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Abstract: In agriculture, diphenyl ether herbicides are a broad-spectrum family of pesticides mainly
used to control annual weeds in agriculture. Although diphenyl ether herbicides have a long-lasting
effect in weed control, they can also be harmful to succeeding crops, as well as to the water and soil
environment. Residual herbicides can also harm a large number of non-target organisms, leading
to the death of pest predators and other beneficial organisms. Therefore, it is of great significance
to control and remediate the contamination caused by diphenyl ether herbicide residues for the
sake of environmental, nutritional, and biological safety. This review provides an overview of
the techniques used for remediating diphenyl ether herbicide contamination, including biological,
physical, and chemical remediation. Among these techniques, bioremediation, particularly microbial
biodegradation technology, is extensively employed. The mechanisms and influencing factors of
different remediation techniques in eliminating diphenyl ether herbicide contamination are discussed,
together with a prospect for future development directions. This review serves as a scientific reference
for the efficient remediation of residual contamination from diphenyl ether herbicides.
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1. Introduction

Worldwide, pesticides play a significant role in controlling harmful pests and ensuring
high and stable crop yields. However, the excessive use of pesticides has resulted in
increasingly serious pollution issues; therefore, it is necessary to take specific measures
to tackle these problems. The control of pesticide contamination is crucial for achieving
sustainable agricultural development and environmental safety [1]. Among all types of
pesticides, diphenyl ether herbicides are one of the most extensively utilized pesticides
in the world [2]. Presently, there are a total of 11 varieties of diphenyl ether herbicides
developed globally, mainly including fomesafen, lactofen, oxyfluorfen, acifluorfen, bifenox,
ethoxyfen–ethyl, fluoroglycofen–ethyl, chlomethoxyfen, and aclonifen (Figure 1) [3]. Two
other diphenyl ether herbicides, nitrofen and chlornitrofen, have been banned in numerous
countries due to their high toxicity to mammals [4]. Diphenyl ether herbicides mainly enter
the plant through the shoot apex and midrib, targeting protoporphyrinogen oxidase to
inhibit chlorophyll synthesis and disrupt the cell membranes of sensitive plants. These
herbicides are mainly applied to the soil surface as soil treatments. They primarily target the
young shoots of annual weeds in soybean and peanut fields, with better effects on broadleaf
weeds [5]. However, under adverse conditions (e.g., irregular temperatures and rainfall),
the use of diphenyl ether herbicides to control broadleaf weeds in soybean fields can lead to
phytotoxicity and inhibit soybean growth, in particular for some highly active and selective
herbicides such as oxyfluorfen, fomesafen, and fluoroglycofen. Moreover, these herbicides
can easily lead to phytotoxicity in the succeeding crops, even at low soil concentrations.
The symptoms of phytotoxicity principally include leaf curling, burn-type lesions, and, in
severe cases, the scorching of the entire leaf surface [6,7]. Diphenyl ether herbicides are
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relatively stable in the soil, with a long degradation half-life. For instance, the half-lives of
fomesafen, oxyfluorfen, and acifluorfen in the soil were of 100–240 days, 30–40 days, and
14–60 days, respectively [8,9]. Subsequently, in recent years, some environmental problems
resulting from the use of diphenyl ether herbicides have been frequently reported.
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For example, oxyfluorfen has the potential to contaminate shallow groundwater in
scenarios with low organic carbon content and coarse soil texture, which can significantly
inhibit the activity of acetylcholinesterase in two fish species, namely the Nile tilapia and
mosquito fish [10,11]. At higher concentrations (10−1–10−3 M), oxyfluorfen can potentially
impact the development of human erythroid progenitor cells (BFU-E/CFU-E) and the
synthesis of hemoglobin [12]. Lactofen can enter the soil through spraying, dust drift, or
rainfall runoff, and exhibits high toxicity toward non-target organisms including mammals,
fish, and aquatic invertebrates (e.g., large water fleas and diagonal water fleas) [13,14].
Bifenox, at concentrations of 0.5–0.75 µg/mL, can induce liver damage and toxic effects on
the cardiovascular system in zebrafish embryos [15]. Additionally, some diphenyl ether
herbicides, such as lactofen, contain asymmetric carbons and exhibit chirality, leading to
enantioselectivity in their activity, environmental behavior, and toxicity. The research has
demonstrated that the R-isomers of lactofen and acifluorfen exhibited higher toxicity than
their S-isomers toward Scenedesmus obliquus and Daphnia magna [13,14]. Therefore, the
toxicity difference between enantiomers of chiral diphenyl ether herbicides and specific
contamination remediation should not be ignored.

In view of the above-mentioned adverse effects induced via the use of diphenyl ether
herbicides, it is necessary to take relevant measures to reduce the residues of diphenyl
ether herbicides in the environment and minimize their impact on the environment and
non-target organisms. Previous studies have reported that the remediation methods for
diphenyl ether herbicide contamination mainly include bioremediation, physical remedia-
tion, and chemical remediation. Based on this point, this review considers the development
of diphenyl ether herbicide contamination remediation. The influencing factors and re-
mediation mechanisms are also discussed. The objective of this review is to provide
comprehensive information on the remediation of diphenyl ether herbicide contamination
for scientific pollution control.

2. Bioremediation of Residual Contamination of Diphenyl Ether Herbicides
2.1. Progress in Bioremediation of Diphenyl Ether Herbicide Residue Contamination

Bioremediation technology is a sustainable and greener approach for the restora-
tion of environmental pollution, especially soil pollution. It involves the use of plants,
microorganisms, and other organisms to absorb and decompose harmful substances in
the environment, thereby remediating the environment and removing pollutants. This
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technology can improve the pollution status of the agricultural soil environment to some
extent [16]. It encompasses various techniques, mainly including phytoremediation and
microbial degradation [17].

2.1.1. Progress in Phytoremediation of Diphenyl Ether Herbicides Residue Contamination

Phytoremediation technology is an emerging soil remediation technique that offers sev-
eral advantages, including easy operation, large-scale repair, minimal secondary pollution,
low cost, and preservation of soil structure [17,18]. So far, there have been limited reports on
using plants for remediating diphenyl ether herbicide contamination, with only the study of
Wang et al. [19] investigating the enantioselective uptake and metabolism of the herbicide
lactofen in the aquatic plant Lemna minor. It was found that L. minor exhibited a preference
for the uptake and metabolism of S-lactofen, resulting in an accumulation approximately
three times higher than that of R-lactofen in L. minor. Additionally, the metabolism rate
of S-lactofen (T1/2 = 0.92 d) was significantly faster than that of R-lactofen (T1/2 = 1.55 d).
However, phytoremediation technology has limitations in terms of the coverage depth and
remediation period, and it cannot meet the demand for rapid remediation [20]. Therefore,
further research and improvement are necessary.

2.1.2. Progress in Microbial Degradation of Diphenyl Ether Herbicides Residue Contamination

Microorganisms can use organic pollutants as carbon source and energy and play an
important role in the degradation of diphenyl ether herbicides [17]. Microorganisms possess
diverse chemical abilities such as oxidation reduction, decarboxylation, deamination, and
hydrolysis. Furthermore, microorganisms also have high reproductive ability and genetic
variability, allowing their enzyme systems to rapidly adapt to environmental changes
and showcasing metabolic diversity. Meanwhile, microorganisms are characterized by
species diversity, wide distribution, fast reproduction, high surface area to volume ratio,
and easy variability. In the environment, various natural substances, especially organic
compounds, can almost always be degraded through the action of microorganisms [21].
Previous studies have reported that numerous microorganisms can degrade diphenyl ether
herbicides. These microorganisms mainly include fungi, bacteria, and actinomycetes, and
detailed information is provided in Table 1. Among all the diphenyl ether herbicides,
fomesafen has been the most widely reported herbicide for contamination remediation
using microorganisms. The reported microorganisms that have degradation ability mainly
include Aspergillus niger, Lysinibacillus, Shigella flexneri, Stenotrophomonas acidaminiphila,
Pseudomonas zeshuii, etc. [2,22–39]. In addition to the degradation of major diphenyl ether
herbicides, some diphenyl ether derivatives have also been reported. For instance, Schmidt
et al. [40] isolated a strain of Sphingomonas sp. SS3 that can degrade diphenyl ether and its
mono-halogenated derivatives; Hiratsuka et al. [41] found that the white-rot fungus Coriolus
versicolor can degrade diphenyl ether compounds through different metabolic pathways
under lignin degradation conditions, and extracellular lignin-degrading enzymes do not
participate in the initial steps of these metabolisms; Keum et al. [42] identified that S.
wittichii RW1 is a highly effective diphenyl ether herbicide-metabolizing bacterium with
broad substrate specificity.
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Table 1. Microbial species, sources, and degradation characteristics of degradable diphenyl ether herbicides.

Degrading Strains Source Herbicide Concentration (mg/L) Degradation Rate (%) Degradation Mechanism References

Bacteria
Pseudomonas mendocina FB8 soil Fomesafen 500 86.75 (37 ◦C, pH 7.0, 96 h) Mineralization [22]
Pseudomonas sp. TB-2 soil Fomesafen 10 96.00 (35 ◦C, pH 7.0, 72 h) Co-metabolism [23]
Lysinibacillus sp. ZB-1 soil Fomesafen 50 81.32 (30 ◦C, 7 d) Mineralization [24]
Bacillus sp. FE-1 soil Fomesafen 10 82.90 (35 ◦C, pH 7.0, 14 h) Mineralization [25]
Klebsiella sp. F-12 soil Fomesafen 100 80.00 (35 ◦C, pH 6.0, 2 d) Mineralization [26]
Klebsiella sp. FB9 soil Fomesafen 500 48.32 (37 ◦C, pH 7.0, 96 h) Mineralization [27]
Shigella sp. FB5 soil Fomesafen 500 88.32 (37 ◦C, pH 7.0, 96 h) Mineralization [27]
Stenotrophomonas acidaminiphila BX3 Sewage Fomesafen 100 80.00 (30 ◦C, pH 6.0~7.0, 5 d) Mineralization [28]
Sinorhizobium sp. W16 soil Fomesafen 5 69.00 (30 ◦C, 7 d) Mineralization [29]
Pseudomonas zeshuii BY-1 soil Fomesafen 50 88.70 (3 d) Mineralization [30]
Pseudomonas sp. YF1 soil Fluoroglycofen 200 80.00 (30 ◦C, pH 7.0, 7 d) Mineralization [31]
Lysinibacillus sp. ZB-1 soil Fluoroglycofen 50 86.40 (30 ◦C, pH 7.0, 7 d) Mineralization [24]
Pseudomonas citronellolis DK-3 Sludge Acifluorfen 100 97.20 (30 ◦C, pH 7.0–8.0, 120 h) Mineralization [32]
Lysinibacillus sp. ZB-1 soil Lactofen 50 60.40 (30 ◦C, 7 d) Mineralization [24]
Bacillus sp. Za soil Lactofen 50 94.80 (40 ◦C, pH 7.0, 4 d) Co-metabolism [33]
Bacillus sp. YS-1 soil Lactofen 50 97.60 (pH 8.0, 15 h) Mineralization [34]
Azotobacter chroococcum soil Oxyfluorfen 240 60.00 (29 ◦C, pH 7.0, 7 d) Mineralization [35]
Chryseobacterium aquifrigidense R-21 soil Oxyfluorfen 50 92.10 (33.4 ◦C, pH 6.9, 5 d) Mineralization [2]
Fungi
Aspergillus niger S7 soil Fomesafen 100 90.00 (28–36 ◦C, pH 6.0, 5 d) Mineralization [36]
Aspergillus flavus TZ1985 soil Fomesafen 40 92.13 (25 ◦C, pH 7.0, 5 d) Mineralization [37]
Aspergillus jensenii FF1 soil Fomesafen 600 21.03 (30 ◦C, pH 7.0, 7 d) Mineralization [38]
Penicillium dipodomyicola FF2 soil Fomesafen 600 15.74 (30 ◦C, pH 7.0, 7 d) Mineralization [38]
Rhizopus oryzae FF3 soil Fomesafen 600 11.88 (30 ◦C, pH 7.0, 7 d) Mineralization [38]
Actinomycetes
Mycobacterium sp. MBWY-1 Sludge Fluoroglycofen 100 91.60 (30 ◦C, pH 6.0–7.0, 96 h) Mineralization [39]
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2.2. Biodegradation Mechanisms of Diphenyl Ether Herbicides Residue Contamination

The research on biodegradation, particularly the microbial degradation technology
of pesticides, has a long history. Effective microorganisms, including bacteria, fungi,
and actinomycetes, have been successfully screened. Microorganisms exhibit diverse
degradation mechanisms for pesticides, which can be categorized into enzymatic and non-
enzymatic degradation [43]. In particular, enzymatic degradation is the primary pathway.
In the presence of high concentrations of pesticide pollutants, microorganisms utilize
enzymes to metabolize the specific toxic functional groups of pesticide molecules, thereby
reducing or eliminating their toxicity. Hydrolases, esterase, and oxidoreductases are the
typical enzymes involved in the degradation of chemical pesticides such as diphenyl ether
herbicides [44]. For instance, Shang et al. [34] discovered that Bacillus sp. YS-1 degraded
lactofen to three degradation products under the action of esterase RapE and RhoE. The
degradation mechanism begins with the cleavage of two ester bonds in the side chain,
resulting in the formation of acifluorfen. This is followed with the reduction in nitro
groups to amino groups, leading to the formation of aminoacifluorfen. Finally, the amino
group undergoes acetylation, resulting in the formation of acetylated aminoacifluorfen
(Figure 2). Non-enzymatic degradation is another mechanism for the microbial degradation
of chemical pesticides. It refers to the phenomenon whereby the molecular structure of
the pesticide is degraded due to the change in pH value, the production of some auxiliary
factors, and chemical substances produced in the process of microbial activity [45]. To
date, there have been no reports on the non-enzymatic degradation mechanism of diphenyl
ether herbicides.
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The mechanism of phytoremediation can be categorized into three types: first, the di-
rect adsorption of pesticides and their metabolites into the soil; second, the release of certain
enzyme substances from plants into the rhizosphere, which directly degrades pesticides and
their metabolites in the soil; third, the collaborative involvement of the plant rhizosphere
and microorganisms in the process of pesticide decomposition. These three mechanisms fre-
quently work together in plant remediation [46]. Organic pollutants in plants are primarily
degraded through three steps: transformation, conjugation, and compartmentalization [47].
Transformation refers to the conversion of organic pollutants into metabolites with a lower
hydrophobicity and toxicity through the action of plant enzymes. Conjugation involves the
further combination of organic pollutants and metabolites generated in the first step with
components in plants like glutathione, sugars, or amino acids, resulting in the formation of
water-soluble conjugated metabolites through enzymatic reactions. Compartmentalization
involves the transport of the low-toxicity-conjugated metabolites generated in the second
step to the outside of the cell membrane via transporter proteins. These metabolites are
then either stored in vacuoles or transferred to the extracellular matrix [48].
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2.3. Factors Impacting the Bioremediation of Diphenyl Ether Herbicides Residual Contamination
2.3.1. The Impact of Internal Factors

In relation to biodegradation, the intrinsic factors mainly include the concentration,
inoculation amount, and culture time of the degrading strains. Each type of degrading bac-
teria has its own optimal conditions for exerting its degradation performance. For example,
the optimal conditions for the degradation of Lysinibacillus sp. ZB-1, which was isolated
from soil and capable of degrading fomesafen, were 28~36 ◦C, pH of 6.0, and the degrada-
tion rate attained 90% on the fifth day [24]. The optimal conditions for the degradation of
Shigella flexneri FB5, which was also isolated from the soil, were 35~37 ◦C, pH of 6.0~7.0, and
the degradation rate attained 88.32% within 96 h [27]. As for phytoremediation, the internal
factors of phytoremediation mainly include the production of plant root exudates, the
plant’s own metabolic activities, and the plant’s growth characteristics [47]. However, there
is currently no research on the phytoremediation of diphenyl ether herbicide pollution.

2.3.2. The Impact of Environmental Factors

Environmental factors include the physical and chemical properties of soil as well as
the climatic conditions. Among these factors, the pH, temperature, and humidity of the
soil exert a substantial impact on microbial degradation. The pH level directly impacts
the types, community structure, and quantity of microbial communities. Additionally,
different pH levels can alter the chemical form of diphenyl ether herbicides, indirectly
impacting their degradation with microorganisms. Many microorganisms can only survive
within specific pH ranges. Optimal pH levels facilitate microbial growth, whereas extreme
pH conditions can be detrimental to their survival. The temperature affects degradation
rates through control of the reaction rate of microbial enzymes. Both excessively high and
low temperatures can affect reaction rates. For instance, in the study of Liang et al. [24]
covering the microbial degradation of fomesafen, they discovered that the degradation rate
of fomesafen varied significantly at different temperatures. Within 7 days, the degradation
rates of fomesafen at 20 ◦C, 30 ◦C, and 37 ◦C were 38.8%, 81.2%, and 30.72%, respectively.
This indicates that the microbial degradation rate of fomesafen is highest at 30 ◦C. Microbial
growth requires adequate humidity and it has been shown that low humidity conditions
can restrict the movement of microorganisms, while excessive humidity may block the
capillaries between particles and limit the transport of oxygen. The optimal soil moisture
content for microbial remediation is from 25% to 85% [49]. Therefore, it is crucial to in-
vestigate and establish the optimal conditions for the effective degradation of pollutants.
Additionally, soil type, soil organic matter, different nutritional conditions, oxygen con-
centration, heavy metal ions, and other factors will also affect the degradation activity of
microorganisms [7,50]. For example, previous studies have shown that the degradation
of fomesafen is positively correlated with soil temperature, moisture content, and organic
matter, but negatively correlated with soil pH [50].

In addition to the above-mentioned impact factors, the most significant limitation
lies in the interactions between the introduced and indigenous microorganisms, including
predators (viral lysis, protozoan grazers, and predatory bacteria), as well as competition
for niches and nutrients. These interactions typically lead to the decrease in or suppression
of foreign microorganisms following their introduction [51,52]. Additionally, a substantial
reduction in or complete loss of the degrading capacity of the foreign degrading microor-
ganisms may be observed when they are introduced into pesticide-polluted environments,
which also represents a significant limiting factor [33,53]. Therefore, there are still important
challenges in using degrading microorganisms for the in situ remediation of pesticide-
contaminated environments.

3. Physical Remediation of Diphenyl Ether Herbicide Residual Contamination
3.1. Progress in Physical Remediation of the Diphenyl Ether Herbicide Residual Contamination

Physical remediation methods refer to the application of physical techniques to remove
pollutants from the environment. There are three principal types of treatment methods:
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adsorption, steam extraction, and thermal desorption. In steam extraction technology,
pipelines are used to heat the soil, causing moisture to evaporate and thereby carry away
residual pesticides. On the other hand, thermal desorption technology directly heats the
soil to volatilize the residual pesticides [20]. Physical remediation through adsorption,
particularly using biochar as an adsorbent, is a more effective and widely employed method
compared to steam extraction and thermal desorption.

Biochar is a stable and carbon-rich porous material prepared via the pyrolysis of
biomass. Biochar is a porous, carbonaceous solid produced using the thermochemical
conversion of organic materials in a low-oxygen atmosphere. Biochar’s physicochemical
properties make it suitable for safe and long-term storage in the environment, as well as
for improving soil properties. Additionally, biochar itself, as a recalcitrant form of carbon,
serves as a long-term carbon storage medium [54]. As a new material, it possesses high
aromatic qualities, excellent adsorption, high stability, is cost-effective, and environmentally
friendly. It can be used to immobilize pollutants, and minimize soil pollution risks to a
significant extent. Consequently, it has proved to be an outstanding material for soil
remediation purposes [55,56]. The research has shown that adding biochar materials to the
soil can effectively adsorb diphenyl ether herbicides, enhance the activity of microorganisms
in the soil, and reduce the risk of soil contamination. For example, Wu et al. [57] used five
types of biochar (peanut biochar, chestnut biochar, bamboo biochar, maize straw biochar,
and rice hull biochar) to adsorb oxyfluorfen and found that the rice hull biochar has the
best optimal absorption effect for oxyfluorfen. When the rice hull-derived biochar was
added into three different types of soil, the results showed that its application enhanced the
adsorption of oxyfluorfen, and with the increase in biochar content, the adsorption capacity
of the biochar–soil system also increased. Furthermore, biochar can directly or indirectly
enhance the activity of soil microorganisms, improve soil nutrient retention capacity and
biological effectiveness, improve the soil quality and its physicochemical properties, and
indirectly influence the soil structure to improve plant growth and nutrient cycling. During
the research on biochar and modified biochar adsorption of oxyfluorfen, Wu also identified
that biochar not only plays a role in adsorption, but can also increase the diversity and
abundance of soil microbial communities. In order to overcome the shortcomings of the long
processing time, shallow soil layer, and fluctuating effects of biochar methods, the methods
deploying biochar have been strengthened, including gas-modified biochar, acid-modified
biochar, alkali-modified biochar, and metal-modified biochar [48]. The current research
results indicate that the application of biochar, as a powerful and high-performance soil
pollution remediation material, not only reduces the health risks associated with pesticides,
but also reduces the environmental risks and increases the ecological and agricultural
benefits [58,59].

3.2. Physical Remediation Mechanism of Diphenyl Ether Herbicide Residual Contamination

In this review, we have only discussed the mechanism of adsorption. As is widely
recognized, adsorption plays a crucial role in determining the fate of pesticides in the
soil. Adsorption is a physical and chemical process that involves the retention of pesticide
molecules on solid surfaces through various types of bonding, including hydrogen bond-
ing, ionic bonding, covalent bonding, and Van der Waals forces. These interactions occur
between charged sites on soil colloids [60]. The adsorption process of biochar on pesticides,
including diphenyl ether herbicides, can be categorized into both physical and chemical
adsorption (Figure 3). Pore volume, pore size, and specific surface area are factors affecting
physical adsorption [61]. Chemical adsorption involves intermolecular π-π conjugation,
hydrogen bonding, hydrophobic interaction, and electrostatic attraction between the pesti-
cides and the organic molecules from biochar [60]. In this interaction, pesticide molecules
can bond with a variety of functional groups [62]. The surface hydrophilic groups, overall
properties, and porous surface of biochar have an impact on the adsorption of hydrophilic
compounds and hydrophobic compounds [63]. The current research indicates that biochar
obtained directly from biomass pyrolysis has poor surface functionality, low porosity, a
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low surface area, and very limited functional groups such as hydroxyl and carbonyl [64].
Although these drawbacks limit the widespread application of biochar, its surface func-
tionality and porosity can be adjusted through technological advancements. Therefore,
the potential for biochar application remains extensive. The surface properties and pore
structure of biochar can be adjusted through chemical reactions, such as metal salt solution
impregnation, oxidation, amination, sulfonation, and surface doping. These reactions allow
for the loading of metal ions and grafting of functional groups, which in turn facilitate the
functionalization of biochar’s surface properties [54].
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3.3. Impact Factors of Physical Remediation (Adsorption)

The adsorption of pesticides onto remediation materials, such as biochar, is influ-
enced by various factors. These factors include the characteristics of biochar (aromaticity,
carbon content, porosity, surface area, surface functional groups, electrostatic attraction),
the properties of the pesticide (hydrophilicity/hydrophobicity), and the properties of the
soil (organic matter content, pH) [54,59]. The source of biochar raw materials and the
temperature of pyrolysis are crucial factors that influence the adsorption capacity [65,66].
Additionally, the soluble organic matter present in environmental matrices can compete
with chemical pollutants through occupation of the adsorption sites on the biochar sur-
face and blocking its porous structure, thereby impacting the adsorption capacity [67].
Furthermore, natural aging processes can also influence the adsorption effectiveness of
biochar [68,69]. As for diphenyl ether herbicides, Wu et al. [57] illustrated that the ad-
sorption coefficient (Kf) values of oxyfluorfen in five biochars (peanut, chestnut, bamboo,
maize straw, and rice hull) at the same preparation temperature (300 ◦C) were signifi-
cantly different. Among them, the adsorption capacity of rice hulls was the strongest, and
the adsorption capacity of rice hull biochar increased with the increase in the pyrolysis
temperature. In addition, they found that the specific surface area (SSA) of biochar was
positively correlated with Kf [57]. Khorram et al. [70] compared the adsorption properties
of six biochars (rice straw, softwood, hardwood, nut shell, coconut shell, and bamboo) on
another diphenyl ether herbicide, fomesafen. They also found that the adsorption capacity
of biochar on fomesafen is most likely controlled with the SSA and the dissolved organic
carbon contents of biochar. Therefore, it is important to design a suitable material according
to the characteristics of the pesticides for an increased adsorption effect.

4. Chemical Remediation of Diphenyl Ether Herbicide Residual Contamination
4.1. Progress in Chemical Remediation of the Diphenyl Ether Herbicide Residual Contamination

The use of chemical technology to remediate the residues of herbicides is also an
important method. The chemical remediation methods mainly include chemical oxidation
and leaching methods. In the field of chemical oxidation methods, the research focus is on
advanced oxidation methods, including ozone catalytic oxidation, catalytic wet oxidation,
photocatalytic oxidation, and electrocatalytic oxidation, among others. As for the leaching
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method, it can be divided into in situ remediation and ex situ remediation based on the
location of soil treatment [20].

As for the chemical remediation of diphenyl ether herbicide contamination, current re-
search is mostly focused on photocatalysis. For example, Xin [71] prepared a series of Cu or
Sn-TiO2 photocatalysts using the sol–gel method. It was found that compared to traditional
TiO2, the modified catalyst is not only inexpensive and easy to obtain but also broadens
the light response range of TiO2, improves its quantum efficiency, and effectively enhances
the degradation efficiency of acifluorfen. Zhang et al. [72] investigated the degradation
of wastewater containing the herbicide acifluorfen through the preparation of doped and
modified TiO2 photocatalysts. In addition, they explored the factors influencing the effi-
ciency of photocatalytic degradation. Liang et al. [73] aimed to accelerate the degradation
of diphenyl ether herbicides in a visible light environment. They utilized corn cobs as the
source of carbon quantum dots and modified them using nitrogen carbon to synthesize
a non-metallic photocatalyst. Then, the degradation efficiency of fomesafen, oxyfluorfen,
and acifluorfen under the action of this catalyst was studied. In order to provide basic data
support for the remediation and control of such agricultural chemical pollution, the toxicity
of the photodegradation products was also evaluated using a corn seed germination model.
The results of this study confirm that the stability and toxicity of diphenyl ether herbicides
in a visible light environment vary significantly with different substituents. Moreover, this
study verified that fomesafen is the most easily photodegraded pesticide but has the most
significant toxicity; meanwhile, acifluorfen has the lowest photodegradation rate but is the
safest in terms of toxic effect. Gaggara et al. [74] prepared ZnO nanoparticles using the
sol–gel method and investigated the photocatalytic performance of ZnO nanoparticles on
fomesafen, at a pH level of 4, 7, and 9. The effects of ultraviolet light, aeration, and the
addition of oxidants to the reaction mixture were also studied. The results show that the
degradation rate was accelerated in the presence of sunlight and nanomaterials. Acosta-
Santoyo et al. [75] evaluated the electrochemical dewatering of sludge generated after the
coagulation of wastewater contaminated with oxyfluorfen. This process not only reduces
the volume of sludge but also helps to degrade the oxyfluorfen contained in the resulting
cake with electrolysis and using boron-doped diamond anodes. In three consecutive stages,
the application of an electric field during the electrochemical phase enabled the electrolytic
degradation of the oxyfluorfen. Dos Santos et al. [76] studied the surfactant-assisted soil
washing (SASW) method for treating soil contaminated with oxyfluorfen, and then used
photoelectrochemical oxidation to treat the washing solution produced. The results showed
that surfactant-assisted soil washing can effectively remove oxyfluorfen from the soil and
transfer it to the washing solution. It was also found that diamond electrode photocatalysis
is a very effective treatment technology. The combination of ultraviolet irradiation and
electrolysis significantly improves the removal efficiency of oxyfluorfen, while having little
effect on the removal efficiency of surfactants.

4.2. Chemical Remediation Mechanism of Diphenyl Ether Herbicide Residual Contamination

There is very little research on the photodegradation remediation process of diphenyl
ether compounds. Chakraborty et al. [77] reported that the photodegradation products of
oxyfluorfen may undergo ether bond cleavage and dehalogenation pathways. In the process
of using TiO2 to degrade acifluorfen, Xin [71] also confirmed the cleavage of ether bonds,
dehalogenation, hydroxylation, and other products. As shown in Figure 4, Liang et al. [73]
inferred that the photocatalytic degradation process of diphenyl ether herbicides includes
at least three pathways: (1) hydrolysis, dehalogenation, and nitro reduction; (2) ether
bond cleavage; and (3) hydroxylation. Taking the most easily degradable fomesafen P1 as
an example, it undergoes nucleophilic and free radical attacks to form the intermediate
products P2–P5 through amide hydrolysis and nitro reduction, followed with ether bond
cleavage to yield the phenoxyl intermediates P6 and P7. Electrophilic- and free radical-
driven hydroxylation and dehalogenation reactions may occur on the C-H, C-Cl, and C-F
bonds on the aromatic ring [78], resulting in intermediate products such as P8–P12. These
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primary aromatic hydrocarbons are more easily degraded until they mineralize into CO2
and H2O.
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4.3. Impact Factors of Chemical Remediation

Photocatalytic degradation affecting factors for diphenyl ether herbicides mainly
include light intensity, analyst characteristics and dosage, and reaction conditions. For
example, Xin, Zhang, and others [71,72] made improvements to TiO2; however, through
experiments, it was discovered that the improved TiO2 was not only affected by the dosage
of the catalyst, but also by various factors such as light exposure time, solution pH value,
some commonly used anionic and cationic species (Cl−, NO3−, SO4

2−, PO4
3−, K+, Ca2+,

and Cu2+) in agricultural production, and the initial concentration of the degradation
target in photocatalytic degradation. Gaggara et al. [74] used ZnO/Na2S2O8 as a cata-
lyst/oxidant to degrade fomesafen photo-catalytically under ultraviolet light irradiation.
The optimal dosage of the catalyst was found to be 100 mg/L. The half-lives of fomesafen
with ZnO/Na2S2O8 in the three different pH solutions were 16.03 h, 15.56 h, and 11.93 h,
respectively. The reaction rate was faster under alkaline conditions, and slower under
acidic and neutral conditions. Acosta-Santoyo et al. [75] found that the design of an electro-
chemical dewatering cell has a significant impact on the process performance during the
dewatering of oxyfluorfen-contaminated sludge. When the cathode is placed upstream and
the anode is placed downstream, the electrolytic removal efficiency of oxyfluorfen is higher.
Therefore, it is crucial to design inexpensive catalyst materials with excellent performance
and develop mild reaction conditions for the degradation of diphenyl ether herbicides.
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5. Conclusions and Perspectives

In this review, different remediation technologies for diphenyl ether herbicide contam-
ination were discussed. Among all remediation technologies, the use of degrading strains
to clean up soil contaminated with diphenyl ether herbicides has received widespread
attention. However, microbial remediation also faces some challenges. For example, the
survival, competition with native microorganisms, and degradative activity of inoculated
strains are critical factors that limit the efficiency of the bioremediation process. Despite
the high adaptability of microorganisms to diverse environments, the low survival and
activity of individual bioaugmentation strains often result in decreased efficiency or failure
of remediation. In summary, each method, whether biological, physical, or chemical, has
its limitations when used alone for the remediation of diphenyl ether herbicides. Therefore,
the future research trend for the remediation of diphenyl ether herbicides lies in the com-
bined application of multiple methods to compensate for or enhance the remediation effect.
Additionally, since many technologies are still at the laboratory or small-scale field trial
stage, further research is needed to ensure their effectiveness and stability for large-scale
use and promotion. In practical applications, it is especially important that the selection of
a suitable remediation scheme should be based on a comprehensive evaluation of different
remediation objects, residual pesticide types, and economic factors.
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