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Abstract: Zirconium is recognized as one of the main impurities of the rare earth element scandium
during purification. It presents significant challenges due to its similar chemical properties, making
separating it difficult. This study used trialkyl phosphine oxide (TRPO) as a functional ligand, and the
effects of carrier type and acidity on adsorption performance were first investigated. Among these,
the novel extraction resin SiO2-P as a carrier for TRPO demonstrated more prominent separation
performance in 0.2 M H2SO4 and 5 M HCl solutions. The kinetic and isotherm data were consistent
with the pseudo-secondary kinetics and Langmuir model, respectively, and the adsorption process
could be regarded as homogeneous monolayer adsorption subject to the dual effects of chemisorption
and internal diffusion. In addition, thermodynamic analysis showed that the adsorption process of
zirconium under the experimental conditions was a spontaneous endothermic process. Combined
with the results of SEM-EDS, FT-IR, and XPS analyses, scandium and zirconium were successfully
adsorbed by the resin and uniformly distributed on its surface, and the greater affinity of the P=O
groups on the resin for zirconium was the critical factor contributing to the separation of scandium
and zirconium. Finally, scandium and zirconium in sulfuric acid and hydrochloric acid media were
extracted and separated by column experiments, and the purity of scandium could reach 99.8% and
99.99%, respectively.

Keywords: TRPO/SiO2-P; scandium; zirconium; adsorption; separation

1. Introduction

Due to their similar chemical behavior, scandium, yttrium, and the 15 lanthanide
elements constitute rare earth elements [1]. Occupying the 21st position on the periodic
table, scandium is regarded as a critical metal for future applications [2]. Recently, scandium
has been utilized as a material for aero-engines and spacecraft, owing to its excellent
resistance to high temperatures and corrosion, along with its high strength and resistance to
deformation [3–5]. Furthermore, the properties of scandium enabled it to play a crucial role
in various fields, including catalytic materials [6,7], electronic information [8,9], luminescent
materials [10], and hydrogen storage materials [11,12]. Despite scandium’s wide range
of applications, its availability is limited. This limitation stems from its complex deposit
forms and difficulty in extraction, despite being the 31st most abundant element in the
earth’s crust [13]. A 2019 survey [9] revealed that the price of scandium oxide reaches
a staggering USD3800/kg, significantly limiting its applications. Currently, scandium is
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primarily recovered as a by-product from sources including tungsten refining slag, uranium
leach solution, titanium pigment production waste, and red mud [14]. Prevalent recovery
methods include solvent extraction [15–17], ion exchange [18–20], and adsorption [21–23].
Solvent extraction, vital for analyzing and preparing high-purity substances and widely
used in hydrometallurgy, faces challenges such as co-extraction of impurities, saponification,
low selectivity, and low dissolution rates [24]. Ion exchange methods tend to be less selective
for target elements. Conversely, the adsorption method offers advantages such as simplicity,
no secondary pollution, strong ion selectivity, and high adsorption efficiency. Hence, it is a
promising technique for recovering and purifying scandium.

Metallic zirconium is mainly used in the manufacture of materials such as nuclear fuel
cladding, chemical piping, and heat exchangers due to its advantages such as low thermal
neutron cross-section, high melting point, machinability, and corrosion resistance [25,26].
Zirconium frequently co-occurs with scandium in its purification process, complicating
the accurate separation of these elements due to their similar chemical properties [27].
Zirconium oxide is the primary impurity in market-available scandium oxide products. The
significant price disparity between scandium oxide of varying purities can be attributed
to the challenges in preparation and the varying application values of these materials.
As an illustration, yttrium-scandium-gallium garnet (YSGG) was produced by adding
Sc2O3 of 99.9–99.99% purity to yttrium-gallium garnet (YGG), and the emission power
of the latter was three times higher than that of the former [28], while Joseph et al. [29]
discovered that the purity of the scandium source in the heterostructures of ScxAl1-xN/GaN
significantly altered the chemical and electronic properties of the heterostructures; in the
case of ScxAl1-xN/GaN with a purity of 99.9%~99.99% ScxAl1-xN/GaN, the unintentional
doping density of carbon, oxygen, and fluorine in the latter decreased by 2–3 orders of
magnitude, and the leakage of the grown film decreased by 5–7 orders of magnitude.
Consequently, the cost-effective production of high-purity scandium oxide emerges as a
critical factor for commercial competitiveness. Various methods have been explored for
removing impurity zirconium during scandium purification. For instance, Zhang et al. [30]
developed a functionalized silica-based resin through an in situ polymerization process,
with dynamic adsorption experiments in 0.5 M HNO3 and HCl achieving Sc(III) purities
of 99.97% and 99.94%, respectively. Similarly, Chen et al. [21] impregnated the extractant
TODGA into silica-based composites under vacuum, yielding adsorbents demonstrating
a Zr removal rate of over 99% in separation experiments with crude Sc2O3 products.
Moreover, trialkyl phosphine oxide (TRPO, the chemical structure shown in Figure 1)
has proven effective as an extractant for scandium recovery and purification in solvent
extraction processes involving titanium dioxide waste acid [31].
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This study discussed the separation characteristics of TRPO-modified silica-based
resins for scandium and zirconium within sulfuric and hydrochloric acid media. Utilizing
TRPO as a functional ligand, the carrier (SiO2-P) comprised porous silica microspheres with
an inner surface modified by styrene-divinylbenzene copolymer, while the TRPO/SiO2-P
resin was created through vacuum impregnation. In contrast to traditional polymer-based
resins, which have particle sizes of 0.3–3 mm, this novel extraction resin features a smaller
size (75–150 µm). It boasts fast kinetics, high strength, and good column mobility [32].
Initially, this study examined the adsorption of scandium and zirconium by TRPO on
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various polymer-based resins, followed by an evaluation of the resins’ performance for
separating scandium and zirconium in sulfuric and hydrochloric acid media via intermittent
adsorption experiments. This study employed SEM-EDS, FT-IR, and XPS analysis to
elucidate the adsorption mechanism. Ultimately, the research explored the separation
performance of TRPO/SiO2-P for scandium and zirconium through a dynamic column,
suggesting a novel approach for removing zirconium impurities from high-purity Sc2O3.

2. Experimental
2.1. Materials

Scandium oxide (Sc2O3) (purity > 99%) was provided by Guangxi Scandium New En-
ergy Technology Co, Ltd. (Wuzhou, China) Scandium sulfate octahydrate (Sc2(SO4)3·8H2O),
zirconium sulfate tetrahydrate, (Zr(SO4)2·4H2O), scandium chloride hexahydrate (ScCl3·6H2O),
and zirconium oxychloride octahydrate (ZrOCl2·8H2O) were purchased from Shanghai
Macklin Biochemical Co., Ltd. (Shanghai, China) Oxalic acid dihydrate (H2C2O4·2H2O)
was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) Scandium
and zirconium standard solutions (1000 ppm) were provided by the National Center for
Analysis and Testing of Nonferrous Metals and Electronic Materials. TRPO (purity > 93%)
and sulfonated kerosene (industrial purity for use as a diluent) were purchased from Lai
Yashi Chemical Co., Ltd., Shanghai, China. XAD7HP was purchased from Shanghai Mack-
lin Biochemical Co., Ltd. (Shanghai, China), HZ-635 was provided by Shanghai East China
University of Science and Technology, and the chemical structures of these two materials
are shown in Figure S1. SiO2-P was produced by our laboratory, and all other reagents
were analytically pure. XAD7HP is a methacrylic acid polymer with a diameter of about
300–900 µm, a specific surface area of 507 m2/g, and a pore size of 11 nm. HZ-635 is a resin
sphere with a diameter of about 250 µm, specific surface area, and pore size of 730 m2/g
and 8 nm, respectively, and is a styrene-divinylbenzene polymer. As for SiO2-P, silica
spheres were used as the skeleton in which styrene and divinylbenzene were polymerized
in situ to obtain the organic–inorganic carrier SiO2-P, which had an average diameter of
about 75~150 µm, and pore size and specific surface area of about 98 m2/g and 34 nm,
respectively [33].

2.2. Synthesis of TRPO/SiO2-P Adsorbent

In our previous work [32,34], we have synthesized a batch of novel extractive resin
microspheres (SiO2-P) with a pore fraction of 0.69 and a diameter of 40–60 µm, where
“P” refers to an inert styrene-divinylbenzene copolymer, which is simply styrene and
divinylbenzene embedded in the pores of silica by in situ polymerization. Briefly, styrene
and divinylbenzene were embedded into the silica pores by in situ polymerization, and
SiO2-P with a polymer content of 17–18 w% was finally obtained. The synthesis step of
TRPO/SiO2-P was referred to as the method in the literature [35,36]. Specifically, CH2Cl2
was used as the solvent, TRPO was fully dissolved, and then a certain mass of SiO2-P was
added (mTRPO:nSiO2-P = 1:2). The mixture was subjected to decompression distillation
in a cigar-shaped flask. The solvent carrying TRPO was pressed under negative pressure.
Under negative pressure, the solvent carrying TRPO will be pressed into the pores of
SiO2-P, and the solvent will be evaporated until all of it is evaporated under decreasing air
pressure. Finally, TRPO will be left in the pores to obtain TRPO/SiO2-P.

2.3. Characterization

SEM-EDS analysis was performed using a HITACHI SU8200 equipped with a Pro-X
unit to characterize the micro-morphology and chemical composition distribution of the
TRPO/SiO2-P resin before and after adsorption. The structural and group information of
the resin and the changes in chemical bonding before and after adsorption were analyzed
by Fourier transform infrared spectroscopy (Shimadzu, IRTracer-100, Kyoto, Japan). The
samples were analyzed by X-ray photoelectron spectroscopy (XPS) using an ESCALAB
250XI device and the valence of the elemental composition of the material was measured
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using a monochromatic Al-Ka radiation source to determine the changes in the elemental
valence of the resin before and after adsorption and in the chemical environment.

2.4. Batch Adsorption Experiment

In order to investigate the adsorption behavior of the adsorbent on scandium and
zirconium in sulfuric and hydrochloric acid media, we used different carriers and acidity,
scandium–zirconium molar ratios, scandium–zirconium initial concentrations, and solid–
liquid ratios as the variables to explore the effects of the adsorption effects, respectively.
The adsorption capacity q, adsorption efficiency E, desorption capacity qd, desorption effi-
ciency Ed, distribution coefficient Kd, and separation factor SFZr/Sc were used to represent
the adsorption performance of the adsorbent, respectively. The specific formulas were
calculated as follows:

q =
(C 0 − C)

m
× V (1)

E =
(C 0 − C)

C0
× 100% (2)

qd = Cd ×
V
m

(3)

Ed =
qd
q
× 100% (4)

Kd =
(C 0 − C)

C
× V

m
(5)

SFA/B = KdA /KdB (6)

where C0, C, and Cd denote the metal ion concentration in the aqueous solution before,
after adsorption, and after desorption, respectively. V and m denote the volume of the
liquid phase during adsorption and the mass of the TRPO/SiO2-P resin in a completely
dry state, respectively.

2.5. Column Separation Experiment

The column experiment (with dimension 0.5 cm × 10 cm) was used for simulating the
separation behavior of scandium and zirconium in applying the absorbent. A specific mass
of dried resin was filled into the column by the wet-filling method, and the peristaltic pump
(EYELA, MP2000) was adjusted to keep the flow rate of the feed solution at 0.2 mL·min−1;
finally, the effluent was collected by a fraction collector. A sketch of the column system
is shown in Figure S2. During this process, the concentration of metal ions in the outlet
solution was measured by ICP-AES.

3. Results and Discussion
3.1. Batch Adsorption Experiment
3.1.1. Effect of Carrier and Acidity

TRPO was impregnated into three different carriers for the adsorption of scandium
and zirconium ions to evaluate the effect of carrier type on resin performance. In order to
determine the optimal acidic environment for adsorbent efficacy, a series of experiments
with different pH values were conducted, along with an assessment of carrier factors, the
results of which are shown in Figure 2. For comparison, the corresponding SF values of the
three resins at the optimal acidity were organized in Table 1. It can be seen that TRPO/SiO2-
P exhibited superior separation performance in sulfuric acid (0.2 M) and hydrochloric acid
(5 M) media, with separation factors (SF) of 380 and 977, respectively, when compared to
TRPO/XAD7HP and TRPO/HZ-635. The adsorption kinetics of the three materials were
also investigated (Figure S3), and overall, TRPO/SiO2-P adsorbed zirconium faster and
in larger quantities with little scandium adsorption. In conclusion, the novel extraction
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process of TRPO with SiO2-P as a carrier in sulfuric and hydrochloric acid media can
separate scandium and zirconium more efficiently.
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(b,e) TRPO/XAD7HP, (c,f) TRPO/HZ-635 (m/V = 0.1 g/5 mL, Sc and Zr each 5 mM (mixture),
T = 298 K, shaking speed: 140 rpm, t = 24 h).

Table 1. Comparison of separation performance of three resins in sulfuric and hydrochloric acid media.

Resin Acid SFZr/Sc Source

TRPO/SiO2-P
0.2 M H2SO4 380 Figure 2a

5 M HCl 977 Figure 2d

TRPO/XAD7HP
0.5 M H2SO4 178 Figure 2b

4 M HCl 91 Figure 2e

TRPO/HZ-635
0.2 M H2SO4 239 Figure 2c

5 M HCl 297 Figure 2f

3.1.2. Effect of Sc/Zr Ratio and V/m Ratio

In this study, the effect of scandium–zirconium molar ratio on the separation perfor-
mance of TRPO/SiO2-P was investigated, i.e., keeping the concentration of Sc constant and
increasing the concentration of zirconium, and the results obtained are shown in Figure 3a,d.
A noteworthy phenomenon is that as the scandium–zirconium molar ratio decreases (i.e.,
from 40 to 1), the separation performance of the adsorbent gradually improves (Figure 3a:
SF value increases from 24 to 1225; Figure 3d: SF value increases from 121 to 1562). This is
because at low zirconium ion concentrations, after the adsorbent adsorbs all the zirconium
ions in solution, many internal adsorption sites remain vacant, resulting in partial adsorp-
tion of scandium ions and insignificant separation performance. As the concentration of
zirconium ions increased from 0.125 M to 5 M, the vacant adsorption sites in the adsorbent
were occupied by more zirconium ions. At the same time, a decrease in the scandium
adsorption rate was observed, which was hypothesized to be the result of zirconium ions
replacing some of the sites occupied by scandium, thus improving the separation perfor-
mance of the adsorbent. The improvement may be attributed to the fact that the adsorbent
has a greater affinity for zirconium ions than for scandium ions. The separation factor,
on the other hand, decreased dramatically when the concentration of zirconium ions was
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increased to 15 M. This was because the adsorbent was saturated, resulting in some of the
remaining zirconium ions in the solution not being adsorbed. Interestingly, the adsorbent
maintains separation efficacy even at a scandium to zirconium molar ratio of 40:1 (SF > 10),
which suggests that it has promising value for practical applications.
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ratio on resin properties in 0.2 M H2SO4 solution. Effect of (d) Sc/Zr molar ratio, (e) initial
concentration of Sc and Zr, and (f) solid−liquid ratio on resin properties in 5 M HCl solution
((a,b,d,e) m/V = 0.1 g:5 mL, (c,f) Sc and Zr each 5 mM (mixture), V = 5 mL; T = 298 K, shaking speed:
140 rpm, t = 24 h).

Figure 3b,e shows the performance of separation influenced by the initial concentration,
with the Sc/Zr molar ratio maintained at 1:1. The outcomes aligned with those observed
in the molar ratio experiments. Figure 3c,f reports the impact of the solid–liquid ratio on
adsorption performance, and it was observed that for 100% removal of zirconium ions, the
mass of the adsorbent reached 0.1 g. Subsequent increases in adsorbent mass paradoxically
diminished the separation performance, as the quantity of zirconium ions was insufficient
to occupy the gradually increasing adsorption sites that were used for scandium ions. In
summary, the adsorption of scandium and zirconium ions by the adsorbent exhibited a
clear order for preference of Zr(IV) over Sc(III).

3.1.3. Kinetic Analysis

Further investigation was conducted on the adsorption behavior of scandium and zir-
conium ions by TRPO/SiO2-P in isolated sulfuric and hydrochloric acid media. Figure 4a,b
indicates that in sulfuric acid media, the adsorption equilibrium for Sc(III) and Zr(IV) was
reached after 2 h and 1 h, respectively, on the other hand, it was achieved after 2 and 6 h,
respectively, in the hydrochloric acid media (Figure 4c,d). The experimental data from
Figure 4 were analyzed using pseudo-first-order (Equation (S1)) and pseudo-second-order
(Equation (S2)) kinetic models, with the fitting parameters detailed in Tables 2 and 3. The
correlation coefficients from these data (R2

2 > R1
2) indicate that the experimental data align

more closely with the pseudo-second-order kinetic model. This implies that the adsorption
processes for both Sc(III) and Zr(IV) are predominantly governed by chemisorption [37].
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T = 298 K, shaking speed: 140 rpm).

Table 2. Kinetic fitting parameters for Sc(III) and Zr(IV) in 0.2 M H2SO4 solution.

Elements T(K) Pseudo-First-Order Pseudo-Second-Order Qe,exp
(mg·g−1)K1 (min−1) Qe

(mg·g−1) R2 K2
(g·mg−1·min−1)

Qe
(mg·g−1) R2

Sc 298 0.86 7.00 0.94 0.21 7.23 0.99 7.18
Zr 298 0.39 29.48 0.81 0.02 30.38 0.99 30.5

308 0.44 29.99 0.83 0.03 30.83 0.99 30.9
318 0.67 30.14 0.85 0.05 30.79 0.99 30.4

Table 3. Kinetic fitting parameters for Sc(III) and Zr(IV) in 5 M HCl solution.

Elements T(K) Pseudo-First-Order Pseudo-Second-Order Qe,exp
(mg·g−1)K1 (min−1) Qe

(mg·g−1) R2 K2
(g·mg−1·min−1)

Qe
(mg·g−1) R2

Sc 298 0.31 7.20 0.87 0.07 7.42 0.99 7.41
Zr 298 0.09 34.60 0.86 0.004 36.64 0.98 37.11

308 0.13 36.01 0.85 0.006 37.64 0.98 38.80
318 0.17 38.52 0.93 0.007 39.87 1 39.62

To ascertain the controlling steps of the adsorption process, adsorption data were
analyzed using the Weber−Morris internal diffusion (Equation (S3)) model; Figure 4 shows
kinetic results, which are displayed as insets in individual plots. Tables S1 and S2 organize
the fitted parameters, where the magnitude of the k-value indicates the relative speed of the
adsorption rate. Evidently, the adsorption process for Sc(III) and Zr(IV) by the adsorbent
comprises three stages. The initial stage exhibits the fastest adsorption rate, attributable
to the abundance of internal adsorption sites available for bonding with Sc(III) and Zr(IV)
upon initial contact. The reduced rate in the second stage is a consequence of the decreasing
number of available adsorption sites within the adsorbent. In the third stage, the k-value
approaches zero, signifying that the adsorbed amount stabilizes and the adsorption process
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reaches equilibrium [38]. Given that none of the fitted curves in the insets pass through the
coordinate system’s origin (0, 0), this suggests that the adsorption process involves not just
chemisorption but also internal diffusion processes [39].

3.1.4. Adsorption Isothermal

Isotherm data for the adsorbent in both acidic media are presented in Figure 5. The data
were analyzed using Langmuir (Equation (S4)), Freundlich (Equation (S5)), and Redlich–
Peterson (Equation (S6)) isothermal models, with the corresponding results detailed in
Tables 4 and 5. The Langmuir model posits that the adsorption process constitutes homo-
geneous monolayer adsorption, occurring exclusively at a finite number of identical and
equivalent sites [40]. Typically, the Freundlich model is associated with non-homogeneous
multilayer adsorption. This model suggests that the adsorbent’s maximum adsorption
capacity is cumulative adsorption at all sites, with the most potent adsorption sites being
occupied initially [41]. Within the Freundlich model parameters, a 1/n value between
0 and 1 indicates a chemisorption process, whereas a 1/n value greater than 1 implies
synergistic adsorption involving both physical and chemical interactions [42]. The Redlich–
Peterson isothermal model, a three-parameter construct, simplifies to a linear isothermal
model at low surface coverage. It aligns with the Langmuir model when the parameter g
equals 1 [43,44].
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140 rpm, t = 12 h).

Table 4. Isotherm fitting parameters for Sc(III) and Zr(IV) in 0.2 M H2SO4 solution.

Elements T(K) Langmuir Freundlich Redlich–Peterson Qe,exp
(mg·g−1)KL

(L·mg−1)
qm

(mg·g−1) R2 KF
(L·g−1) n R2 A B g R2

Sc 298 0.01 10.71 0.996 0.74 2.34 0.964 0.11 0.001 1.01 0.996 8.00
Zr 298 0.06 32.83 0.985 9.52 4.67 0.797 1.54 0.026 1.10 0.998 30.26

308 0.08 32.76 0.975 10.43 4.99 0.783 1.98 0.035 1.10 0.987 30.98
318 0.13 32.10 0.941 11.94 5.64 0.772 3.42 0.080 1.05 0.941 31.28
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Table 5. Isotherm fitting parameters for Sc(III) and Zr(IV) in 5 M HCl solution.

Elements T (K) Langmuir Freundlich Redlich–Peterson Qe,exp
(mg·g−1)KL

(L·mg−1)
qm

(mg·g−1) R2 KF
(L·g−1) n R2 A B g R2

Sc 298 0.04 8.77 0.976 2.10 4.04 0.965 0.65 0.15 0.87 0.995 8.31
Zr 298 1.25 38.03 0.987 20.59 6.98 0.754 47.86 1.27 1 0.985 38.65

308 1.53 38.82 0.987 21.62 7.13 0.743 58.77 1.5 1 0.987 39.54
318 1.71 39.66 0.986 22.41 7.03 0.740 67.34 1.69 1 0.984 40.12

A comparison of the data in Tables 4 and 5 indicates that both Langmuir and Redlich–
Peterson models provide a superior fit. Notably, the g-value in the Redlich–Peterson model
parameters is very close to 1. Consequently, it is reasonable to infer that the adsorption
process adheres to the Langmuir model, characterized by homogeneous monolayer ad-
sorption. According to the Langmuir model fitting results in the table, the maximum
adsorption capacities (qm) of the adsorbent for Sc(III) and Zr(IV) in sulfuric and hydrochlo-
ric acids at 298 K were determined to be 10.71 mg·g−1, 8.77 mg·g−1, 32.83 mg·g−1, and
38.03 mg·g−1, respectively.

3.1.5. Thermodynamic Analysis

Considering that the adsorbent has a stronger affinity for zirconium ions, the effect of
temperature on the adsorption process of zirconium ions was investigated separately, and
the results are shown in Figure 5b,d. The thermodynamic parameters of the adsorption
process follow Equations (6) and (7):

lnKL = −∆H0

RT
+

∆S0

R
(7)

∆G0 = ∆H0 − T∆S0 (8)

where ∆G0, ∆H0, and ∆S0 are the changes in standard Gibbs free energy (J·mol−1), standard
enthalpy (J·mol−1), and standard entropy (J·mol−1·K−1), respectively, R is the universal con-
stant (8.314 J·mol−1·K−1), and KL(L·mol−1) is the Langmuir constant at temperature T(K).

A linear relationship between lnKL and 1/T has been plotted (Figure 6); the deter-
mination of parameters ∆H0 and ∆S0 values from the slopes and intercepts, respectively.
The relevant parameters are summarized in Table 6. As indicated by the results in Table 6,
positive ∆H0 values suggest that the adsorption of Zr(IV) by the adsorbent in sulfuric
and hydrochloric acid media is an endothermic process. The positive ∆S0 values imply a
decrease in surface ordering during the adsorption of zirconium ions by the adsorbent. A
negative ∆G0 value denotes the spontaneous nature of zirconium ion adsorption by the
adsorbent [45]. According to Tables 4 and 5, the adsorption capacity of the adsorbent for
zirconium exhibited a slight increase (approximately 1~2 mg·g−1) with rising temperatures.
Given that zirconium adsorption is a heat-absorbing process, it can be inferred that elevated
temperatures marginally enhance the adsorption of zirconium ions, although the effect is
relatively modest.

Table 6. Thermodynamic fitting parameters of TRPO/SiO2−P to Zr(IV) in different media.

Media
∆H0

(kJ/mol)
∆S0

(kJ/K·mol)

∆G0 (kJ/mol)
R2

298 K 308 K 318 K

0.2 M H2SO4 28.19 0.20 −22.64 −24.84 −35.41 0.92
5 M HCl 12.35 0.14 −29.37 −30.77 −32.17 0.95
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3.2. Adsorption Mechanism
3.2.1. SEM-EDS Analysis

The micrograph of TRPO/SiO2-P was shown in Figure 7a,b, which showed that the
TRPO/SiO2-P resin is a spherical structure composed of particles, each with a relatively
uniform diameter of about 100 µm. EDS results investigated the elemental composition
of the resin after adsorption. The results showed that carbon (C), nitrogen (N), sulfur (S),
chlorine (Cl), oxygen (O), scandium (Sc), and zirconium (Zr) were uniformly distributed in
the cross-section of the adsorption-treated TRPO/SiO2-P (Figure 7c–f). This indicates the
successful adsorption of scandium and zirconium by the resin, and the presence of sulfur
and chlorine elements in the cross-section suggests that acidic radical ions (SO4

2− and Cl−)
are also involved in the adsorption process.
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3.2.2. FT-TR Analysis

In Figure 8, all samples exhibited weak adsorption bands at 1622 and 3460 cm−1,
which is attributable to the bending vibrations of hydroxyl groups in the adsorbed water
on the samples [46]. Bands at 2808–3012 cm−1 correspond to the stretching vibrational peak
of –C–H aliphatic [47]. Notably, the peaks of C–H for TRPO/SiO2-P are more pronounced
than that for SiO2-P, suggesting that the presence of TRPO increases the –C–H content. An
absorption band for the benzene ring is evident at 706 cm−1, and the band at 1465 cm−1

results from the stretching vibration of –CH2 [47,48]. The absorption bands appearing
at 476, 802 cm−1 are asymmetric stretching vibrations of the –Si–O–Si– bonds, while the
absorption band at 1122 cm−1 is attributed to the symmetric stretching vibration of the
same group [49]. At 1226 cm−1, the bending vibrational peak of the –P=O bond is present;
however, changes in the –P=O bond’s appearance before and after adsorption are obscured
by the influence of the –Si–O–Si– peak [36].
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3.2.3. XPS Analysis

The mechanism of interaction between TRPO/SiO2-P and adsorbates (Sc(III) and
Zr(IV)) was investigated by XPS. From the overall XPS spectrum of Figure 9a, it can be seen
that the peaks of Sc 2p and Zr 3d appeared after the adsorption experiments of TRPO/SiO2-
P, which indicates the successful adsorption of Sc(III) and Zr(IV) by the adsorbent. To
further understand the adsorption mechanism, analysis of the high-resolution spectra
of Sc, Zr, and P revealed that the peaks appearing at 399.72 or 399.06 eV in the narrow
spectrum of Sc 2p (Figure 9b) were attributed to scandium metal [36], as the peaks of
Sc 2p appeared at 402.84 eV, 407.21 eV, 402.60 eV, and 407.26 eV, which were very close
to those of ScOOH (407.46 ± 0.08 eV and 402.97 ± 0.11 eV for Sc 2p1/2 and Sc 2p3/2,
respectively) [50], suggesting that the adsorption of Sc(III) is bonded to the oxygen atoms
on the surface of TRPO/SiO2-P. The two XPS peaks near 183 and 186 eV in Figure 9c are
related to the oxidized valence state of Zr [51], and the binding energies for Zr 3d5/2 (183.15
and 182.82 eV) and Zr 3d3/2 (185.54 and 185.19 eV) are greater than those of Zr(OH)4
(182.2 eV); so, it can be determined that the adsorption of Zr(IV) was oxygen bonding
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with multiple P=O groups [52]. The ratio of the P-C peak area to the P=O peak area was
found to be consistently around 3:1 in the narrow spectrum of P 2p (Figure 9d), which is in
accordance with the theoretical value of TRPO [22]. Compared with the BE peaks of P-C
and P=O in fresh TRPO/SiO2-P, the BE peaks of P-C and P=O of TRPO/SiO2-P were both
shifted after the adsorption of scandium and zirconium in sulfuric and hydrochloric acid
media, and it can be seen that a greater shift was produced in the adsorption of Zr(IV),
which suggests that the adsorption process not only creates a new chemical bond but also
the adsorbent has a higher affinity for Zr(IV).
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3.3. Elution and Reusability of TRPO/SiO2-P

The desorption properties of scandium and zirconium were assessed using eight
different eluents to investigate the desorption kinetics. The results are presented in Figure 10.
Notably, only 0.2 M H2C2O4 achieved a desorption efficiency exceeding 99% for Zr, making
it a particularly suitable eluent given its cost-effectiveness. Figure 10b,d displays the
desorption kinetics of scandium and zirconium using 0.2 M H2C2O4, which shows a rapid
elution of both Sc and Zr, with nearly 100% elution accomplished within 30 min. This
indicates that the eluent efficiently and swiftly removes scandium and zirconium ions
adsorbed on the adsorbent’s surface.
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m/V = 0.1 g/5 mL, T = 298K, shaking speed: 140 rpm, eluent: 0.2 M H2C2O4).

To assess the reusability of the adsorbent, four adsorption–desorption cycle experi-
ments were conducted on TRPO/SiO2-P, with results depicted in Figure 11. TRPO/SiO2-P
exhibited a decrease in adsorption efficiency after the initial cycle (18% and 21.5% for Sc
and Zr in sulfuric acid medium, respectively (Figure 11a); while up to 3% and 15% for
Sc and Zr in hydrochloric acid medium, respectively (Figure 11b)). However, efficiency
remained stable in subsequent cycles. This is likely because H2C2O4 used in the initial
desorption damaged some adsorption sites, rendering them unable to bind with Sc and Zr
in subsequent adsorption processes. In summary, despite a significant performance loss
following the initial adsorption–desorption cycle, TRPO/SiO2-P retains nearly 80% of its
initial adsorption capacity after four cycles, indicating good reusability.
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3.4. Column Separation Experiment

To simulate conditions for separating impurity of zirconium from scandium solution,
a feed solution with a scandium–zirconium molar ratio of 10 was employed in the column
experiments (Figure 12). The absence of ions in the effluent (C/C0 = 0) at the onset of
section IIa in a sulfuric acid medium (Figure 12a) (C/C0 = 0) is attributed to the adsorbent
surface possessing abundant adsorption sites, leading to the complete adsorption of Sc(III)
and Zr(IV) that passed through the column. Following the initial penetration of Sc(III)
from the column, its concentration in the tailing liquid gradually rose, reaching equilibrium
at C/C0 = 1.13 ± 0.01. The C/C0 > 1 scenario is due to the depletion of adsorption sites,
leading to the replacement of initially adsorbed Sc(III) with Zr(IV), which is attributed to
the high affinity for Zr(IV). During this stage, almost no Zr(IV) was detected in the outset
solution, resulting in a scandium purification rate of 99.8%. Similarly, in a hydrochloric acid
medium (Figure 12b), the purification rate of Sc reached an even higher 99.99% in stage IIb,
so that the precise separation of scandium and zirconium could be realized in this stage.
Stage IV encompasses the Zr elution process, wherein all Zr bound to the adsorbent is
eluted using 0.2 M H2C2O4. Notably, this process does not involve Sc, allowing for effective
recovery of Zr.
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4. Conclusions

Static adsorption experiments conducted with TRPO/SiO2-P in sulfuric and hydrochlo-
ric acid media demonstrated outstanding scandium and zirconium separation, with separa-
tion factors approaching thousands. This suggests that TRPO/SiO2-P holds considerable
potential as a candidate adsorbent for practical applications in scandium–zirconium sepa-
ration scenarios. Fitting results from the combined pseudo-secondary and Weber–Morris
models in kinetic experiments suggest that TRPO/SiO2-P’s adsorption of scandium and
zirconium is primarily governed by chemisorption, while also being influenced by in-
ternal diffusion processes. Isotherm data align more closely with the Langmuir model,
denoting that the adsorption process entails homogeneous monolayer adsorption. Thermo-
dynamic analysis results reveal that TRPO/SiO2-P’s adsorption of zirconium ions is both
spontaneous and endothermic.

The economically viable H2C2O4, employed in elution experiments, serves as an
effective eluent for scandium and zirconium, exhibiting rapid desorption kinetics and
nearly 100% elution efficiency. Furthermore, TRPO/SiO2-P demonstrates good reusability,
maintaining approximately 80% of its original adsorption performance even after four
adsorption–desorption cycles. SEM-EDS, FT-IR, and XPS results revealed that TRPO/SiO2-
P uniformly adsorbed scandium and zirconium on both the surface and inner surface of
the resin. The involvement of SO4

2− and Cl− throughout the adsorption process, and
the differing affinities of the P=O groups for scandium and zirconium, were pivotal in
achieving scandium–zirconium separation. Column separation experiments demonstrated
that TRPO/SiO2-P can produce scandium solutions with purities of 99.8% in sulfuric acid
and 99.99% in hydrochloric acid, respectively, confirming the practical applicability of
TRPO/SiO2-P.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12050350/s1. Figure S1. Chemical structures of (a) XAD7HP
and (b) HZ-635 (R means Alkyl). Figure S2. Simple schematic diagram of the column system.
Figure S3. Effect of contact time on the adsorption performance (m/V = 0.1 g/5 mL, Sc(III)/Zr(IV)
= 5 mM/5 mM, T = 298 K, shaking speed: 140 rpm, medium: (a) in 0.2 M H2SO4, (b) in 5 M
HCl solutions). Table S1 Internal diffusion model fitting data in 0.2 M H2SO4 solution. Table S2
Internal diffusion model fitting data in 5 M HCl solution. References [38,43,53–56] are cited in the
Supplementary Materials.
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