Spatial Variation in Mercury Accumulation in Bottlenose Dolphins (Tursiops spp.) in Southeastern U.S.A.
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Spatial Variations
3.2. Influence of Sex and Age
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wells, R.S.; Rhinehart, H.L.; Hansen, L.J.; Sweeney, J.C.; Townsend, F.I.; Stone, R.; Casper, D.R.; Scott, M.D.; Hohn, A.A.; Rowles, T.K. Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth 2004, 1, 246–254. [Google Scholar] [CrossRef]
- Bossart, G.D. Marine mammals as sentinel species for oceans and human health. Oceanography 2006, 19, 134–137. [Google Scholar] [CrossRef]
- Wilson, R.M.; Kucklick, J.R.; Balmer, B.C.; Wells, R.S.; Chanton, J.P.; Nowacek, D.P. Spatial distribution of bottlenose dolphins (Tursiops truncatus) inferred from stable isotopes and priority organic pollutants. Sci. Total Environ. 2012, 425, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Kucklick, J.; Schwacke, L.; Wells, R.; Hohn, A.; Guichard, A.; Yordy, J.; Hansen, L.; Zolman, E.; Wilson, R.; Litz, J.; et al. Bottlenose dolphins as indicators of persistent organic pollutants in the Western North Atlantic Ocean and Northern Gulf of Mexico. Environ. Sci. Technol. 2011, 45, 4270–4277. [Google Scholar] [CrossRef]
- Aguilar, A.; Borrell, A.; Pastor, T. Biological factors affecting variability of persistent pollutant levels in cetaceans. J. Cetacean Res. Manag. 1999, 1, 83–116. [Google Scholar] [CrossRef]
- Aguilar, A.; Borrell, A.; Reijnders, P.J.H. Geographical and temporal variation in levels of organochlorine contaminants in marine mammals. Mar. Environ. Res. 2002, 53, 425–452. [Google Scholar] [CrossRef]
- Bryan, C.E.; Christopher, S.J.; Balmer, B.C.; Wells, R.S. Establishing baseline levels of trace elements in blood and skin of bottlenose dolphins in Sarasota Bay, Florida: Implications for non-invasive monitoring. Sci. Total Environ. 2007, 388, 325–342. [Google Scholar] [CrossRef]
- Costa, A.P.B.; McFee, W.; Wilcox, L.A.; Archer, F.I.; Rosel, P.E. The common bottlenose dolphin (Tursiops truncatus) ecotypes of the western North Atlantic revisited: An integrative taxonomic investigation supports the presence of distinct species. Zool. J. Linn. Soc. 2022, 196, 1608–1636. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Mercury Study Report to Congress; EPA-452/R-97; Office of Research and Development: Washington, DC, USA, 1997.
- Morel, F.; Kraepiel, A.M.L.; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef]
- Fitzgerald, W.F.; Lamborg, C.H.; Hammerschmidt, C.R. Marine biogeochemical cycling of mercury. Chem. Rev. 2007, 107, 641–662. [Google Scholar] [CrossRef]
- Gworek, B.; Bemowska-Kalabun, O.; Kijeńska, M.; Wrzosek-Jakubowska, J. Mercury in marine and oceanic waters—A review. Water Air Soil Pollut. 2016, 227, 371. [Google Scholar] [CrossRef]
- Atwell, L.; Hobson, K.A.; Welch, H.E. Biomagnification and bioaccumulation of mercury in an arctic marine food web: Insights from stable nitrogen isotope analysis. Can. J. Fish. Aquat. Sci. 1998, 55, 1114–1121. [Google Scholar] [CrossRef]
- Das, K.; Debacker, V.; Pillet, S.; Bouquegneau, J.M. Heavy metals in marine mammals. In Toxicology of Marine Mammals; Vos, J.G., Bossart, G.D., Fournier, M., O’Shea, T.J., Eds.; Taylor and Francis, Milton Park: Oxfordshire, UK, 2003; pp. 135–167+656. [Google Scholar]
- Dehn, L.A.; Follmann, E.H.; Thomas, D.L.; Sheffield, G.G.; Rosa, C.; Duffy, L.K.; O’Hara, T.M. Trophic relationships in an Arctic food web and implications for trace metal transfer. Sci. Total Environnent. 2006, 362, 103–123. [Google Scholar] [CrossRef]
- Nigro, M.; Campana, A.; Lanzillotta, E.; Ferrara, R. Mercury exposure and elimination rates in captive bottlenose dolphins. Mar. Pollut. Bull. 2002, 44, 1071–1075. [Google Scholar] [CrossRef]
- Wentz, D.A.; Brigham, M.E.; Chasar, L.C.; Lutz, M.A.; Krabbenhoft, D.P. Mercury in the nation’s streams-levels, trends and implications: U.S. Geol. Surv. Circ. 2014, 1395, 90. [Google Scholar]
- Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293. [Google Scholar] [CrossRef]
- Reif, J.S.; Schaefer, A.M.; Bossart, G.D. Atlantic bottlenose dolphins (Tursiops truncatus) as a sentinel for exposure to mercury in humans: Closing the loop. Vet. Sci. 2015, 2, 407–422. [Google Scholar] [CrossRef]
- Reif, J.S.; Schaefer, A.M.; Bossart, G.D.; Fair, P.A. Health and environmental risk assessment project for bottlenose dolphins Tursiops truncatus from the southeastern USA. II. Environmental aspects. Dis. Aquat. Org. 2017, 125, 155–166. [Google Scholar] [CrossRef]
- Bakir, F.; Rustam, H.; Tikriti, S.; Al-Damluji, S.F.; Shihristani, H. Clinical and epidemiological aspects of methylmercury poisoning. Postgrad. Med. J. 1980, 56, 1–10. [Google Scholar] [CrossRef]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.M.; Stavros, H.W.; Bossart, G.D.; Fair, P.A.; Goldstein, J.D.; Reif, J.S. Associations between mercury and hepatic, renal, endocrine, and hematological parameters in Atlantic bottlenose dolphins (Tursiops truncatus) along the eastern coast of Florida and South Carolina. Arch. Environ. Contam. Toxicol. 2011, 61, 688–695. [Google Scholar] [CrossRef]
- Schaefer, A.M.; Jensen, E.L.; Bossart, G.D.; Reif, J.S. Hair mercury concentrations and fish consumption patterns in Florida residents. Int. J. Environ. Res. Public Health 2014, 11, 6709–6726. [Google Scholar] [CrossRef] [PubMed]
- Balmer, B.; Ylitalo, G.; Watwood, S.; Quigley, B.; Bolton, J.; Mullin, K.; Rosel, P.; Rowles, T.; Speakman, T.; Wilcox, L.; et al. Comparison of persistent organic pollutants (POPs) between small cetaceans in coastal and estuarine waters of the northern Gulf of Mexico. Mar. Pollut. Bull. 2019, 145, 239–247. [Google Scholar] [CrossRef]
- Lindberg, S.E.; Andren, A.W.; Harris, R.C. Geochemistry of mercury in the estuarine environment. Estuar. Res. 1975, 1, 64–108. [Google Scholar]
- Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environ. Sci. Technol. 2012, 46, 1371–1378. [Google Scholar] [CrossRef]
- Damseaux, F.; Kiszka, J.J.; Heithaus, M.R.; Scholl, G.; Eppe, G.; Thomé, J.; Lewis, J.; Hao, W.; Fontaine, M.C.; Das, K. Spatial variation in the accumulation of POPs and mercury in bottlenose dolphins of the Lower Florida Keys and the coastal Everglades (South Florida). Environ. Pollut. 2017, 220, 577–587. [Google Scholar] [CrossRef]
- Stavros, H.W.; Bossart, G.D.; Hulsey, T.C.; Fair, P.A. Trace element concentrations in skin of free-ranging bottlenose dolphins (Tursiops truncatus) from the southeast Atlantic coast. Sci. Total Environ. 2007, 388, 300–315. [Google Scholar] [CrossRef]
- Woshner, V.; Knott, K.; Wells, R.; Willetto, C.; Swor, R.; O’Hara, T. Mercury and selenium in blood and epidermis of bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, FL: Interaction and relevance to life history and hematologic parameters. EcoHealth 2008, 5, 360–370. [Google Scholar] [CrossRef]
- Wells, R.S.; Tornero, V.; Borrell, A.; Aguilar, A.; Rowles, T.K.; Rhinehart, H.L.; Hofmann, S.; Jarman, W.M.; Hohn, A.A.; Sweeney, J.C. Integrating life-history and reproductive success data to examine potential relationships with organochlorine compounds for bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. Sci. Total Environ. 2005, 349, 106–119. [Google Scholar] [CrossRef]
- Yordy, J.E.; Wells, R.S.; Balmer, B.C.; Schwacke, L.H.; Rowles, T.K.; Kucklick, J.R. Life history as a source of variation for persistent organic pollutant (POP) patterns in a community of common bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay, FL. Sci. Total Environ. 2010, 408, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Wagemann, R.; Trebacz, E.; Boila, G.; Lockhart, W.L. Methylmercury and total mercury in tissues of arctic marine mammals. Sci. Total Environ. 1998, 218, 19–31. [Google Scholar] [CrossRef]
- Aubail, A.; Méndez-Fernandez, P.; Bustamante, P.; Churlaud, C.; Ferreira, M.; Vingada, J.V.; Caurant, F. Use of skin and blubber tissues of small cetaceans to assess the trace element content of internal organs. Mar. Pollut. Bull. 2013, 76, 158–169. [Google Scholar] [CrossRef]
- Schwacke, L.H.; Twiner, M.J.; De Guise, S.; Balmer, B.C.; Wells, R.S.; Townsend, F.I.; Rotstein, D.C.; Varela, R.A.; Hansen, L.J.; Zolman, E.S.; et al. Eosinophilia and biotoxin exposure in bottlenose dolphins (Tursiops truncatus) from a coastal area impacted by repeated mortality events. Environ. Res. 2010, 111, 548–555. [Google Scholar] [CrossRef]
- Sinclair, C.; Sinclair, J.; Zolman, E.; Martinez, A.; Balmer, B.; Barry, K. Remote Biopsy Sampling Field Procedures for Cetaceans Used during the Natural Resource Damage Assessment of the MSC252 Deepwater Horizon Oil Spill; NMFS-SEFSC-670; NOAA Technical Memorandum: Springfield, VA, USA, 2015.
- Rosel, P.E. PCR-Based sex determination in Odontocete cetaceans. Conserv. Genet. 2003, 4, 647–649. [Google Scholar] [CrossRef]
- Hohn, A.A.; Scott, M.D.; Wells, R.S.; Sweeney, J.C.; Irvine, A.B. Growth layers in teeth from known age, free-ranging bottlenose dolphins. Mar. Mammal Sci. 1989, 5, 315–342. [Google Scholar] [CrossRef]
- Christopher, S.J.; Long, S.E.; Rearick, M.S.; Fassett, J.D. Development of isotope dilution cold vapor inductively coupled plasma mass spectrometry and its application to the certification of mercury in NIST Standard Reference Materials. Anal. Chem. 2001, 73, 2190–2199. [Google Scholar] [CrossRef]
- Christopher, S.J.; Pol, S.S.V.; Pugh, R.S.; Day, R.D.; Becker, P.R. Determination of mercury in the eggs of common murres (Uria aalge) for the seabird tissue archival and monitoring project. J. Anal. At. Spectrom. 2002, 17, 780–785. [Google Scholar] [CrossRef]
- Bryan, C.E.; Christopher, S.J.; McLellan, W.A.; McFee, W.E.; Schwacke, L.H.; Wells, R.S. Application of ICP-MS to examining the utility of skin as a monitoring tissue for trace elements in bottlenose dolphin, Tursiops truncatus. Open Chem. Biomed. Methods J. 2010, 3, 169–178. [Google Scholar] [CrossRef]
- Garcia Barcia, L.; Argiro, J.; Babcock, E.A.; Cai, Y.; Shea, S.K.H.; Chapman, D.D. Mercury and arsenic in processed fins from nine of the most traded shark species in the Hong Kong and China dried seafood markets: The potential health risks of shark fin soup. Mar. Pollut. Bull. 2020, 157, 111281. [Google Scholar] [CrossRef]
- Bryan, C.E.; Davis, W.C.; McFee, W.E.; Neumann, C.A.; Schulte, J.; Bossart, G.D.; Christopher, S.J. Influence of mercury and selenium chemistries on the progression of cardiomyopathy in pygmy sperm whales, Kogia breviceps. Chemosphere 2012, 89, 556–562. [Google Scholar] [CrossRef]
- Holbert, S.; Bryan, C.E.; Korsmeyer, K.E.; Jensen, B.A. Mercury accumulation and biomarkers of exposure in two popular recreational fishes in Hawaiian waters. Ecotoxicology 2023, 32, 1010–1023. [Google Scholar] [CrossRef]
- Hoguet, J.; Keller, J.M.; Reiner, J.L.; Kucklick, J.R.; Bryan, C.E.; Moors, A.J.; Pugh, R.S.; Becker, P.R. Spatial and temporal trends of persistent organic pollutants and mercury in beluga whales (Delphinapterus leucas) from Alaska. Sci. Total Environ. 2013, 449, 285–294. [Google Scholar] [CrossRef]
- Domanico, F.; Forte, G.; Majorani, C.; Senofonte, O.; Petrucci, F.; Pezzi, V.; Alimonti, A. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry. J. Trace Elem. Med. Biol. 2017, 43, 3–8. [Google Scholar] [CrossRef]
- Bothner, M.H.; Jahnke, R.A.; Paterson, M.L.; Carpenter, R. Rate of mercury loss from contaminated estuarine sediments. Geochim. Et Cosmochim. Acta 1980, 44, 273–285. [Google Scholar] [CrossRef]
- Airey, D.; Jones, P.D. Mercury in the river mersey, its estuary and tributaries during 1973 and 1974. Water Res. 1982, 16, 565–577. [Google Scholar] [CrossRef]
- Silva, L.F.F.; Machado, W.; Filho, S.D.L.; Lacerda, L.D. Mercury accumulation in sediments of a mangrove ecosystem in SE Brazil. Water Air Soil Pollut. 2003, 145, 67–77. [Google Scholar] [CrossRef]
- Garrett, C.; Merchant, R.; Freed, J. Health Consultation: Mill View Subdivision-City of Port St. Joe, Gulf County, Florida; EPA Facility ID: FLN000407304; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2005.
- Garrett, C.; Merchant, R.; Freed, J. Public Health Assessment for Former St. Joe Forest Products Site (a/k/a St. Joe Paper Mill) Port St. Joe, Gulf County, Florida; EPA Facility ID: FLD004056602; Agency for Toxic Substances and Disease Registry: Springfield, VA, USA, 2006.
- Northwest Florida Water Management District (NFWMD). St. Andrew Bay Watershed Surface Water Improvement and Management Plan; Northwest Florida Water Management District: Havana, FL, USA, 2017.
- Sutherland, G.K.; Eastwood, A. The physiological anatomy of Spartina townsendii. Ann. Bot. 1916, 30, 333–351. [Google Scholar] [CrossRef]
- Kraus, M.L.; Weis, P.; Crow, J.H. The excretion of heavy metals by the salt marsh cord grass, Spartina alterniflora, and Spartina’s role in mercury cycling. Mar. Environ. Res. 1986, 20, 307–316. [Google Scholar] [CrossRef]
- Windham, L.; Weis, J.S.; Weis, P. Patterns and processes of mercury release from leaves of two dominant salt march macrophytes, Phragmites australis and Spartina alterniflora. Estuaries 2001, 24, 787–795. [Google Scholar] [CrossRef]
- Breteler, R.J.; Valiela, I.; Teal, J.M. Bioavailability of mercury in several North-eastern U.S. Spartina ecosystems. Estuar. Coast. Shelf Sci. 1981, 12, 155–166. [Google Scholar] [CrossRef]
- Saunders, R.; Krebs, W.; Wrenn, J.H.; Bryant, V.M. Coastal dynamics and cultural occupations on Choctawhatchee Bay, Florida, U.S.A. Palynology 2009, 33, 135–156. [Google Scholar] [CrossRef]
- Guentzel, J.L. Wetland influences on mercury transport and bioaccumulation in South Carolina. Sci. Total Environ. 2009, 407, 1344–1353. [Google Scholar] [CrossRef]
- Meyer, J.L.; Edwards, R.T. Ecosystem metabolism and turnover or organic carbon along a Blackwater River continuum. Ecology 1990, 71, 668–677. [Google Scholar] [CrossRef]
- Georgia Department of Natural Resources (GA DNR) Environmental Protection Division. Total Maximum Daily Load Evaluation for Two Water Bodies in the Ogeechee River Basin for Selenium; TMDL Action ID GAR4_20_02_02; Georgia Department of Natural Resources (GA DNR) Environmental Protection Division: Atlanta, GA, USA, 2020.
- Dame, R.; Alber, M.; Allen, D.; Mallin, M.; Montague, C.; Lewitus, A.; Chalmers, A.; Gardner, R.; Gilman, C.; Kjerfve, B. Pinckney and N. Smith. Estuaries of the South Atlantic Coast of North America: Their Geographical Signatures. Estuaries 2000, 23, 793–819. [Google Scholar] [CrossRef]
- Kannan, K.; Maruya, K.A.; Tanabe, S. Distribution and characterization of polychlorinated biphenyl congeners in soil and sediments from a superfund site contaminated with Aroclor 1268. Environ. Sci. Technol. 1997, 31, 1483–1488. [Google Scholar] [CrossRef]
- Windom, H.; Gardner, W.; Stephens, J.; Taylor, F. The role of methylmercury production in the transfer of mercury in a salt marsh ecosystem. Estuar. Coast. Mar. Sci. 1976, 4, 579–583. [Google Scholar] [CrossRef]
- Gardner, W.S.; Kendall, D.R.; Odom, R.R.; Windom, H.L.; Stephens, J.A. The distribution of methyl mercury in a contaminated salt marsh ecosystem. Environ. Pollut. 1987, 15, 243–251. [Google Scholar] [CrossRef]
- Winger, P.V.; Lasier, P.J.; Geitner, H. Toxicity of sediments and pore water from Brunswick Estuary, Georgia. Arch. Environ. Contam. Toxicol. 1993, 25, 371–376. [Google Scholar] [CrossRef]
- Horne, M.T.; Finley, N.J.; Sprenger, M.D. Polychlorinated biphenyl- and mercury- associated alterations on benthic invertebrate community structure in a contaminated salt marsh in southeast Georgia. Arch. Environ. Contam. Toxicol. 1999, 37, 317–325. [Google Scholar] [CrossRef]
- Blanvillain, G.; Schwenter, J.A.; Day, R.D.; Point, D.; Christopher, S.J. Diamondback terrapins, Malaclemys terrapin, as a sentinel species for monitoring mercury pollution of estuarine systems in South Carolina and Georgia, USA. Environ. Toxicol. Chem. 2007, 26, 1441–1450. [Google Scholar] [CrossRef]
- Newell, S.Y.; Hicks, R.E.; Nicora, M. Content of mercury in leaves of Spartina alterniflora Loisel in Georgia, U.S.A.: An update. Estuar. Coast. Shelf Sci. 1982, 14, 465–469. [Google Scholar] [CrossRef]
- Mercado-Silva, N. Condition index of the eastern oyster, Crassostrea virginica, in Sapelo Island Georgia- effects of site, position on bed and pea crab parasitism. J. Shellfish. Res. 2005, 24, 121–126. [Google Scholar]
- Sutton, K.T.; Cohen, R.A.; Vives, S.P. Evaluating relationships between mercury concentrations in air and in Spanish moss (Tillandsia usneoides L.). Ecol. Indic. 2014, 36, 392–399. [Google Scholar] [CrossRef]
- Worthy, G.A.J. Nutrition and energetics. In Handbook of Marine Mammal Medicine; Dierauf, L.A., Gulland, F.M.D., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 791–828+1087. [Google Scholar]
- Endo, T.; Kimura, O.; Hisamichi, Y.; Minoshima, Y.; Haraguchi, K.; Kakumoto, C.; Kobayashi, M. Distribution of total mercury, methylmercury and selenium in a pod of killer whales (Orcinus orca) stranded in the northern area of Japan: Comparison of mature females with calves. Environ. Pollut. 2006, 144, 145–150. [Google Scholar] [CrossRef]
- de Moura, J.F.; de Souza Hacon, S.; Vega, C.M.; Hauser-Davis, R.A.; de Campos, R.C.; Siciliano, S. Guiana dolphins (Sotalia guianensis, Van Benédén 1864) as indicators of the bioaccumulation of total mercury along the coast of Rio de Janeiro State, Southeastern Brazil. Bull. Environ. Contam. Toxicol. 2012, 88, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Rosas, F.; Lehti, K. Nutritional and mercury content of milk of the Amazon River dolphin, Inia geoffrensis. Comp. Biochem. Physiol. Part A Physiol. 1996, 115, 117–119. [Google Scholar] [CrossRef]
- Storelli, M.M.; Marcotrigiano, G.O. Environmental contamination in bottlenose dolphin (Tursiops truncatus): Relationships between levels of metals, methylmercury, and organochlorine compounds in an adult female, her neonate, and a calf. Environ. Contam. Toxicol. 2000, 64, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.L.; Woshner, V.; Styer, E.L.; Ferguson, S.; Knott, K.K.; Gray, M.J.; Wells, R.S.; O’Hara, T.M. Histologic findings in free-ranging Sarasota Bay bottlenose dolphin (Tursiops truncatus) skin: Mercury, selenium, and seasonal factors. J. Wildl. Dis. 2011, 47, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Read, A.J.; Wells, R.S.; Hohn, A.A.; Scott, M.D. Patterns of growth in wild bottlenose dolphins, Tursiops truncatus. J. Zool. Lond 1993, 231, 107–123. [Google Scholar] [CrossRef]
- Wells, R.S.; Scott, M.D. Bottlenose dolphin Tursiops truncatus (Montagu, 1821). In Handbook of Marine Mammal; Book of Dolphins and Porpoises; Ridgway, S.H., Harrison, R., Eds.; Academic Press: San Diego, CA, USA, 1999; Volume 6, pp. 137–182+486. [Google Scholar]
- Gannon, D.P.; Berens, E.J.; Camilleri, S.A.; Gannon, J.G.; Brueggen, M.K.; Barleycorn, A.; Palubok, V.; Kirkpatrick, G.J.; Wells, R.S. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 2009, 378, 171–186. [Google Scholar] [CrossRef]
- McHugh, K.A.; Allen, J.B.; Barleycorn, A.A.; Wells, R.S. Severe harmful algal bloom events influence juvenile common bottlenose dolphin behavior and sociality in Sarasota Bay, Florida. Mar. Mammal Sci. 2011, 27, 622–643. [Google Scholar] [CrossRef]
Site | Year | n | Sample Collection | Mercury Analysis |
---|---|---|---|---|
CHS [29] | 2003–2005 | 74 | Catch-and-release | DC AAS |
SRE | 2015 & 2017 | 45 | Remote biopsy | DC AAS |
SAP | 2007–2009 | 37 | Remote biopsy and catch-and-release | ID-CV-ICP-MS |
BRU | 2006–2007 and 2009 | 40 | Remote biopsy and catch-and-release | ID-CV-ICP-MS |
IRL [29] | 2003–2005 | 76 | Catch-and-release | DC AAS |
BBF | 2019 | 17 | Remote biopsy | AFS |
FCE [28] | 2013 | 24 | Remote biopsy | DC AAS |
LFK [28] | 2008 | 10 | Remote biopsy | DC AAS |
SAR [7,30] | 2002–2005 | 55 | Catch-and-release | AFS |
SJB | 2005–2006 | 24 | Catch-and-release | ID-CV-ICP-MS |
CBF | 2007 | 12 | Remote biopsy | ID-CV-ICP-MS |
Site | Total n | Hg (ng/g, wm) | Female n | Female Hg (ng/g, wm) | Male n | Male Hg (ng/g, wm) | Unknown Sex n |
---|---|---|---|---|---|---|---|
CHS [29] | 74 | 509 ± 32 | 29 | 509 ± 52 | 45 | 509 ± 42 | 0 |
SRE * | 45 | 530 ± 58 | 18 | 687 ± 92 | 27 | 425 ± 70 | 0 |
SAP | 37 | 1773 ± 165 | 11 | 1570 ± 338 | 25 | 1894 ± 192 | 1 |
BRU | 40 | 3483 ± 349 | 14 | 3257 ± 621 | 26 | 3605 ± 428 | 0 |
IRL [29] | 76 | 2206 ± 210 | 25 | 2756 ± 477 | 51 | 1936 ± 202 | 0 |
BBF | 17 | 4595 ± 600 | 4 | 3949± 1313 | 13 | 5058 ± 684 | 0 |
FCE [28] | 24 | 10,916 ± 1532 | 8 | 11,460 ± 3156 | 13 | 10,048 ± 1841 | 3 |
LFK [28] | 10 | 2779 ± 641 | 0 | NE | 9 | 2936 ± 694 | 1 |
SAR [7,30] * | 55 | 2090 ± 203 | 29 | 2665 ± 343 | 26 | 1448 ± 98 | 0 |
SJB | 24 | 14,193 ± 2196 | 12 | 15,585 ± 3400 | 12 | 12,802 ± 2874 | 0 |
CBF | 12 | 7333 ± 1405 | 4 | 7949 ± 3570 | 8 | 7024 ± 1373 | 0 |
Site | Calf n | Calf Hg (ng/g, wm) | Subadult n | Subadult Hg (ng/g, wm) | Adult n | Adult Hg (ng/g, wm) |
---|---|---|---|---|---|---|
CHS [29] * | 0 | NE | 25 | 391 ± 33 | 49 | 568 ± 44 |
SRE * | 0 | NE | 8 | 291 ± 43 | 15 | 758 ± 100 |
SAP | 1 | 597 | 5 | 882 ± 73 | 8 | 978 ± 243 |
BRU | 0 | NE | 3 | 1107 ± 92 | 9 | 1172 ± 126 |
IRL [29] | 0 | NE | 30 | 2377 ± 410 | 45 | 2039 ± 221 |
SAR [7,30] * | 6 | 662 ± 99 | 24 | 1592 ± 210 | 25 | 2910 ± 323 |
SJB | 2 | 10,540 ± 892 | 7 | 9010 ± 2235 | 14 | 17,407 ± 3389 |
Site | Calf | Subadult | Adult | |||
---|---|---|---|---|---|---|
n | Hg (ng/g, wm) | n | Hg (ng/g, wm) | n | Hg (ng/g, wm) | |
CHS [29] * | ||||||
Female | 0 | 17 | 363 ± 38.5 | 12 | 716 ± 81.1 | |
Male | 0 | 8 | 452 ± 61.8 | 37 | 521 ± 48.7 | |
SRE | ||||||
Female | 0 | 1 | 254 | 15 | 758 ± 100 | |
Male | 0 | 7 | 296 ± 48.9 | 0 | ||
SAP | ||||||
Female | 1 | 597 | 4 | 934 ± 66.7 | 2 | 843 ± 170 |
Male | 0 | 1 | 674 | 6 | 1023 ± 326 | |
BRU | ||||||
Female | 0 | 3 | 1107 ± 91.7 | 2 | 1652 ± 176 | |
Male | 0 | 0 | 7 | 1035 ± 108 | ||
IRL [29] | ||||||
Female | 0 | 12 | 2984 ± 796 | 12 | 2378 ± 597 | |
Male | 0 | 18 | 1972 ± 426 | 33 | 1916 ± 214 | |
SAR [7,30] * | ||||||
Female | 4 | 683 ± 109 | 9 | 1866 ± 524 | 16 | 3609 ± 408 |
Male | 2 | 619 ± 270 | 15 | 1428 ± 129 | 9 | 1666 ± 104 |
SJB | ||||||
Female | 1 | 9648 | 5 | 10,919 ± 2701 | 5 | 21,995 ± 7152 |
Male | 1 | 11,431 | 2 | 4238 ± 86.0 | 9 | 14,857 ± 3543 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffin, M.L.; Bryan, C.E.; Cox, T.M.; Balmer, B.C.; Day, R.D.; Garcia Barcia, L.; Gorgone, A.M.; Kiszka, J.J.; Litz, J.A.; Perrtree, R.M.; et al. Spatial Variation in Mercury Accumulation in Bottlenose Dolphins (Tursiops spp.) in Southeastern U.S.A. Toxics 2024, 12, 327. https://doi.org/10.3390/toxics12050327
Griffin ML, Bryan CE, Cox TM, Balmer BC, Day RD, Garcia Barcia L, Gorgone AM, Kiszka JJ, Litz JA, Perrtree RM, et al. Spatial Variation in Mercury Accumulation in Bottlenose Dolphins (Tursiops spp.) in Southeastern U.S.A. Toxics. 2024; 12(5):327. https://doi.org/10.3390/toxics12050327
Chicago/Turabian StyleGriffin, Mackenzie L., Colleen E. Bryan, Tara M. Cox, Brian C. Balmer, Russell D. Day, Laura Garcia Barcia, Antoinette M. Gorgone, Jeremy J. Kiszka, Jenny A. Litz, Robin M. Perrtree, and et al. 2024. "Spatial Variation in Mercury Accumulation in Bottlenose Dolphins (Tursiops spp.) in Southeastern U.S.A." Toxics 12, no. 5: 327. https://doi.org/10.3390/toxics12050327
APA StyleGriffin, M. L., Bryan, C. E., Cox, T. M., Balmer, B. C., Day, R. D., Garcia Barcia, L., Gorgone, A. M., Kiszka, J. J., Litz, J. A., Perrtree, R. M., Rowles, T. K., Schwacke, L. H., Wells, R. S., & Zolman, E. (2024). Spatial Variation in Mercury Accumulation in Bottlenose Dolphins (Tursiops spp.) in Southeastern U.S.A. Toxics, 12(5), 327. https://doi.org/10.3390/toxics12050327