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Abstract: The need to develop advanced wastewater treatment techniques and their use has become a
priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This
study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine,
using ultraviolet (UV) radiation, and a synthesized catalyst, a composite based on bismuth and iron
oxides (BFO). The size of the bandgap was determined by UV spectroscopy, having a value of 2.27 eV.
The specific surface was determined using the BET method, having a value of 0.7 m2 g−1. The
material studied for the photo-degradation of cytarabine presents a remarkable photo-degradation
efficiency of 97.9% for an initial concentration 0f 10 mg/L cytarabine Kabi when 0.15 g of material
was used, during 120 min of interaction with UV radiation at 3 cm from the irradiation source. The
material withstands five photo-degradation cycles with good results. At the same time, through this
study, it was possible to establish that pyrimidine derivatives could be able to combat infections
caused by Escherichia coli and Candida parapsilosis.

Keywords: cytarabine Kabi; degradation; UV radiation; kinetic process

1. Introduction

The removal of pharmaceutical compounds (medicines, anticancer agents, diagnostic
agents, cosmetics) from wastewater represents a major challenge in the actual context of
the development of human society. This is because most of these compounds, such as
anticancer agents, cannot be removed from water through biological degradation, therefore
remaining in the environment for a long time [1,2]. Anticancer agents are designed to
disrupt or prevent cell proliferation, usually by interfering with DNA synthesis, indicating
strong cytotoxic, genotoxic, and mutagenic effects in several organisms [3].

Although the concentrations of these substances in the environment are generally
lower than those of other classes of drugs, concerns have arisen regarding the impact of
anticancer agents on the environment [4], including the microbial flora in waters and soils
where these agents can accidentally end up.
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One of the most used anticancer agents is Kabi cytarabine [4]. Cytarabine belongs
to the antimetabolic group of drugs [5], which interacts directly with human DNA [6]
and is used in chemotherapy to treat ovarian cancer [7,8], acute myeloid leukemia [9–11],
lymphoblastic leukemia [12,13], and non-Hodgkin lymphoma [4,14,15]. The mechanism of
action of cytarabine can be described as follows: after its penetration into cells, cytarabine
is transformed into cytarabine-5′-triphosphate, which is its active metabolite. Subsequently,
the metabolite competes with cytidine to incorporate it into developing DNA [13,16]. The
DNA repair and replication process is inhibited, especially during the S phase of the cell
cycle, making it a specific drug for rapidly dividing cells, such as cancer cells [5,13]. The
effects are not only manifested in cancer cells, but the adverse effects can also reach through-
out the body, including leukopenia, thrombocytopenia, anemia, fever, anorexia, nausea,
vomiting and aseptic meningitis [16,17]; therefore, a process of oxidative degradation of
such compounds is necessary.

A classic process of oxidative degradation of cytarabine is the Fenton process, which
involves the generation of hydroxyl (OH∗) and hydroperoxyl (OOH∗) radicals through the
redox decomposition process of H2O2 in the presence of Fe2+ ions, acting as a catalyst in
an acidic environment (pH ~ 3) [18,19]. The mechanism of radical generation is presented
below [18,20]:

H2O2 + Fe2+ → Fe3+ + OH− + OH∗ (1)

H2O2 + Fe3+ → Fe2+ + H+ + OOH∗ (2)

These are the main reactions involved in the decomposition of H2O2, but the process
is much more complicated, involving other secondary reactions, such as radicals with
an auto-scavenging tendency and the generation of organic radicals [21,22]. Although
the Fenton oxidation process is a high-performance process, it presents a multitude of
disadvantages, such as a need for pH adjustment [23], high costs due to the addition of
H2O2 [24], and a large amount of sludge with iron content is produced [23], coupled as
well with the H2O2 degradation in the case of its storage. Due to these inconveniences,
new methods of oxidative degradation of organic pollutants, such as photocatalytic ones,
were desired.

Photocatalysis offers a variety of advantages: easy operation, high efficiency, low
energy consumption, and minimal secondary compound generation [25,26]. This method
is based on the use of semiconductor particle suspension irradiated with UV light. UV
irradiation leads to excitation of electrons from the valence band and their displacement
to the conduction band, resulting in the in situ generation of strong oxidizing agents,
such as hydroxyl free radicals (•OH) [27]. Schematically, the photocatalytic degradation is
represented in Figure 1.
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To try to make the photocatalysis process more efficient, various types of materi-
als were synthesized: gold nanoparticles (AuNPs) [28], titanium dioxide (TiO2) [29–32],
silver phosphate (Ag3PO4), silver vanadate (AgVO3), silver carbonate (Ag2CO3), sil-
ver/titanium dioxide (Ag/TiO2), silver/zinc oxide (Ag/ZnO), chitosan/silver (CS/Ag),
reduced graphene oxide/silver nanoparticles (r-GO/Ag), black iron oxide/silver phos-
phate and tungsten oxide (Fe3O4/Ag3PO4@WO3) or silver/silver oxide (Ag-Ag2O) [33–37].
However, all of these catalysts present a multitude of disadvantages: low availability and
high costs; low removal capacity of hydrophobic pollutants, irregular dispersion in aqueous
suspension, as well as the need for post-treatment recovery of the catalyst [38].

In this context, in the present work, the obtaining of a composite material based on
iron and bismuth, a material that would present photochemical properties useful for the
degradation of cytarabine, was studied.

Composite materials based on iron and bismuth are of particular interest, primarily
due to the abundance of iron [39], and secondly, iron oxide (Fe2O3) is chemically stable
in aqueous media, having a small band gap and being economically advantageous [40].
Bismuth-based compounds represent an attractive solution due to the small width of
the band gap and high stability [41], as well as their ability to degrade a wide range of
pollutants: inorganic dyes [42], volatile organic compounds [43], pharmaceutical com-
pounds [44], as well as nitrogen oxides [45].

Considering all the above mentioned, an alternative to improve the Fenton process is
its combination with UV light, which in this way will achieve the homolytic breakdown of
H2O2, increasing the amount of •OH, this being the main purpose of the Fenton method.
From a stoichiometric point of view, two •OH radicals should be generated from one
molecule of H2O2, but due to auto-scavenging it is necessary to operate with larger amounts
of H2O2. The most important role of UV irradiation in combination with the Fenton method
is the generation of Fe2+ ions. UV–Vis radiation, especially below 450 nm, is capable of
transferring excited Fe3+ charges, dissociating them into Fe2+ and an oxidized ligand, which
can be any Lewis base capable of complexing with the ferric ion. In some cases, these
oxidized ligands can generate •OH radicals after UV irradiation. Furthermore, Fe3+ ions
are, as a result, photo-reduced, leading to a significant decrease in the speed of the Fe2+

ions’ regeneration process, and at the same time, a significant drop in sludge residue with
iron content has been observed.

It should also be mentioned that, in this type of heterogeneous system (Fenton-UV),
UV radiation plays a crucial role, especially in combination with minerals that contain iron
and are slightly photoactive, or even in the case of iron deposited on a substrate of an active
carbon catalyst, due to the excitation of delocalized electrons in the carbon matrix [18,19].
The Fenton process mechanism combined with UV light is presented below [18,19]:

[Fe(OH)]2+ + hν → Fe2+ + HO• (3)

[Fe(H2O)]3+ + hν → Fe2+ + HO•+ H+ (4)

There are studies that follow the degradation of phenols by the Fenton method under
UV irradiation, and that were successful both in the presence and in the absence of H2O2.
It indicates, however, that these results occurred due to the adsorptive properties of the
Fe/Active Carbon type material used for this purpose [46].

Therefore, this research paper presents the synthesis of a chemically stable material
with high photocatalytic efficiency, further used to achieve the efficient degradation of
cytarabine. The material is a composite based on bismuth and iron oxides, BixFe1-xOy. It
should be mentioned that the cytarabine degradation process occurred in the absence of
H2O2, or another solution with the role of an oxidative agent, a fact that brings novelty to
this work.

At the same time, Kabi cytarabine antimicrobial activity was also investigated, starting
from the consideration that this compound is used to stop cell proliferation, as claimed
in the description of the therapeutic effect of the drug. To determine if cytarabine is able
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to stop the human cancer cell proliferation, we also tried to highlight its behavior on
bacterial cells. In both situations, the selective toxicity of the drug [47–50] is essential in
order to obtain the desired therapeutic effect. Such a desired therapeutic effect means
inhibiting cancer cells and bacteria that can cause infections that would complicate the
health of cancer patients. Based on that, in medical practice is desirable to have both
effects: direct therapeutic effect (inhibition of cancer cells) and a cumulative concurrent
effect (antimicrobial effect—especially to limit antibiotic resistance). Thus, drugs used in
chemotherapy should be effective or even slightly toxic to some microorganisms, even at
low concentrations.

Therefore, it is extremely important to know whether these therapeutic agents, in the
present case Kabi cytarabine, can affect the oral or gastrointestinal microbiota, because it
could cause the worsening of the condition of patients with oncological conditions [51,52]
for which cytarabine is primarily used.

In the present work, the process of the degradation of a specific drug used in the field
of oncology (Cytarabine Kabi) was investigated. It is well known that the process of drug
elimination from the human body is urinary excretion, hence the possibility of its presence
in urban sewage. That is why the present paper’s research is related to the treatment
of wastewaters loaded with organic compounds; in this case the target compound being
cytarabine. In general, drugs that end up in wastewater pose many problems in wastewater
treatment because they are chemically stable, have a long retention time and are not easily
degraded [53–55]. In general, the wastewater treatment plants use the traditional treatment
process (involving mechanical, chemical and biological steps), paying no attention to the
different organic pollutants that reach treatment plants and which pose a high danger to
the biological flora needed to achieve the biological treatment of wastewaters. On the other
hand, the long-term use of different drugs can increase bacterial resistance. This is why
the antibacterial activity of cytarabine Kaby was evaluated on some microorganisms that
under normal conditions are not pathogenic factors, able to be present in the human body
without infection manifestations (Staphylococcus spp., Candida spp.), and on some bacterial
strains known to present bacterial resistance (Pseudomonas spp.).

2. Materials and Methods
2.1. Synthesis and Characterization of BFO Material

To obtain the BFO composite, the co-precipitation method was used. In a suspension
obtained by adding 1 g of bismuth (III) precursor—basic carbonate (Merck, Sigma Aldrich,
Darmstadt, Germany) in 30 mL of distilled water, 30 mL of methanol were added (Merck,
Sigma Aldrich). The mixture was stirred for one hour, then 5 mL of HNO3 solution
(Merck, Sigma Aldrich) with pH ~2 were added to the reaction mass, continuing to stir for
another 30 min until (BiO)2CO3 has been dissolved. Further, 5 g of Fe(NO3)3 (Merck, Sigma
Aldrich, Darmstadt, Germany) were added to the reaction mass, and then the temperature
was increased to 50 ◦C. The obtained reaction mass was mixed for 3 h until complete
homogenization. For precipitation to occur, 10 mL of NaOH solution (7.5 g of NaOH
(Merck, Sigma Aldrich, Darmstadt, Germany) dissolved in 100 mL of distilled water) was
quickly added to the reaction mass. The obtained precipitate was separated and further
washed with excess distilled water. The final product was dried for 24 h at 100 ◦C and then
calcined in Nabertherm LHT407GN furnaces. The calcination process took place at 650 ◦C,
for 3 h in air. The synthesis of the material is presented schematically in Figure 2.
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2.2. Thermogravimetric Analysis, DTG

Differential thermal analysis (DTG) was performed on the new prepared material
in order to highlight the temperature dependence of the physical properties, by using a
TGA/SDTA 851-LF Mettler-Toledo system. Thermal decomposition was carried out in the
presence of air and the sample was heat treated in the range of 25–800 ◦C.

2.3. Fourier Transform Infra-Red Spectroscopy, FT-IR

The new prepared material was also characterized by recording the FT-IS spectrum by
using a JASCO FT/IR-4200 apparatus (SpectraLab, Shimadzu, Kyoto, Japan).

2.4. X-ray Diffraction Analysis, XRD

XRD analysis was performed by recording the XRD spectrum using a D8 Advance-
Bruker AXS system, with Mo-Kα radiation (αMo = 0.7093 Å). This analysis was performed
to obtain information regarding the degree of crystallinity of the material, but also to
identify the presence of multiple phases in the new prepared material.

2.5. Scanning Electron Microscopy (SEM)

Further, the prepared material was characterized by scanning electron microscopy,
using a Quanta FEG 250 instrument (FEI, Hillsboro, OR, USA).

2.6. Atomic Force Microscopy (AFM)

The new prepared material and the thermally treated one were analyzed by atomic
force microscopy (AFM). AFM images were obtained by Scanning Probe Microscopy
Platform (MultiView-2000 system, Nanonics Imaging Ltd., Jerusalem, Israel) using only the
intermittent mode in normal conditions (298 K). The analysis used a chromium-doped tip
with a 20 nm radius and 30–40 kHz resonance.

2.7. Determination of Band Gap Size by UV Spectroscopy

To determine the size of the band gap, UV–Vis spectra were recorded in the 300–1000 nm
range, using the Varian Carry 50 spectrophotometer (Agilent Technologies, Palo Alto, CA,
USA). The most used model for diffuse reflection is the one proposed by Kubelka and Munk.

The Kubelka–Munk (K–M) model has a particularly simple solution in the case of
semi-infinite samples [56]. All the geometric peculiarities of an inhomogeneous sample are
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condensed into one parameter, the scattering coefficient, s. The diffuse reflectance R∞ is
given by the relation:

R∞ = 1 +
k
s
−

√
k
s
(2 +

k
s
) (5)

where k is the absorption coefficient of the sample (k = 4π k/λ); λ is the wavelength.
This relatively simple form is easily solved for k

s yielding the familiar K–M transform:

k
s
=

(
1 − R∞)2

2R∞
(6)

The K–M transform of the measured spectroscopic observable is approximately pro-
portional to the absorption coefficient and hence is approximately proportional to the
concentration. The internal scattering processes are taken into account by introducing
the semi-empirical scattering coefficient into the theoretical description of the diffusive
reflection. The internal scattering process is determined by the size of the particles and
the refractive index of the sample, presenting a low dependence against the adsorption
coefficient and the radiation wavelength. In this context, the K–M model considers the
scattering coefficient constant. Experimental data proved that the scattering coefficient
varies slowly with the variation of the wavelength. However, the most important variation
is related to the packing density, so special attention must be taken for powder packing if
quantitative results are required [55–57].

2.8. Determination of the Specific Surface Area

Additionally, the new prepared material was characterized by determining its specific
surface by using the Brunauer–Emmett–Teller (BET) method, with a Quantachrome Nova
1200e instrument (Anton Paar GmbH, Osfildern-Scharnhausen, Germany).

2.9. Photochemical Degradation of Cytarabine

Cytarabine is used in the form of an injectable or infusion solution, being clear, color-
less, and having a pH between 7.0 and 9.5. This specific anticancer drug has a molecular
mass of 243.086 uam and its chemical formula is presented in Figure 3. Cytarabine has
a low biological stability, with the molecule undergoing a rapid deamination of the NH2
group at the level of the intestinal tract [58], and the carbohydrate part of the molecule
preventing its rotation once it enters into the DNA [59]. Fresenius Kabi Oncology PLC
manufactures this specific drug.
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2.10. The Influence of Irradiation Time

Initially, cytarabine was placed in contact with the BFO material under stirring in the
dark to determine if the new designed material exhibits adsorbent properties, by mixing
0.15 g of BFO with 50 mL solution with an initial concentration of 10 mg L−1 cytarabine.
After 30 min the system was subjected to UV radiation from a distance of 3 cm.

First, the UV spectrum was recorded in the 200–500 nm range only for the Kabi
cytarabine solution (Figure 4). As can be seen, a specific peak for cytarabine appears at
272 nm, and this peak is specific to the group that is destroyed following the photochemical
oxidation process. Then, the spectra were recorded for different initial concentrations of
cytarabine. The calibration line was made by graphical representation of absorption = f (c),
at the wavelength λ = 272 nm (Figure 4 inset). This calibration line was obtained in order to
be able to determine the residual concentration of cytarabine.
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2.11. The Influence of the Distance between the Irradiation Source and the Sample

To determine the optimal irradiation distance between the irradiation source and the
sample, UV–Vis spectra of the samples exposed at the irradiation sources placed at different
distances were recorded. Each sample, before UV irradiation, was left to adsorb in the dark
for 30 min. The samples containing 50 mL of 10 mg/L cytarabine solution and 0.15 g of
BFO material were then irradiated by placing the irradiation source at different distances
(3, 7 and 10 cm). After an irradiation time of 120 min the UV spectra were recorded.

2.12. The Influence of the Amount of BFO Material

To determine the optimal amount of material required for the photocatalysis process,
the amount of BFO material used was varied between 0.05 and 0.25 g using the same
amount of cytarabine solution (50 mL of cytarabine solution with an initial concentration
of 10 mg/L cytarabine). Each sample, before UV irradiation, was left to adsorb in the dark
for 30 min, and the distance from the irradiation source was kept at 3 cm, for irradiation
times in the range of 30–120 min.

2.13. The Influence of the Initial Concentration of Cytarabine

To establish the optimal concentration of cytarabine that can be degraded by the
synthesized material, the initial concentration of cytarabine was varied in the range of 10 to
50 mg/L cytarabine (solutions containing 10, 15, 20, 25, 30, 35, 40, 45 and 50 mg/L were
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used). Each sample, before UV irradiation, was left to adsorb in the dark for 30 min. The
distance of the sample from the irradiation source was 3 cm, the amount of material was
0.15 g, and the irradiation times varied in the range of 30–120 min.

The removal efficiency of cytarabine (R) was calculated by using the following equation:

R =
Ci − Ct

Ci
·100·[%] (7)

where Ci and Ct are the concentrations of cytarabine (mg/L) in the initial solution and after
a time.

The photo-degradation process of cytarabine is described by the Langmuir–Hinshelwood
equation, which can be simplified to a pseudo-first-order equation [61,62]:

ln
(

C0

Ct

)
= kKt = kappt (8)

where k is the reaction rate constant (min−1);
K the adsorption coefficient of reactant (mg/L);
kapp is the apparent rate constant (min−1);

and the slope of the plot ln
(

C0
Ct

)
against time represents the apparent rate constant of

cytarabine photo-degradation.

2.14. Photo-Degradation Cycles

The long-term stability of photocatalysts is a very important indicator for their practical
application. To determine the photo-degradation cycles of the material, the considered
system was irradiated for 120 min, and after each cycle, it was removed by filtration and
then dried at 100 ◦C prior to the next usage of the photocatalyst.

2.15. Evaluation of the Antimicrobial Effect of Cytarabine

To evaluate the antimicrobial effect of cytarabine, microbial studies were carried out on
bacterial Gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC
27853) and bacterial Gram-positive strains (Staphylococcus aureus ATCC 25923). A reference
fungal strain was also tested (Candida parapsilosis ATCC 22019). All microbial strains were
provided by Microbiologics, Paris, France. During these tests a Mueller–Hinton (MH)
culture medium (Sanimed International Impex, Bucharest, Romania) was used. The culture
medium was prepared according to the manufacturer’s instructions, autoclaved, cooled
to 45 ◦C, and poured into Petri dishes. The minimum inhibitory concentrations (MICs)
of antimicrobial agents were determined by the agar dilution method, according to the
European Committee for Antimicrobial Susceptibility Testing (EUCAST) standard [63].

The standardized inoculum (0.5 McFarland) was adjusted by dilution, obtaining
a microbial suspension of 1–2 × 104 CFU/mL. Subsequently, 1 µL of suspension was
inoculated on MH agar, using a loop (Nuova Aptaca SRL, Canelli, Italy). After incubation
at 35 ± 2 ◦C for 24 h, the MICs were calculated as the lowest concentration of cytarabine
(µg/mL) that showed the complete inhibition of visible growth of test strains over a defined
period (24 h in our study). Consequently, minimum bactericidal concentration (MBC) or
minimum fungicidal concentration (MFC) was established as the lowest antimicrobial
concentration (µg/mL) at which the entire concentration of the bacterial or fungal inoculum
was reduced by 99.9%.

A positive growth control (medium with bacterial strain) was used, and the experi-
ments were carried out in triplicate.

3. Results and Discussion
3.1. Physico-Chemical Characterization of BFO Material

The synthesized material was physico-chemically characterized by thermal analysis,
X-ray diffraction, atomic force microscopy, infrared spectroscopy and by scanning electron
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microscopy, with the obtained information being depicted in Figure 5. The size of the band
gap was determined by UV spectroscopy and the specific surface was investigated with
the BET method.
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BFO; (b). X-ray diffraction pattern for BFO; (c). FT-IR Spectrum of BFO; (d). SEM analysis at 10,000×,
50,000×; (e). Particle distribution; (f). AFM images of BFO; (g). Calculated height for BFO on the
selected areas.
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The TG curve depicted in Figure 5a indicates a total mass loss of 62.39%. An analysis of
the material highlighted the presence of three endothermic processes. In the first process, at
46 ◦C and 68 ◦C, losses of water and alcohol used in the system occur. In the second process,
the decomposition of Fe(NO3)3 and (BiO)2CO3 is observed at 304 ◦C, corresponding to a
mass loss of 41.29% [62]. In the last process, with a loss of 21.10%, the crystallization of
bismuth oxide takes place through the total transformation of (BiO)2CO3, forming the BFO
composite as the final product.

The XRD spectrum recorded for the synthesized BFO composite presented in Figure 5b
was compared with the ICDD data sheet 01-082-1316 in order to confirm the synthesis of
the desired BFO composite (Bi25FeO40). The crystallographic parameters indicate that a
cubic system of type I23 was obtained [64]. The parameters of the unit cell a of the crystal-
lographic structure show a value of 10.21 Å with a volume of the cell V = 1064.33 Å3. In the
crystallographic system obtained, it is observed that the Bi3+ ions occupy the octahedral
positions and the Bi5+ and Fe3+ ions share the tetrahedral positions [65]. There are also
situations where the Bi3+ ions occupy the tetrahedral position in the structure [66–68]. The
mean size of the crystallites was calculated based on the Debye–Scherer equation, obtaining
a value of 14.5 nm.

FT-IR analysis was performed to further characterize the groups found in the syn-
thesized material, with the recorded spectrum being depicted in Figure 5c. At the wave
number of 3416 cm−1, a vibration specific to the -O-H group appears [69], and such a
specific vibration for -O-H group is also found at the wave number of 1635 cm−1 [70].
At the wave number of 1392 cm−1, a specific vibration associated with the presence of
-C-O-H groups appears [69]. The bands located at wave numbers 1450 cm−1 and 1400 cm−1

are attributed to the stretching vibration of the C=O group [71]. At the wave number of
873 cm−1, a specific vibration associated with the Bi-O-Bi bound appear [69]. At the same
time, at wave numbers 658 cm−1, 513 cm−1 and 421 cm−1, vibrations specific to Bi–O bonds
appear [71].

Specific vibrations of the Fe-O group can be observed at the wave numbers of 508 cm−1

and 467 cm−1 [72–75]. Thus, the vibrations and bands observed in the recorded FT-IR
spectrum confirm the preparation of the desired bismuth iron oxide material.

The SEM characterization provides essential information regarding the morphology
of the material. SEM images for the obtained BFO composite are presented in Figure 5d.
From the micrograph recorded at a magnification of 10,000, the formation of clusters with an
uneven particle morphology is observed. Increasing the magnification to 50,000, we can see a
slight arrangement of the particles in the shape of oval plates. According to the histogram in
Figure 5e, the statistical representation of the particles indicates a size of 250 nm.

It is known that the specific surface plays an essential role in the reaction yield as well
as in the adsorption yield of certain compounds [76]. Therefore, knowing the essential role
of the specific surface of the material, we can determine the roughness of the material on
the analyzed area using atomic force microscopy, which is in close correlation with the data
obtained at BET.

Recorded microscopy images reveal the presence of an agglomerated needle formation
in the case of the new prepared BFO composite. This difference becomes more evident
when the AFM images are analyzed, revealing that during synthesis wires are created,
with longer ones tending to overgrow smaller ones, as can be observed from the images
depicted in Figure 5f. The data presented in Figure 5g show that the length of the wires
have a value around 12 µm and a height between 500 and 700 nm. Based on the recorded
AFM images, the values of specific parameters were calculated (Average roughness (Sa),
Mean Square Root Roughness (Sq), Maximum peak height (Sp), Maximum valley depth
(Sv), Maximum peak-to valley height (Sy)), the values of which are shown in Table 1.

Additionally, the heights of the particular surface formations were measured, pro-
viding the information regarding the uniformity of the clusters and/or particles. These
measured heights can be directly compared with the maximum peak height (Sp) values,
since the measurements were performed on the formations that presented higher heights
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(the lighter colored formations in the AFM images). In conclusion, the Sa value is positive
but under three, meaning that the sample has low rugosity, which is also observed in the
SEM images.

Table 1. Values obtained from AFM analysis.

Sample
Name

Ironed Area
(µm2)

Sa
(µm)

Sq
(µm)

Sp
(µm)

Sv
(µm)

Sy
(µm)

BFO 972.815 0.388 0.485 0.880 −1.163 2.044

3.2. Band Gap Value Determination

In order to evaluate the value of the band gap the UV–Vis spectrum of BFO composite
material was recorded, which is the spectrum depicted in Figure 6.
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After the deconvolution of the recorded spectrum, the presence of three main bands
located at 335 nm, 376 nm, and 468 nm was observed. The transitions of the bands
from 376 nm to 468 nm, correlated with the data obtained by X-ray diffraction and FT-IR
spectroscopy, indicate the occupation of the octahedral positions by the Bi3+ ions and the
tetrahedral positions by the Fe3+ ions [76]. It is assumed that the band located at 335 nm
can be attributed to Bi3+ ions, which occupy a tetrahedral position.

The band gap of the photocatalyst is an essential parameter for the photocatalytic
capacity of the material, and generally a lower value of the band gap indicates an increased
efficiency of the photocatalytic activity of the material [77]; therefore, from the UV–Vis
spectrum obtained for the BFO material, the following band gap calculated with the
Kubelka-Munk function appeared (Figure 7):

A band gap value of 2.27 eV indicates that the prepared BFO composite material is an
ideal candidate for photocatalytic cytarabine degradation [78]. Different values obtained
for the materials band gap are correlated with the different dimensions of the crystallites
obtained during material synthesis. For example, a study performed by R. Koferstein et al.
demonstrates that a BFO composite with a crystallite dimension around 75 nm presents a
band gap of 2.7 eV, compared with the system having a crystallite dimensions of 15 nm
which present a band gap of 2.2 eV [79].
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3.3. N2 Sorption Isotherms

The adsorption–desorption isotherms were recorded in a nitrogen atmosphere at
77 K. Prior to this, the samples were degassed in a vacuum at room temperature for 17 h.
Analyzing the adsorption–desorption isotherms obtained, shown in Figure 8, we can specify
that the material indicates type IVa with hysteresis type H3, specific to samples in the form
of non-rigid aggregates with flat-like particles. In the inset figure presented in Figure 8, it
can be seen that the pore distribution is multimodal, with most pores below 5 nm.
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Based on the recorded adsorption/desorption isotherms, the textural parameters of
the synthesized material, BFO, were calculated, which are presented in Table 2.
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Table 2. Textural parameters of the synthesized material, BFO.

Surface Area,
BET Method,

m2/g

Pore Size
Distribution, BJH

Ads, nm

Pore size
Distribution, BJH

Ads, nm

Pore Width, DFT
Ads, nm

Total Pore
Volume, cm3/g

FHH Ads Neglecting
Adsorbate Surface

Tension
Effects/Accounting for

Adsorbate Surface
Tension Effects, D

0.7 m2/g 3.857 3.354 4.125 0.002 1.7232/2.5744

Evaluating the obtained data, it can be observed that the material is not porous,
indicating a total pore volume of 0.002 cm3/g. The FHH method, which is corelated with
AFM results, also indicates that the materials have low rugosity.

3.4. Studies on the Photochemical Degradation of Cytarabine
3.4.1. Determination of the Optimal Irradiation Time

To determine the optimal irradiation time, as well as the photocatalytic role of the BFO
material, the UV–Vis spectra were recorded at different time periods, in order to determine
the quantity of cytarabine oxidized based on the calibration line, and concomitant with the
degradation process efficiency. The data obtained are depicted in Figure 9.
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Figure 9. Dependence between cytarabine concentration and irradiation time.

Based on the obtained experimental data, it can be established that, with the increase
in UV irradiation time, 97.9% of the cytarabine in the solution is degraded after 120 min
under UV radiation action. At the same time, it is observed that with an increase in the
concentration of cytarabine, the efficiency of the material decreases in terms of the degra-
dation of cytarabine, regardless of the UV exposure time. When an initial concentration
of 50 mg/L cytarabine was used, after 30 min of dark adsorption and 160 min irradiation
time, the removal of cytarabine was almost negligible (2.5%).

3.4.2. Determining the Optimal Irradiation Distance

To determine the optimal irradiation distance between the irradiation source and
the sample, UV–vis spectra were recorded after the exposure to the BFO—cytarabine
system (containing 10 mg/L cytarabine) for 160 min, with the UV source placed at different
distances. The obtained spectra are presented in Figure 10.
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Figure 10. UV–vis spectra regarding the influence of the distance between the UV irradiation source
and the BFO—cytarabine solution system.

From the analysis of the recorded UV–Vis spectra it can be seen that the distance
between the UV irradiation source and the BFO—cytarabine solution system plays an
important role. Thus, with the reduction in the distance between the UV irradiation
source and the BFO—cytarabine solution system, the signal specific to cytarabine at 272
nm also decreases and implicitly disappears. This indicates that cytarabine is completely
degraded at a distance of 3 cm between the UV irradiation source and the BFO—cytarabine
solution system.

Based on the calibration curve, the values of photo-degradation efficiency obtained
for different distances between UV source and the system were evaluated. The obtained
data are presented in Figure 11.
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From the experimental data, it can be stated that the distance between the irradiation
source and the sample of 3 cm is optimal, leading at a maximum photo-degradation
efficiency of 97.9%.

3.4.3. Determination of the Optimal Irradiance and the Optimal Radiation Dosage

Calculating the optimal irradiance is necessary and essential, because it provides
information about the optimal irradiation distance to facilitate the photocatalytic oxidation
process of cytarabine. Therefore, to determine the optimal irradiance required for the
photocatalytic degradation of cytarabine, Keitz’s formula was used [80]:

P =
I2π2DL

2α + sin2α
(9)

From here we can find the irradiance, I:

I =
P(2α + sin2α)

2πDL
(10)

where P—the power of the ultraviolet lamp [W]
I—irradiation intensity [W m−2]
L—the length of the ultraviolet tube [m]
D—the distance travelled by the radiation to the sample [m]
α = arctan[ L

2D

]
rad; sin α = L√

4D2+L2
; cos α = 2D√

4D2+L2
; sin 2α = 2 sin α cos α.

Based on this info, the following values are obtained (Table 3).

Table 3. Determined values of irradiation [I]:

Distance between the UV Lamp and the Irradiated Sample [cm] Irradiance [W m−2]

3 250

7 105

10 83

Following the conversion of the irradiation distance into irradiance, it turns out that the
optimal irradiance is 250 W·m−2, because its absorbance indicates the lowest concentration
of cytarabine present in the solution. Knowing the irradiance values, the optimal radiation
dose can be determined (Table 4) using the optimal irradiance value of 250 W·m−2.

Table 4. Radiation doses.

Irradiation Time [s] Irradiance [W·m−2] Dosage [J m−2]

1800 250 450,000

3600 250 900,000

5400 250 1,350,000

7200 250 1,800,000

From the experimental results and UV–Vis analyses, it follows that the optimal radia-
tion dose is 1,800,000 J/m2, or 1800 kJ/m2, which corresponds to the sample placed at a
distance of 3 cm from the irradiation source. The optimum irradiation time is 120 min, with
a material amount of 0.15 g, and a cytarabine concentration of 10 mg L−1 with a volume of
50 mL.

3.4.4. Determination of the Amount of the Catalytic Material

To determine the optimal amount of material required for the photocatalysis process,
the amount of BFO material was varied in the range of 0.05–0.25 g, by using 50 mL of
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cytarabine solution which had an initial concentration of 10 mg/L (obtained data are
presented in Figure 12).
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From the data presented in Figure 12, it can be seen that 0.15 g of BFO material is the
optimal amount required for the degradation of 50 mL cytarabine solution with an initial
concentration of 10 mg/L. The optimal efficiency of the cytarabine degradation process in
an aqueous medium is achieved when the S:L ration is 0.15 g:50 mL.

3.5. The Effect of the Initial Concentration of Cytarabine

In order to follow the role of the initial concentration of cytarabine on the efficiency of
the BFO material in terms of photo-degradation, the initial concentration of cytarabine was
varied and the efficiency calculated. The obtained data are presented in Figure 13.
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From the experimental data presented, for a ratio S:L = 0.15 g:50 mL, an irradiation
time of 120 min, and a distance between the irradiation source and the sample of 3 cm, the
maximum efficiency of 97.9% has been obtained for a cytarabine concentration of 10 mg/L.
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3.6. Kinetic Studies

The obtained experimental data were modeled using the pseudo-first-order kinetic
model, with the obtained results presented in Figure 14.
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Based on the data presented in Figure 14, the specific parameters were calculated,
which are listed in Table 5.

Table 5. Pseudo-first-order kinetic constant for cytarabine degradation.

Material Ka
(min−1) R2

BixFe1-xOy 0.0307 0.9363

The obtained value of the apparent rate constant for cytarabine decomposition using
BFO composites is 0.0307 min−1. The most important factors in expressing the photocat-
alytic activity are the phase content, crystallite size and specific surface area [81].

Undoubtedly, the improvement in photocatalytic efficiency is deeply related to the
adsorption properties of the tested material. Adsorption is known to be one of the important
steps in photocatalysis, because such a process takes place on the catalyst surface. It can
be observed that the photocatalytic activity increases with an increase in the number of
adsorption abilities that are related to the specific surface and composition of the material.

3.7. Photo-Degradation Cycles

The material was tested in order to determine its stability over time. From the data
obtained, it was found that the material has high stability and can be used for five photo-
degradation cycles (data presented in Figure 15).

After all the cycles, the activity of the tested BFO material was lower than in the first
cycle (decreased from 97.9% to 75.4%). The decrease in activity can be correlated with the
decrease in the degree of adsorption. Unfortunately, the changes in the degree of adsorption
were related to the mass loss of the BFO material (from 0.15 g to 0.08 g) during filtration.
However, the results showed that the obtained photocatalyst possessed good long-term
photocatalytic stability.
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Figure 15. Cycling photo-degradation of cytarabine in the presence of BFO.

3.8. The Proposed Mechanism for the Photo-Degradation Process of Cytarabine

During the UV irradiation of the BFO composite, electron-hole pairs are successfully
formed. Under irradiation, electrons from the valence band are transferred in the BFO mate-
rial conduction band, where they can be freely transported along the material’s conductive
network. Thus, the electron-hole pairs are well separated, and the recombination process
is suppressed. In addition, a good separation of charge carriers leads to the improved
production of reactive oxygen species, which greatly improves the photoactivity of BFO.
Advanced oxidation processes have been successfully applied in cytarabine wastewater
treatment [2].

The mechanism that occurs during the degradation of phenolic type materials was
proposed below by De Heredia et al. [21]:

H2O2 + Fe2+ → Fe3+ + OH− + OH∗ (11)

H2O2 + OH∗ → HO∗
2 + H2O (12)

OH∗ + Fe2+ → Fe3+ + OH− (13)

Fe3+ + H2O2 → Fe2+ + H+ + HO∗
2 (14)

Fe3+ + HO∗
2 → O2 + Fe2+ + H

+
(15)

In the last step, the mineralization process takes place because of prolonged lighting
and also as a result of the loss of active iron that becomes ferric hydroxide. The following
reactions take place: [19]:

Fe3+ + H2O → FeOH2+ + H+ (16)

FeOH2+ + H2O → Fe(OH)+2 + H+ (17)

Fe(OH)+2 + H2O → Fe(OH)3 + H+ (18)

Fe(OH)3 → Fe(OH)3 solid (19)

3.9. Evaluation of the Antimicrobial Effect of Cytarabine

The evaluation of the antimicrobial effect of cytarabine was performed by determining
the lowest concentration (MIC) that killed 99.9% of microorganisms, established after
incubation at 35 ± 2 ◦C for 24 h. The minimum bactericidal concentration (MBC) and
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minimum fungicidal concentration (MFC) were also established for the tested species. The
results are presented in Table 6.

Table 6. MIC, MBC or MFC concentration.

Microbial Strains MIC MBC/MFC

Staphylococcus aureus ATCC 25923 2048 µg/mL 2084 µg/mL

Escherichia coli ATCC 25922 512 µg/mL 512 µg/mL

Pseudomonas aeruginosa ATCC 27853 2048 µg/mL 2048 µg/mL

Candida parapsilosis ATCC 22019 1024 µg/mL 1024µg/mL

These results show that chemotherapy drugs commonly used in oncology, such as
Kabi cytarabine, have an antimicrobial effect on strains of E. coli and C. parapsilosis. Similar
results against E. coli have been observed in other studies [82,83].

Although the human normal flora contains a multitude of microbial species, including
E. coli and S. aureus species, they can also be considered a pathogenic species that can
produce opportunistic infections [84,85], especially in the case of patients with neoplasia,
who have low immunity. The results obtained in the present study indicate that the
chemotherapeutic agent, Kabi cytarabine, affects the growth of some microbes (E. coli and
Candida sp.), so there is the possibility of producing an imbalance of the opportunistic
bacterial flora and the possible favoring of the multiplication of multiresistant germs to the
antibiotic, such as P. aeruginosa or S. aureus [51,86].

4. Conclusions

The aim of this work was to use a composite material based on iron oxide and bismuth
for the photo-degradation of Kabi cytarabine, a very toxic cytostatic, present in aqueous
solutions removed from the hospital system. The material was characterized by XRD,
FT-IR, TG, AFM and SEM techniques. The size of the gap band was determined by UV
spectroscopy and the specific surface was determined with the BET method.

In this work a new method used for cytarabine degradation was presented, using
a photoactive semiconductor. The novelty of the obtained results originates from both
creating new material as well as the successful degradation in the absence of additives that
could increase the degradation speed.

The kinetics of the photo-degradation process was established. The material studied
for the photo-degradation of cytarabine, BFO, according to the experiments carried out, has
a remarkable photo-degradation efficiency of 97.9% for an initial cytarabine concentration
of 10 mg/L, for the case of using 0.15 g of material, during 120 min of interaction with
UV radiation at 3 cm from the irradiation source. The material resisted for five cycles of
photo-degradation with good results.

Kabi cytarabine was found to be able to inhibit E. coli and C. parapsilosis strains in a
dose-dependent manner. Gram-negative bacterial strains were more sensitive to exposure
to cytarabine compared to Gram-positive ones. This study revealed that pyrimidine
derivatives may be able to fight infections caused by E. coli and C. parapsilosis, which is very
important in the medical world, where it has long been found that cancer patients often
have difficult bacterial or fungal infections to fight.
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