Adapted Sequential Extraction Protocol to Study Mercury Speciation in Gold Mining Tailings: Implications for Environmental Contamination in the Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Sampling and Sample Preparation
2.3. Mineralogy and Chemical Composition
2.4. Hg Quantification
2.5. Hg Sequential Extraction Procedure
2.6. Major Elements Determination
2.7. Software and Data Analysis
3. Results and Discussion
3.1. Geochemical Characterization of the Tailing
3.2. Changes in Mineralogy during the Sequential Extraction Procedure (SEP)
3.3. Changes in Chemistry during the SEP
- F1: exchangeable mercury—weakly bound to the sample matrix and, therefore, more bioavailable. Extraction accompanies the dissolution of highly soluble minerals and elements known for cation exchange.
- F2: oxidizable mercury—poorly soluble and extracted through the oxidation of bonds with HNO3. Extraction accompanies the dissolution of Fe, Al, and Mn oxyhydroxides.
- F3: mercury bound to Fe oxides—poorly soluble and primarily associated with Fe oxides. Extraction accompanies the dissolution of Fe, Al, and Mn oxyhydroxides, as well as the partial dissolution of magnetite and hematite.
- F4: strongly bound mercury—forming highly stable bonds to minerals in the sample matrix. Possibly strongly bound to zircon, ilmenite, hematite, and magnetite or included in the internal structure of minerals.
3.4. Hg Speciation
3.5. Environmental Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siqueira-Gay, J.; Sánchez, L.E. The Outbreak of Illegal Gold Mining in the Brazilian Amazon Boosts Deforestation. Reg. Environ. Chang. 2021, 21, 28. [Google Scholar] [CrossRef]
- Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Lopes-Araújo, A.; Santos-Sacramento, L.; Yuki Takeda, P.; de Matos Macchi, B.; do Nascimento, J.L.M.; Maia, C.S.F.; Lima, R.R.; Arrifano, G.P. Mercury: What Can We Learn from the Amazon? Environ. Int. 2021, 146, 106223. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, L.D. Global Mercury Emissions from Gold and Silver Mining. Water Air Soil Pollut. 1997, 97, 209–221. [Google Scholar] [CrossRef]
- UN Environment. Global Mercury Assessment 2018; UN Environment Programme Chemicals and Health Branch: Geneva, Switzerland, 2019. [Google Scholar]
- Gerson, J.R.; Szponar, N.; Zambrano, A.A.; Bergquist, B.; Broadbent, E.; Driscoll, C.T.; Erkenswick, G.; Evers, D.C.; Fernandez, L.E.; Hsu-Kim, H.; et al. Amazon Forests Capture High Levels of Atmospheric Mercury Pollution from Artisanal Gold Mining. Nat. Commun. 2022, 13, 559. [Google Scholar] [CrossRef] [PubMed]
- de Lacerda, L.D.; Pfeiffer, W.C.; Ott, A.T.; Da Silveira, E.G. Mercury Contamination in the Madeira River, Amazon-Hg Inputs to the Environment. Biotropica 1989, 21, 91. [Google Scholar] [CrossRef]
- Pfeiffer, W.C.; Lacerda, L.D.; Salomons, W.; Malm, O. Environmental Fate of Mercury from Gold Mining in the Brazilian Amazon. Environ. Rev. 1993, 1, 26–37. [Google Scholar] [CrossRef]
- Pestana, I.A.; de Rezende, C.E.; Almeida, R.; de Lacerda, L.D.; Bastos, W.R. Let’s Talk about Mercury Contamination in the Amazon (Again): The Case of the Floating Gold Miners’ Village on the Madeira River. Extr. Ind. Soc. 2022, 11, 101122. [Google Scholar] [CrossRef]
- Veiga, M.M.; Hinton, J.J. Abandoned Artisanal Gold Mines in the Brazilian Amazon: A Legacy of Mercury Pollution. Nat. Resour. Forum 2002, 26, 15–26. [Google Scholar] [CrossRef]
- Beckers, F.; Rinklebe, J. Cycling of Mercury in the Environment: Sources, Fate, and Human Health Implications: A Review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Hu, X.F.; Lowe, M.; Chan, H.M. Mercury Exposure, Cardiovascular Disease, and Mortality: A Systematic Review and Dose-Response Meta-Analysis. Environ. Res. 2021, 193, 110538. [Google Scholar] [CrossRef]
- Zhang, C.; Gan, C.; Ding, L.; Xiong, M.; Zhang, A.; Li, P. Maternal Inorganic Mercury Exposure and Renal Effects in the Wanshan Mercury Mining Area, Southwest China. Ecotoxicol. Environ. Saf. 2020, 189, 109987. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Morel, F.M.M.; Kraepiel, A.M.L.; Amyot, M. The Chemical Cycle and Bioaccumulation of Mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef]
- Covelli, S.; Petranich, E.; Pavoni, E.; Signore, S. Can Sediments Contaminated by Mining Be a Source of Mercury in the Coastal Environment Due to Dredging? Evidence from Thermo-Desorption and Chemical Speciation. Bull. Environ. Contam. Toxicol. 2021, 106, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bland, G.D.; Gu, Y.; Ziaei, H.; Xiao, X.; Deonarine, A.; Reible, D.; Bireta, P.; Hoelen, T.P.; Lowry, G.V. Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential. Environ. Sci. Technol. 2021, 55, 12393–12402. [Google Scholar] [CrossRef]
- Pfeiffer, W.C.; Malm, O.; Souza, C.M.M.; Drude De Lacerda, L.; Silveira, E.G.; Bastos, W.R. Mercury in the Madeira River Ecosystem, Rondônia, Brazil. For. Ecol. Manag. 1991, 38, 239–245. [Google Scholar] [CrossRef]
- Bastos, W.R.; Gomes, J.P.O.; Oliveira, R.C.; Almeida, R.; Nascimento, E.L.; Bernardi, J.V.E.; de Lacerda, L.D.; da Silveira, E.G.; Pfeiffer, W.C. Mercury in the Environment and Riverside Population in the Madeira River Basin, Amazon, Brazil. Sci. Total Environ. 2006, 368, 344–351. [Google Scholar] [CrossRef]
- Pestana, I.A.; Almeida, M.G.; Bastos, W.R.; Souza, C.M.M. Total Hg and Methylmercury Dynamics in a River-Floodplain System in the Western Amazon: Influence of Seasonality, Organic Matter and Physical and Chemical Parameters. Sci. Total Environ. 2018, 656, 388–399. [Google Scholar] [CrossRef]
- Bastos, W.R.; Dórea, J.G.; Lacerda, L.D.; Almeida, R.; Costa-Junior, W.A.; Baía, C.C.; Sousa-Filho, I.F.; Sousa, E.A.; Oliveira, I.A.S.; Cabral, C.S.; et al. Dynamics of Hg and MeHg in the Madeira River Basin (Western Amazon) before and after Impoundment of a Run-of-River Hydroelectric Dam. Environ. Res. 2020, 189, 109896. [Google Scholar] [CrossRef] [PubMed]
- Lechler, P.J.; Miller, J.R.; Lacerda, L.D.; Vinson, D.; Bonzongo, J.-C.; Lyons, W.B.; Warwick, J.J. Elevated Mercury Concentrations in Soils, Sediments, Water, and Fish of the Madeira River Basin, Brazilian Amazon: A Function of Natural Enrichments? Sci. Total Environ. 2000, 260, 87–96. [Google Scholar] [CrossRef]
- Skyllberg, U.; Persson, A.; Tjerngren, I.; Kronberg, R.-M.; Drott, A.; Meili, M.; Björn, E. Chemical Speciation of Mercury, Sulfur and Iron in a Dystrophic Boreal Lake Sediment, as Controlled by the Formation of Mackinawite and Framboidal Pyrite. Geochim. Cosmochim. Acta 2021, 294, 106–125. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.G.; Rinklebe, J. Mercury Speciation, Transformation, and Transportation in Soils, Atmospheric Flux, and Implications for Risk Management: A Critical Review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef] [PubMed]
- Eckley, C.S.; Gilmour, C.C.; Janssen, S.; Luxton, T.P.; Randall, P.M.; Whalin, L.; Austin, C. The Assessment and Remediation of Mercury Contaminated Sites: A Review of Current Approaches. Sci. Total Environ. 2020, 707, 136031. [Google Scholar] [CrossRef]
- Araújo, P.R.M.; Biondi, C.M.; do Nascimento, C.W.A.; da Silva, F.B.V.; Alvarez, A.M. Bioavailability and Sequential Extraction of Mercury in Soils and Organisms of a Mangrove Contaminated by a Chlor-Alkali Plant. Ecotoxicol. Environ. Saf. 2019, 183, 109469. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Mosquera, H.; Marrugo-Negrete, J.; Díez, S.; Morales-Mira, G.; Montoya-Jaramillo, L.J.; Jonathan, M.P. Distribution of Chemical Forms of Mercury in Sediments from Abandoned Ponds Created during Former Gold Mining Operations in Colombia. Chemosphere 2020, 258, 127319. [Google Scholar] [CrossRef]
- Bloom, N.S.; Preus, E.; Katon, J.; Hiltner, M. Selective Extractions to Assess the Biogeochemically Relevant Fractionation of Inorganic Mercury in Sediments and Soils. Anal. Chim. Acta 2003, 479, 233–248. [Google Scholar] [CrossRef]
- Reis, A.T.; Davidson, C.M.; Vale, C.; Pereira, E. Overview and Challenges of Mercury Fractionation and Speciation in Soils. TrAC-Trends Anal. Chem. 2016, 82, 109–117. [Google Scholar] [CrossRef]
- Vasques, I.C.F.; Egreja Filho, F.B.; Morais, E.G.; Lima, F.R.D.; Oliveira, J.R.; Pereira, P.; Guilherme, L.R.G.; Marques, J.J. Mercury Fractionation in Tropical Soils: A Critical Point of View. Chemosphere 2020, 257, 127114. [Google Scholar] [CrossRef]
- Staun, C.; Vaughan, J.; Lopez-Anton, M.A.; Rumayor, M.; Martínez-Tarazona, M.R. Geochemical Speciation of Mercury in Bauxite. Appl. Geochem. 2018, 93, 30–35. [Google Scholar] [CrossRef]
- Vauchel, P.; Santini, W.; Guyot, J.L.; Moquet, J.S.; Martinez, J.M.; Espinoza, J.C.; Baby, P.; Fuertes, O.; Noriega, L.; Puita, O.; et al. A Reassessment of the Suspended Sediment Load in the Madeira River Basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, Based on 10 Years of Data from the HYBAM Monitoring Programme. J. Hydrol. 2017, 553, 35–48. [Google Scholar] [CrossRef]
- Leite, N.K.; Krusche, A.V.; Ballester, M.V.R.; Victoria, R.L.; Richey, J.E.; Gomes, B.M. Intra and Interannual Variability in the Madeira River Water Chemistry and Sediment Load. Biogeochemistry 2011, 105, 37–51. [Google Scholar] [CrossRef]
- Ayes Rivera, I.; Armijos Cardenas, E.; Espinoza-Villar, R.; Espinoza, J.; Molina-Carpio, J.; Ayala, J.; Gutierrez-Cori, O.; Martinez, J.-M.; Filizola, N. Decline of Fine Suspended Sediments in the Madeira River Basin (2003–2017). Water 2019, 11, 514. [Google Scholar] [CrossRef]
- Hall, G.E.M.; Pelchat, P. The Design and Application of Sequential Extractions for Mercury, Part 2. Resorption of Mercury onto the Sample during Leaching. GEEA 2005, 5, 115–121. [Google Scholar] [CrossRef]
- Pinedo-Hernández, J.; Marrugo-Negrete, J.; Díez, S. Speciation and Bioavailability of Mercury in Sediments Impacted by Gold Mining in Colombia. Chemosphere 2015, 119, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Tonhá, M.S.; Garnier, J.; Araújo, D.F.; Cunha, B.C.A.; Machado, W.; Dantas, E.; Araújo, R.; Kutter, V.T.; Bonnet, M.-P.; Seyler, P. Behavior of Metallurgical Zinc Contamination in Coastal Environments: A Survey of Zn from Electroplating Wastes and Partitioning in Sediments. Sci. Total Environ. 2020, 743, 140610. [Google Scholar] [CrossRef] [PubMed]
- Lauthartte, L.C.; Gomes, D.; Mussy, M.; Holanda, Í.; Almeida, R.; Bastos, W. Potencial exposição ao mercúrio atmosférico no ambiente ocupacional de comércios de ouro de Porto Velho, Rondônia. Quim. Nova 2018, 2018. [Google Scholar] [CrossRef]
- Odumo, B.O.; Carbonell, G.; Angeyo, H.K.; Patel, J.P.; Torrijos, M.; Rodríguez Martín, J.A. Impact of Gold Mining Associated with Mercury Contamination in Soil, Biota Sediments and Tailings in Kenya. Environ. Sci Pollut. Res. 2014, 21, 12426–12435. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Lima, L.R.P.; Bernardez, L.A.; Barbosa, L.A.D. Characterization and Treatment of Artisanal Gold Mine Tailings. J. Hazard. Mater. 2008, 150, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Tibane, L.V.; Mamba, D. Environmental Risk Assessment, Principal Component Analysis, Tracking the Source of Toxic Heavy Metals of Solid Gold Mine Waste Tailings, South Africa. Environ. Forensics 2023, 1–17. [Google Scholar] [CrossRef]
- Opiso, E.M.; Aseneiro, J.P.J.; Banda, M.H.T.; Tabelin, C.B. Solid-Phase Partitioning of Mercury in Artisanal Gold Mine Tailings from Selected Key Areas in Mindanao, Philippines, and Its Implications for Mercury Detoxification. Waste Manag. Res. 2018, 36, 269–276. [Google Scholar] [CrossRef]
- Brown, G.E.; Calas, G. Environmental Mineralogy—Understanding Element Behavior in Ecosystems. Comptes Rendus Geosci. 2011, 343, 90–112. [Google Scholar] [CrossRef]
- Smith, K.S. Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits. In Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 6A, p. 25. ISBN 978-1-62949-564-4. [Google Scholar]
- Milonjić, S.K.; Kopečni, M.M.; Ilić, Z.E. The Point of Zero Charge and Adsorption Properties of Natural Magnetite. J. Radioanal. Chem. 1983, 78, 15–24. [Google Scholar] [CrossRef]
- Guyot, J.L.; Jouanneau, J.M.; Soares, L.; Boaventura, G.R.; Maillet, N.; Lagane, C. Clay Mineral Composition of River Sediments in the Amazon Basin. CATENA 2007, 71, 340–356. [Google Scholar] [CrossRef]
- Debure, M.; Grangeon, S.; Robinet, J.-C.; Madé, B.; Fernández, A.M.; Lerouge, C. Influence of Soil Redox State on Mercury Sorption and Reduction Capacity. Sci. Total Environ. 2020, 707, 136069. [Google Scholar] [CrossRef] [PubMed]
- Biester, H.; Müller, G.; Schöler, H.F. Binding and Mobility of Mercury in Soils Contaminated by Emissions from Chlor-Alkali Plants. Sci. Total Environ. 2002, 284, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.T.; Coelho, J.P.; Rucandio, I.; Davidson, C.M.; Duarte, A.C.; Pereira, E. Thermo-Desorption: A Valid Tool for Mercury Speciation in Soils and Sediments? Geoderma 2015, 237–238, 98–104. [Google Scholar] [CrossRef]
- Gilli, R.; Karlen, C.; Weber, M.; Rüegg, J.; Barmettler, K.; Biester, H.; Boivin, P.; Kretzschmar, R. Speciation and Mobility of Mercury in Soils Contaminated by Legacy Emissions from a Chemical Factory in the Rhône Valley in Canton of Valais, Switzerland. Soil Syst. 2018, 2, 44. [Google Scholar] [CrossRef]
- de Magalhães, M.E.A.; Tubino, M. A Possible Path for Mercury in Biological Systems: The Oxidation of Metallic Mercury by Molecular Oxygen in Aqueous Solutions. Sci. Total Environ. 1995, 170, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Goix, S.; Maurice, L.; Laffont, L.; Rinaldo, R.; Lagane, C.; Chmeleff, J.; Menges, J.; Heimbürger, L.-E.; Maury-Brachet, R.; Sonke, J.E. Quantifying the Impacts of Artisanal Gold Mining on a Tropical River System Using Mercury Isotopes. Chemosphere 2019, 219, 684–694. [Google Scholar] [CrossRef]
- Crowther, E.R.; Demers, J.D.; Blum, J.D.; Brooks, S.C.; Johnson, M.W. Use of Sequential Extraction and Mercury Stable Isotope Analysis to Assess Remobilization of Sediment-Bound Legacy Mercury. Environ. Sci. Process. Impacts 2021, 23, 756–775. [Google Scholar] [CrossRef]
- Huang, J.H.; Shetaya, W.H.; Osterwalder, S. Determination of (Bio)-Available Mercury in Soils: A Review. Environ. Pollut. 2020, 263, 114323. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, M.; Bamba, D.; Yao, N.A.; Zoro, E.G.; El Rhazi, M. Some Aspects of Speciation and Reactivity of Mercury in Various Matrices. Comptes Rendus Chim. 2016, 19, 832–840. [Google Scholar] [CrossRef]
- Liang, L.; Xu, X.; Han, J.; Xu, Z.; Wu, P.; Guo, J.; Qiu, G. Characteristics, Speciation, and Bioavailability of Mercury and Methylmercury Impacted by an Abandoned Coal Gangue in Southwestern China. Environ. Sci. Pollut. Res. 2019, 26, 37001–37011. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Villamizar, E.A.; Adeney, J.M.; Piedade, M.T.F.; Junk, W.J. New Insights on the Classification of Major Amazonian River Water Types. Sustain. Water Resour. Manag. 2020, 6, 83. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Novo, E.M.L.M.; Barbosa, C.C.F.; Gastil, M. LBA-ECO LC-07 JERS-1 SAR Wetlands Masks and Land Cover, Amazon Basin: 1995–1996; ORNL DAAC: Oak Ridge, TN, USA, 2012.
- Huguet, L.; Castelle, S.; Schäfer, J.; Blanc, G.; Maury-Brachet, R.; Reynouard, C.; Jorand, F. Mercury Methylation Rates of Biofilm and Plankton Microorganisms from a Hydroelectric Reservoir in French Guiana. Sci. Total Environ. 2010, 408, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, B.R.; Melack, J.M.; Dunne, T.; Barthem, R.B.; Goulding, M.; Paiva, R.C.D.; Sorribas, M.V.; Silva, U.L.; Weisser, S. The Potential Impact of New Andean Dams on Amazon Fluvial Ecosystems. PLoS ONE 2017, 12, e0182254. [Google Scholar] [CrossRef] [PubMed]
- Pestana, I.A.; Azevedo, L.S.; Bastos, W.R.; Magalhães de Souza, C.M. The Impact of Hydroelectric Dams on Mercury Dynamics in South America: A Review. Chemosphere 2019, 219, 546–556. [Google Scholar] [CrossRef]
- Muresan, B.; Metzger, É.; Jézéquel, D.; Cossa, D. A Multiscale Study of Mercury Transformations and Dynamics at the Chemocline of the Petit-Saut Tropical Reservoir (French Guiana). Sci. Total Environ. 2018, 630, 1401–1412. [Google Scholar] [CrossRef]
- Maia, P.D.; Maurice, L.; Tessier, E.; Amouroux, D.; Cossa, D.; Moreira-Turcq, P.; Etcheber, H. Role of the Floodplain Lakes in the Methylmercury Distribution and Exchanges with the Amazon River, Brazil. J. Environ. Sci. 2018, 68, 24–40. [Google Scholar] [CrossRef]
- Maia, P.D.; Maurice, L.; Tessier, E.; Amouroux, D.; Cossa, D.; Pérez, M.; Moreira-Turcq, P.; Rhéault, I. Mercury Distribution and Exchanges between the Amazon River and Connected Floodplain Lakes. Sci. Total Environ. 2009, 407, 6073–6084. [Google Scholar] [CrossRef]
Fraction Number | Extracting Procedure | Fraction Name |
---|---|---|
1 | Weigh 0.5 g of dry sediment into a 40 mL centrifuge tube and add 6.25 mL of 0.1 mol·L−1 HAc + 0.01 mol·L−1 HCl. Leave agitating for 18 h ± 4 h. Centrifuge at 3000 rpm for 20 min. Pour off the supernatant solution (aliquot 1) into another tube. Add 0.25 mL of 0.2 mol·L−1 BrCl to aliquot 1. Rinse the residue (add another 6.25 mL of the same extracting solution and shake vigorously). The rinsed aliquot should be added to the first. Analyze the solution via CVAAS immediately after completing the extraction procedure. | Exchangeable mercury—soluble in 0.1 mol·L−1 HAc + 0.01 mol·L−1 HCl |
2 | In a fume hood, add 6.25 mL of 6 mol·L−1 HNO3 to the residue from step 1. Leave agitating for 18 h ± 4 h. Centrifuge at 3000 rpm for 20 min. Pour off the supernatant solution (aliquot 1) into another tube. Add 0.25 mL of 0.2 mol·L−1 BrCl to aliquot 1. Rinse the residue (add another 6.25 mL of the same extracting solution and shake vigorously). The rinsed aliquot should be added to the first. Analyze the solution via CVAAS immediately after completing the extraction procedure. | Oxidizable mercury—soluble in 6 mol·L−1 HNO3 |
3 | In a fume hood, add 6.25 mL of 6 mol·L−1 HCl to the residue from step 2. Leave agitating for 18 h ± 4 h. Centrifuge at 3000 rpm for 20 min. Pour off the supernatant solution (aliquot 1) into another tube. Add 0.25 mL of 0.2 mol·L−1 BrCl to aliquot 1. Rinse the residue (add another 6.25 mL of the same extracting solution and shake vigorously). The rinsed aliquot should be added to the first. Analyze the solution via CVAAS immediately after completing the extraction procedure. | Mercury-bound Fe oxides—soluble in 6 mol·L−1 HCl |
4 | Rinse the residue from step 3 with ultrapure water: add approximately 10 mL of water to the tube with the residue, shake manually, centrifuge at 3000 rpm for 10 min, and discard the supernatant. Repeat this step 3 times and, finally, dry the residue in an oven (40 °C). Analyze the dried solid residue by TDAAS. | Residual or strongly bound mercury |
THg (mg·kg−1) | |
---|---|
Background for Madeira River sediments [17] | 0.01 |
Odumo et al., 2014 [38] | 8.90 ± 2.56 (SD, n = 41) |
de Andrade Lima et al., 2008 [39] | 6.55 ± 3.80 (SD, n = 7) |
Tibane and Mamba, 2023 [40] | 0.63 ± 0.99 (SD, n = 10) |
Opiso et al., 2018 [41] | 0.3 to 25.02 |
This work | 103 ± 16 (CI95%, n = 6) |
Hematite | Ilmenite | Magnetite | |
---|---|---|---|
Ratio d2.70/d3.31 | Ratio d2.76/d3.31 | Ratio d2.97/d3.31 | |
Before SEP | 0.02 | 0.01 | - a |
After F1 | 0.07 | 0.05 | 0.02 |
After F2 | 0.07 | 0.08 | 0.04 |
After F3 | 0.05 | 0.12 | 0.03 |
Replicates | F1 | F2 | F3 | F4 | ΣFn | Recovery | ||||
---|---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | F1/THg | mg·kg−1 | F2/THg | mg·kg−1 | F3/THg | mg·kg−1 | F4/THg | mg·kg−1 | ||
R1 | 26.66 ± 0.04 | 26% | 34.0 ± 0.1 | 33% | 34.2 ± 0.3 | 33% | 0.15 ± 0.02 | 0.1% | 95.0 ± 0.3 | 92% |
R2 | 28.76 ± 0.04 | 28% | 33.4 ± 0.1 | 32% | 42.5 ± 0.4 | 41% | 0.132 ± 0.007 | 0.1% | 104.8 ± 0.4 | 101% |
R3 | 27.52 ± 0.04 | 27% | 31.8 ± 0.1 | 31% | 37.9 ± 0.3 | 37% | 0.12 ± 0.01 | 0.1% | 97.4 ± 0.4 | 94% |
R4 | 28.03 ± 0.04 | 27% | 30.1 ± 0.1 | 29% | 36.2 ± 0.3 | 35% | 0.13 ± 0.02 | 0.1% | 94.5 ± 0.3 | 91% |
R5 | 26.88 ± 0.04 | 26% | 31.3 ± 0.1 | 30% | 33.6 ± 0.3 | 32% | 0.10 ± 0.02 | 0.1% | 91.8 ± 0.3 | 89% |
Average | 27.6 | 27% | 32.1 | 31% | 36.9 | 36% | 0.13 | 0.1% | 96.7 | 94% |
RSD | 3% | 3% | 5% | 5% | 10% | 10% | 14% | 14% | 5% | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, J.P.R.; Garnier, J.; Quintarelli, J.M.; de Sousa Tonhá, M.; Roig, H.L.; Seyler, P.; de Souza, J.R. Adapted Sequential Extraction Protocol to Study Mercury Speciation in Gold Mining Tailings: Implications for Environmental Contamination in the Amazon. Toxics 2024, 12, 326. https://doi.org/10.3390/toxics12050326
de Souza JPR, Garnier J, Quintarelli JM, de Sousa Tonhá M, Roig HL, Seyler P, de Souza JR. Adapted Sequential Extraction Protocol to Study Mercury Speciation in Gold Mining Tailings: Implications for Environmental Contamination in the Amazon. Toxics. 2024; 12(5):326. https://doi.org/10.3390/toxics12050326
Chicago/Turabian Stylede Souza, João Pedro Rudrigues, Jeremie Garnier, Julia Mançano Quintarelli, Myller de Sousa Tonhá, Henrique Llacer Roig, Patrick Seyler, and Jurandir Rodrigues de Souza. 2024. "Adapted Sequential Extraction Protocol to Study Mercury Speciation in Gold Mining Tailings: Implications for Environmental Contamination in the Amazon" Toxics 12, no. 5: 326. https://doi.org/10.3390/toxics12050326
APA Stylede Souza, J. P. R., Garnier, J., Quintarelli, J. M., de Sousa Tonhá, M., Roig, H. L., Seyler, P., & de Souza, J. R. (2024). Adapted Sequential Extraction Protocol to Study Mercury Speciation in Gold Mining Tailings: Implications for Environmental Contamination in the Amazon. Toxics, 12(5), 326. https://doi.org/10.3390/toxics12050326