Inflammatory or invasive skin diseases, stillbirth, neonatal death | [50] | |
Skeleton | Gd | Iatrogenic exposure | Bone deposits, osteoporosis | [51] |
Y | Iatrogenic exposure | Bone deposits | [52] | |
Nd | Occupational exposure, environmental exposure | Disorders of bone metabolism, decreased bone mineral density | [53] | |
La | Environmental exposure, food chain | Abnormal metabolism of calcium and phosphorus, decreased bone mineral density | [54] |
Type | Sample | REE Exposure | Toxicity | Reference | |
---|---|---|---|---|---|
Genetic | In vivo | C57-ras | 12.5, 25, and 50 mg/kg lanthanum nitrate for 180 d | Rare earth deposition causes direct damage | [66] |
In vitro | SH-SY5Y | 10, 25, 50, and 100 µg/mL Gd2O3 for 24 and 48 h | Apoptosis is regulated by bcl-2/bax protein expression | [98] | |
In vivo | Rat | 1 mg/kg CeO2 for 6 d | Oxidative stress, inflammation, DNA damage | [111] | |
Epigenetic | In vitro | 16HBE | 0, 5, 10, 20, 40, and 80 μg/mL Nd2O3 for 6, 12, 24, 48, and 72 h | circ_009773 regulates DNA damage | [103] |
In vitro | 16HBE | 10 μg/mL NPs-Nd2O3 for 48 h | Promotes NF-κ B activation and promotes cellular inflammation by negatively regulating adiponectin receptor 1 expression | [104] | |
In vitro | Human fibroblast cell | 0.05 to 1.6 mg/mL of Tb-MOF for 48 h | Altered gene methylation, induced genetic damage | [106] | |
Signaling pathways | In vivo | Rat | 0 and 1 mg/kg CeO2 nanoparticles for 6 d | Activation of oxidative stress and Nrf2 signaling pathways | [111] |
In vivo | Rat | 0, 1.56, 3.125, 6.25, 12.5, 25, 50, and 100 µg/mL Nd2O3 for 24 h | Activating the NF-κ B and caspase-3 signaling pathways, promoting the synthesis and release of inflammatory chemokine | [112] | |
In vivo | C57BL/6J mice | Long-term exposure to cerium nanoparticles | Activation of the NF-κ B signaling pathway can increase the cytotoxic activity of immune cells | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yang, Y.; Wang, D.; Huang, L. Toxic Effects of Rare Earth Elements on Human Health: A Review. Toxics 2024, 12, 317. https://doi.org/10.3390/toxics12050317
Wang W, Yang Y, Wang D, Huang L. Toxic Effects of Rare Earth Elements on Human Health: A Review. Toxics. 2024; 12(5):317. https://doi.org/10.3390/toxics12050317
Chicago/Turabian StyleWang, Wenyu, Yanfang Yang, Donglei Wang, and Lihua Huang. 2024. "Toxic Effects of Rare Earth Elements on Human Health: A Review" Toxics 12, no. 5: 317. https://doi.org/10.3390/toxics12050317
APA StyleWang, W., Yang, Y., Wang, D., & Huang, L. (2024). Toxic Effects of Rare Earth Elements on Human Health: A Review. Toxics, 12(5), 317. https://doi.org/10.3390/toxics12050317