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Abstract: The occurrence, distribution, and ecological risk assessment of 36 antibiotics from five
groups, including macrolides (MLs), fluoroquinolones (FQs), tetracyclines (TCs), amphenicols (APs),
and sulfonamides (SAs), were investigated for the first time in the Anning River, Sichuan Province,
China. The results show that antibiotics were widely present in the sediments of the Anning River,
with a total of 22 antibiotics detected. FQs were among the most abundant antibiotics, followed by
TCs, MLs, APs, and SAs. The total concentrations of antibiotics in surface sediments varied from 0.05
to 53.35 ng/g, with an average of 8.09 ng/g. Among these groups, MLs, FQs, and TCs emerged as the
predominant classes of antibiotics. The midstream sediments showed the highest residual levels of
antibiotics, with lower levels observed in the downstream and upstream sediments. Anthropogenic
activities, such as human clinical practices and animal breeding, might be sources of antibiotics
released into the river. An ecological risk assessment revealed that trimethoprim from the SA group
exhibited high risks, and MLs showed medium risks in the Anning River, whereas most antibiotics
presented minimal to low risks. This study provides valuable information on antibiotic pollution
in the upstream region of the Yangtze River, and future management measures are needed for the
Anning River.
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1. Introduction

Antibiotics have been widely employed in both veterinary and human medicine due to
their exceptional ability to treat infectious diseases, as well as their role in promoting growth
in aquatic animals, livestock, and plants [1–3]. During its rapid growth, China has emerged
as one of the leading global producers and users of antibiotics, with a total antibiotic
consumption of 162,000 tons in 2013 [4–6], which is approximately 150 times greater
than that of the United Kingdom [7]. Most antibiotics cannot be completely metabolized
by organisms, and up to 85% of these antibiotics or their metabolites can enter surface
water and sediment via the excretion of urine and feces, household waste, livestock,
and agricultural wastewater [8,9]. Additionally, the widespread usage of antibiotics has
negative effects on various organisms and ecosystems. It is possible that they can cause
phytoplankton toxicity, inhibit the growth of microorganisms, and alter the structure
of microbial communities [10]. Furthermore, exposure to antibiotics may promote the
development of antibiotic-resistant bacteria and genes [11,12], raising serious concerns
regarding animal and human health through food consumption [13].

Owing to the mismanagement of antibiotics, they are widely distributed in surface
water [14–16]. Upon entering the water, antibiotics have the potential to be harmful to
aquatic organisms at even minimal concentrations (ng/L or µg/L) [17–20]. Previous stud-
ies have suggested that sediments serve as significant repositories for antibiotics [21–23]
and may also act as potential secondary reservoirs of these contaminants [14,15]. It is
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natural for many chemicals to accumulate in sediments, which form habitats for plants
and animals [24]. Releasing antibiotics into water can potentially act as a source under
hydraulic conditions and aquatic physicochemical properties, including pH, organic carbon
content, and the presence of metal ions [16,25,26]. Their residual levels in sediments can
provide information about long-term pollution levels in an area [27]. Hence, it is essential
to analyze the pollution attributes of antibiotics in sediments and assess their potential
effects on aquatic ecosystems. In recent years, numerous studies have been conducted
on the occurrence, distribution, and risk assessment of antibiotics in sediments in China,
such as the Yongjiang River [28], Pearl River, Yellow River, Hai River, Liao River [29],
Hanjiang River [14], and Yangtze River [27]. In addition, Sichuan Province is a key region
for economic development and environmental conservation upstream of the Yangtze River.
Among the 10 typical rivers in Sichuan Province, the levels of antibiotics in the Minjiang
River, Jialing River, and Qujiang River exhibited higher concentrations and posed more
significant ecological risks compared to other regions [30]. However, relevant studies on
the Anning River remain limited.

The Anning River flows through four counties and finally runs into the Yalong River
Basin, one of the seven major river basins in China. It covers an area of 11,150 km2 and has
a river length of ~350 km. The topography is marked by higher latitudes in the northwest
and lower latitudes in the southeast. The Anning Valley Great Plains rank as the second
largest plains in Sichuan Province [31]. Within the basin drainage area, the river serves not
only as the primary source of drinking water for the towns along the river but also as an
important water source for agricultural irrigation. Therefore, it is necessary to conduct a
systematic and comprehensive study of the occurrence, distribution, and risk assessment
of antibiotics in the surface sediments of the Anning River. Moreover, the stability of
analytes is a critical point in chemical analysis, especially in the field of trace levels of
antibiotics residue analysis [32]. This study has implemented rigorous sample collection
and pretreatment methods, as well as strict quality control and assurance measures for
antibiotic analysis in sediments, in order to ensure the stability of analysis results. Our
study offers a comprehensive insight into the presence of antibiotics in the main river of
Sichuan Province and offers theoretical support for safeguarding the river’s water quality.

2. Materials and Methods
2.1. Sample Collection

During the month of April in 2023, a total of ten surface sediment samples were
collected from ten different locations along the Anning River, in conjunction with field
research and an examination of pertinent information (Figure 1 and Table 1). Each sample
was collected from the top 5 cm of the river sediments using a core sampler and was
partitioned into two subsamples. The surface sediments were collected with a stainless-
steel shovel that had been cleaned thoroughly. After sampling, the samples were wrapped
in aluminum foil that had been rinsed with solvent, placed in a cooler, and transported to
the laboratory within 24 h. They were then stored at −20 ◦C in darkness until they could be
further processed. Subsequently, the samples underwent freeze-drying, milling, and sieving
(0.25 mm). The treated sediment samples were then stored in opaque glass containers.
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Table 1. Basic information for each sampling site of the Anning River.

Sampling
Site

Geographic Location
(N, E) County Land Use Site Characteristic

A1 28.66◦ 102.21◦

Mianning
Forest Upstream

A2 28.53◦ 102.18◦ Built land

A3 28.27◦ 102.18◦ Cropland

Midstream
A4 27.95◦ 102.15◦ Xichang Cropland
A5 27.84◦ 102.20◦ Built land

A6 27.51◦ 102.18◦ Dechang Cropland
A7 27.36◦ 102.28◦ Built land

A8 27.10◦ 102.21◦

Miyi
Cropland

DownstreamA9 26.81◦ 102.03◦ Cropland
A10 26.72◦ 101.85◦ Forest
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2.2. Chemicals and Reagents

This study focused on 36 antibiotics from five different categories: macrolides (MLs),
fluoroquinolones (FQs), tetracyclines (TCs), amphenicols (APs), and sulfonamides (SAs).
The MLs included Azithromycin (AZM), Erythromycin (ETM), Roxithromycin (ROM), Lin-
comycin (LM), Clindamycin (CLM), and Tylosin (TYL). The FQs included Danofloxacin (DAN),
Sarafloxacin (SAN), Difloxacin (DIF), Enrofloxacin (ENR), Fleroxacin (FLN), Ciprofloxacin
(CIP), Sparfloxacin (SPX), Norfloxacin (NOR), Pefloxacin (PFX), Ofloxacin (OFL), and Lome-
floxacin (LMF). The TCs included Doxycycline (DC), Tetracycline (TC), Chlortetracycline
(CTC), and Oxytetracycline (OTC). The SAs included Trimethoprim (TMP), Sulfamethoxa-
zole (SMO), Sulfamethazine (SMH), Sulfadimethoxine (SMX), Sulfadiazine (SDZ), Sulfapyri-
dine (SPD), Sulfathiazole (STZ), Sulfaquinoxaline (SQX), Sulfamonomethoxine (SMM),
Sulfamethizole (SMT), Sulfachloropyridazine (SCP), and Sulfacetamide (SCT). The APs
included Chloramphenicol (CHH), Thiamphenicol (THH), and Florfenicol (FF). The four in-
ternal standard compounds (ISTDs) included sulfadiazine-d6, levofloxacin-d8, tetracycline-
d6, and chloramphenicol-d5. All the standards and ISTDs were purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd (Shanghai, China).

2.3. Sample Treatment

The sediment samples were freeze-dried under dark conditions and homogenized
by passing through a 2 mm mesh sieve. The sediment samples (2 g) were weighed into
a centrifuge tube, mixed with ISTDs (50 ng), and extracted with 20 mL of ACN/0.1 M
EDTA-McIlvaine buffer (pH 4.0). The mixture was immediately vortexed for 2 min and
ultrasonicated for 15 min. The solution was centrifuged at 6000 rpm for 5 min, and the
resulting liquid above the sediment was gently moved to a clean centrifuge tube. The
extraction process was repeated three times, and all the supernatants were combined and
diluted to 250 mL with ultrapure water. Prior to solid-phase extraction, 0.4 g Na2EDTA
was added to the extract to chelate the metal cations, and hydrochloric acid was added
to adjust the pH of the water sample to 3.0. The cartridge was eluted using a solid-phase
Oasis HLB (200 mg/6 cc) at a flow rate of 5 mL/min. The HLB cartridge was prepared by
adding 5 mL of methanol and 5 mL of 0.1% formic acid. After loading the samples into the
HLB cartridges, the column was purified with nitrogen for 20 min, eluted three times using
6 mL of methanol, dried under nitrogen, reconstituted in a 1.0 mL mixture of acetonitrile
and water (1:1, v/v), and stored at −20 ◦C until HPLC analysis.

2.4. Instrumental Analysis

The HPLC-MS/MS utilized an Agilent 6410 B tandem triple-quadrupole LC-MS/MS
with a Waters Xterra C18 separation column (100 mm × 2.1 mm, 3.5 µm) and an ESI
ionization source. Mobile phase: phase A consisted of 0.1% formic acid and ammonium
formate, whereas Phase B was composed of acetonitrile. Linear gradient: 0 min, 5%
B; 0.1~10 min, 10~60% B; 10~12 min, 60%; and 12.1~22 min, 10% B. The flow rate was
0.25 mL/min. The temperature of the column was held at 25 ◦C, with an injection volume
of 200 µL. The parameters for MS were set as follows: the temperature of the gas was
350 ◦C, with a flow rate of 8 mL/min; the nebulizer pressure was maintained at 25 psi; and
the capillary voltage was set to 4000 V.

2.5. Quality Control and Quality Assurance

The analyses underwent rigorous quality control measures. One parent ion and
two sub-ion ions were selected for each compound for monitoring. Under the same
experimental conditions, the absolute value of the relative standard deviation should be
less than 3% when comparing the retention time of the compound to be tested with that
of the target compound in the standard sample. Standard solution spectra with similar
concentrations were used to compare the relative abundances of the qualitative ions of each
compound. This difference did not exceed the relative standard deviation (0.81–2.74%).
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Before sample analysis, experimental blanks, procedure blanks, and blank spiked recoveries
were established.

2.6. Ecological Risk Assessment

The potential ecotoxicological risks of antibiotics in rivers were assessed using the
risk quotient (RQ) [27,33]. The RQ values are typically represented as the ratio between
the measured environmental concentrations (MECs) or predicted environmental concen-
trations (PECs) of pollutants and the predicted no-effect concentrations (PNECs) for those
pollutants [34]. The RQ value is the measured environmental concentration (MEC) divided
by the PNEC.

The PNECw was calculated according to the following equation (Equation (1)):

PNECW =
NOEC or EC50

AF
(1)

where the no observed effect concentration and mean effective concentration are repre-
sented by NOEC and EC50, respectively. The assessment factor (AF) depends on toxicity
data, with values of ten, fifty, or one hundred for chronic toxicity and one thousand for
acute toxicity [34,35]. The most sensitive species were chosen to maximize the ecological
impact of antibiotics. Without sediment toxicity data, the PNEC values were estimated from
the PNECw values using the equilibrium partition approach, as shown in the following
equation (Equation (2)) [33]

PNECS = PNECW × Kd (2)

where Kd represents the sediment–water partition coefficient (L/kg) of antibiotics, as
determined in previous studies [30,35]. The toxicity data for the antibiotics in this study
were primarily obtained from previously documented sources, as detailed in Table 2.

The RQ values for evaluating the risks of antibiotics in the sediments were determined
using the following equation (Equation (3)):

RQ =
MECS

PNECW × Kd
(3)

where the MECs represent the concentrations of antibiotics in the sediments. Based
on the RQ values, four levels of risk were defined: minimal risk (RQ < 0.01), low risk
(0.01 ≤ RQ < 0.1), moderate risk (0.01 ≤ RQ < 1), and high risk (RQ ≥ 1) [27].

Antibiotics frequently occur in the natural environment in combinations, which can
intensify their impact on the environment due to their combined effects [36]. Therefore,
the combined risks should be calculated to evaluate the synergistic effects of antibiotics
on biological systems [37]. A new combined RQ (ΣRQ) of antibiotics, utilizing the concen-
tration coefficients of antibiotics as the weight assignments for evaluating the ecological
risks of different antibiotics, was developed in a previous study [38]. Equation (4) is given
as follows:

ΣRQ = Σ(RQs ∗ MECs/MECsum) (4)

where ΣRQ is the combined ecological risk of the 17 antibiotics, RQs is the ecological risk of
each antibiotic, and MECsum is the total concentration of antibiotics in the sediment samples
(ng/g).

Table 2. Toxicity data of the antibiotics, including their AF, PNECw, Kd, and PNECs values.

Antibiotics Species Toxicity Data
(µg/L) AF PNECw

(ng/L) Kd
PNECs
(ng/g) Ref.

AZM P. subcapitata NOEC = 10 50 200 17.3 3.46 [39,40]
ROM P. subcapitata NOEC = 10 10 1000 12 12 [27]
LM P. sucapitata NOEC = 5 10 500 5.4 2.7 [39,40]

CLM B. cifloru EC50 = 24,940 1000 24,940 5.4 134.676 [39,40]
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Table 2. Cont.

Antibiotics Species Toxicity Data
(µg/L) AF PNECw

(ng/L) Kd
PNECs
(ng/g) Ref.

TYL D. polymorpha NOEC = 0.29 10 29 5.4 0.1566 [39,41]
ENR V. fischeri NOEC = 2.88 10 288 260 74.880 [27,42]
CIP L. perenne NOEC = 50 10 5000 417 2085.000 [39,43]

NOR M. aeruginosa NOEC = 1.6 10 160 537 85.92 [27,40]
OFL P. subcapitata NOEC = 1.13 10 113 1471 166.223 [39,44]
DC L. gibba NOEC = 10 10 1000 724 724 [39,40]
TC P. subcapitata NOEC = 0.5 10 50 1093 54.650 [27]

CTC L. gibba NOEC = 30 10 3000 778 2334.000 [39,40]
OTC E. densa NOEC = 20 10 2000 670 1340.000 [39,40]
TMP D. polymorpha NOEC = 0.29 10 29 7.4 0.2146 [39,45]
SMM C. vulgaris EC50 = 5900 1000 5900 9.69 57.171 [27,29]
SCP L. gibba EC50 = 2330 1000 2330 0.4 0.932 [39,40]
FF R. subcapitata EC50 = 2300 1000 2300 29. 4 67.62 [27]

3. Results and Discussion
3.1. Occurrence and Composition of Antibiotics

The results from the antibiotic monitoring experiments carried out in the Anning River
are displayed in Table 3 and Table S1. In general, the sediment samples detected 22 of the 36
antibiotics monitored. The recovery rate of antibiotics was 50.6~110.93%, the detection limit
of the samples was 0.003~0.326 ng/L, and the quantitative line was 0.01~1.09 ng/L. At least
four antibiotics were found at each sampling site, suggesting their widespread distribution
in the Anning River. A total of 12 compounds, including LM, CLM, TYL, DAN, CIP, PFX,
LMF, CTC, SMM, SMT, SCP, and SCT, were sporadically identified in the sediments at
levels lower than 1 ng/g. As for the remaining ten antibiotics (AZM, ROM, ENR, NOR,
OFL, DC, TC, OTC, TMP, and FF), their concentrations and detection frequencies (DFs)
were relatively high.

According to Table 3, the total concentrations of antibiotics in surface sediments varied
from 0.05 to 53.35 ng/g, with an average of 8.09 ng/g. The concentrations of SAs and APs
ranged from <LOD to 39.54 ng/g and <LOD to 5.11 ng/g, respectively, with relatively low
DFs of 40% and 70%, respectively. Contrastingly, MLs, FQs, and TCs exhibited the highest
levels of DFs among the antibiotic categories. The concentrations ranged from <LOD to
6.39 ng/g (mean: 0.69 ng/g), 0.51 to 27.41 ng/g (mean: 2.1 ng/g), and <LOD to 7.98 ng/g
(mean: 1.05 ng/g) for MLs, FQs, and TCs, with DFs of 80%, 100%, and 90%, respectively. In
general, the sediment DFs were ordered as follows: FQs > TCs > MLs > APs > SAs. The
variations in distribution were associated with the adsorption capacities, as compounds
with greater adsorption coefficients were more commonly detected in the sediments. The
distribution trend was consistent with the findings in Yangtze River sediments, showing a
positive correlation between the distribution coefficients of these antibiotics and their Kd
values [27].

Additionally, FQs may also occur frequently due to their common usage in daily life.
FQs are commonly utilized in human clinical medicine and animal breeding, whereas TCs
are frequently utilized in veterinary medicine for prophylaxis and infection management,
as well as for promoting animal growth due to their cost-effectiveness [7]. Among the FQs,
OFL exhibited a concentration of 16.26 ng/g (mean: 4.18 ng/g), with a DF of 100%. ENR
was typically found in concentrations ranging from <LOD to 1.44 ng/g (mean: 0.61 ng/g),
with a DF of 90%. Meanwhile, the concentrations of four TCs ranged from <LOD to
4.76 ng/g, with DFs ranging from 20% (CTC) to 70% (doxycycline and tetracycline). In
contrast, TMP from the SAs category exhibited the highest concentration at 39.49 ng/g
(mean: 17.78 ng/g), with a DF of 30%.
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Table 3. Concentrations (ng/g) of Antibiotics in Surface Sediments from the Anning River.

Antibiotics Min Max Mean DF ** (%)

AZM <LOD * 1.53 0.71 80
ROM <LOD 4.25 1.42 80
LM <LOD 0.18 0.10 20

CLM <LOD 0.30 0.17 50
TYL <LOD 0.15 0.14 40
MLs <LOD 6.39 0.69 80

DAN <LOD 0.29 0.27 20
ENR <LOD 1.44 0.61 90
CIP <LOD 0.78 0.27 40

NOR <LOD 9.64 4.90 40
PFX <LOD 0.37 0.37 10
OFL 0.29 16.26 4.18 100
LMF <LOD 0.19 0.18 30
FQs 0.51 27.41 2.10 100

DC <LOD 4.56 1.08 70
TC <LOD 1.5 0.45 70

CTC <LOD 0.35 0.26 20
OTC <LOD 4.76 2.16 50
TCs <LOD 7.98 1.05 90

TMP <LOD 39.49 17.78 30
SMM <LOD 0.14 0.14 10
SMT <LOD 0.05 0.05 10
SCP <LOD 0.12 0.12 10
SCT <LOD 0.19 0.19 10
SAs <LOD 39.54 7.69 40

FF <LOD 5.11 2.02 70
APs <LOD 5.11 2.02 70

* <LOD: below the limit of detection. ** DF: detection frequency.

The antibiotic concentrations observed in this study were generally lower than those
reported in other river sediment studies. For instance, CIP, ENR, and NOR from the FQ
category had concentrations of less than the limit of quantification (LOQ) of 44.23, 19.53,
and 46.64 ng/g, respectively, in the Yangtze River [27]. Additionally, the concentration of
TC in the Yangtze River (Chongqing section) ranged from <LOD to 5.03 ng/g, which was
higher than the results obtained in this study. In contrast, the concentration of OTC in the
Yangtze River was lower, ranging from <LOD to 2.59 ng/g [46].

When compared to other rivers in China (Table S2), the concentrations of TCs in this
study were similar to those found in the urban rivers of Chengdu City, Sichuan Province
(mean: 2.59 ng/g) [47]. However, the concentrations were notably lower than those in
major rivers across China, such as the Pearl River (mean: 24.85 ng/g), the Yangtze River
(mean: 25.95 ng/g), the Hai River (mean: 534.58 ng/g) [29], and the Hanjiang River (mean:
9.2 ng/g) [14]. Furthermore, the levels of MLs, FQs, and SAs in this study were found to be
comparatively lower than those documented for other major rivers throughout China.

3.2. Spatial Distribution of Antibiotic Concentrations along the Anning River

The total concentrations of antibiotics in the sediment samples ranged from 0.80 to
55.51 ng/g (Figure 2a). There was no clear increasing trend in the sediment samples from
upstream to downstream. The highest levels of antibiotic residues were found in midstream
sediments, with average concentrations of 25.78 ng/g. This was followed by downstream
concentrations of 15.36 ng/g and upstream concentrations of 1.55 ng/g.
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The most polluted midstream area was found at site A3, where the total concentration
in the sediments was 55.51 ng/g, dominated by TMP from the SAs category (Figure 2a,b).
SAs are frequently employed in medical, agricultural, aquaculture, and livestock sectors to
prevent and treat bacterial and protozoan infections [48]. Site A3 was located in the Anning
Valley Great Plains, an area with developed animal husbandry and agriculture, suggesting
a high likelihood of veterinary residue [49].

Another significantly polluted midstream area was observed at site A5, with total
sediment concentrations reaching 42.43 ng/g. These concentrations were dominated by
OFL and NOR in the FQ category. Both are used in human and veterinary pharmaceuti-
cals [50], with a significant annual consumption of 5110 tons in China in 2013 [7]. Site A5
was located near Xichang City in the Anning Valley Great Plains, the largest city along the
river. The potential sources of these antibiotics, due to dense population and economic
growth, include wastewater treatment plants, sludge, and hospital wastewater associated
with human activities [51–53].

However, no notable increase in concentrations was found in major cities along the
river, such as Mianning (A2), Dechang (A7), and Miyi (A9). The most polluted downstream
area was observed at site A8, with total concentrations in the sediments reaching 30.07 ng/g,
dominated by OFL from the FQ category. OFL was the only compound detected at each
sampling site. Its high absorption capability could be a significant contributor to its
heightened detection levels [54]. OFL is primarily employed in the realm of human
medicine, and its utilization is quite prevalent in China [16,55–57].

3.3. Ecological Risk Assessment

According to the risk assessment methods of the European Commission (2003), risk
quotients (RQs) were estimated based on the predicted no-effect concentrations (PNECs)
for the most sensitive species. The potential ecological risks of the antibiotics under
investigation were evaluated based on toxicity data obtained from previous studies (Table 2).
Out of the 22 compounds that were detected, ecological risk assessments could not be
conducted for five (DAN, PFX, LMF, SMT, and SCT) due to insufficient toxicity data.

The results are presented in Figure 3 and Table S3. Most antibiotics exhibited trace
residues, resulting in RQs below 0.1, indicating low to minimal ecological risk. FQs, TCs,
SAs, and APs generally pose minimal to low risks, suggesting that they may have a limited
ecological impact on the Anning River. TMP from the SA group presented a high risk at
sites A3, A4, and A5, with the highest concentrations at site A3. These findings indicate
that TMP poses a high ecological risk to aquatic ecosystems and should be prioritized
for control. OFL exhibited low risk at all the sampling sites, consistent with its 100%
detection frequency.
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The MLs, AZM, TYL, and ROM, were found to have medium risks at 70%, 40%, and
30% of the sampling sites, respectively. The high-risk sites were predominantly located
in the midstream segment of the Anning River, in close proximity to residential and
agricultural areas, whereas the medium-risk sites were found in both the midstream and
downstream areas close to agricultural regions. The combined ecological risk (ΣRQ) of
antibiotics was low at some sampling sites (sites A1–2, A6–7, and A9–10), with ΣRQ values
ranging from 0.01 to 0.1 (Figure 3). The ΣRQ value at sampling site A8 indicated medium
risk. High risks were noted at sites A3, A4, and A5, along the midstream area of the
Anning River.

Upon comparing the ecological risk values of antibiotics in the typical rivers of Sichuan
Province [30] with those in the Anning River, it was revealed that despite the highest value
being present in the Anning River, the overall antibiotic risk values in this river were
relatively low (Figure 4). However, the ecological risk level varies depending on factors
such as the type of the antibiotic being tested, the quantity of sampling sites, and the
duration of monitoring. Hence, further research is imperative to more accurately evaluate
the ecological risk posed by antibiotics in the study area.

Although the ecological risk associated with most antibiotics is considered to be
low, there should be greater focus on the antibiotic risk to human health. Antibiotics
in aquatic ecosystems can affect aquatic organisms, bacterial population dynamics, and
the spread of antibiotic-resistant genes (ARGs) [58,59]. ARGs have the potential to be
transmitted through horizontal gene transfer among different organisms, leading to the
emergence of antibiotic-resistant bacteria that could pose a risk to human health through
the food chain [60]. Unfortunately, there is limited data on the pollution characteristics
and ecological risks of ARGs in the sediments of the Anning River. Further research in this
area is necessary, and future ecological risk assessments of antibiotics in the environment
should incorporate ARGs. Therefore, ecological risk assessment methods should continue
to evolve and improve.
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4. Conclusions

This study systematically investigated the occurrence, distribution, and ecological
risks of 36 antibiotics in the surface sediments of the Anning River in Southwest China. A
total of 22 antibiotics were detected in the sediments in the following order of abundance:
FQs > TCs > MLs > APs > SAs. TMP from the SA group exhibited the highest concentration,
reaching 39.49 ng/g (mean: 17.78 ng/g) at site A3, located in the Anning Valley Great
Plains, where animal husbandry and agriculture are prevalent. The average concentrations
of antibiotics in the Anning River were generally lower than those found in other studies
of river sediments, including the Pearl, Yangtze, and Hai Rivers. The risk quotient method
was used to assess the ecological risks of the detected antibiotics, and the results indicated
that TMP from the SA group posed a high risk in the midstream section of the river
(sites A3, A4, and A5), whereas AZM, TYL, and ROM from the ML group presented
a medium risk. Compared to the RQ values observed in typical rivers within Sichuan
Province [30], the ecological risk posed by antibiotics in the Anning River was relatively
minimal. Nevertheless, further efforts are required to enhance the ongoing surveillance of
antibiotic contamination within the study area. The findings of this study will contribute
to bridging the existing knowledge gap regarding the antibiotic profiles in the surface
sediments of the Anning River on a local scale. This information can contribute to future
research on the long-term monitoring and risk control of the study area.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12060411/s1, Table S1: Concentrations (ng/g) of antibiotics
detected in the sediments of the Anning river; Table S2: The concentration of antibiotics in surface
sediments in China (ng/g); Table S3: The risk quotients (RQs) of the target antibiotics in sediments
from the Anning river. Reference [61] is cited in the Supplementary Materials.
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