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Abstract: The Sea of Azov, an inland shelf sea bounding Ukraine and Russia, experiences the effects
of ongoing and legacy pollution. One of the main contaminants of concern is the heavy metal
mercury (Hg), which is emitted from the regional coal industry, former Hg refineries, and the historic
use of mercury-containing pesticides. The aquatic biome acts both as a major sink and source in
this cycle, thus meriting an examination of its environmental fate. This study collated existing
Hg data for the SoA and the adjacent region to estimate current Hg influxes and cycling in the
ecosystem. The mercury-specific model “Hg Environmental Ratios Multimedia Ecosystem Sources”
(HERMES), originally developed for Canadian freshwater lakes, was used to estimate anthropogenic
emissions to the sea and regional atmospheric Hg concentrations. The computed water and sediment
concentrations (6.8 ng/L and 55.7 ng/g dw, respectively) approximate the reported literature values.
The ongoing military conflict will increase environmental pollution in the region, thus further
intensifying the existing (legacy) anthropogenic pressures. The results of this study provide a first
insight into the environmental Hg cycle of the Sea of Azov ecosystem and underline the need for
further emission control and remediation efforts to safeguard environmental quality.
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1. Introduction

Mercury (Hg) is a highly toxic, environmentally persistent, and bioaccumulating
element that poses a significant hazard to the marine biome [1]. Although it is naturally
abundant and globally omnipresent, local concentrations tend to be highly spatiotemporally
variable and depend on geographic location and surrounding industrial activity [2]. The Sea
of Azov (SoA) is bounded by Ukraine and Russia and represents an important watershed
due to its high abundance of fish and connection to the Black Sea [3]. However, due to
the intense industry in the adjacent metropolises, the SoA has been heavily impacted by
anthropogenic pollution, including Hg [4–6].

In May 2023, Ukraine accessed the Minamata Convention, which aims to control the
supply and trade of Hg and reduce its use, emissions, and release [7]. Due to a historic
lack of investment in environmental protection measures and the high density of heavy
industries within the region, the levels of air and water pollution in the south and east
of the country are amongst the highest in Europe [8]. As a signatory since 2014, Rus-
sia has also committed to implementing the agreements of the Minamata Convention
and has reportedly already made significant progress in reducing Hg loadings in surface
watersheds [9,10]. However, both countries continue to be affected by legacy pollution as-
sociated with coal-fired power stations and the historical use of organomercury-containing
pesticides [11,12].

Mercury is a complex contaminant due to its intrinsic elemental properties, which
cause it to readily speciate and alter its chemical behaviour [13,14]. Speciation is defined as
‘the distribution of the element among various chemical forms, which together make up the
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total concentration of the element in the system’ [15]. Elemental mercury (Hg0) possesses
a low melting temperature and high vapour pressure, which facilitate volatilisation [16].
Volatilised Hg can remain in the atmosphere for months before being redeposited through
rainfall, becoming a significant pathway for contamination even in remote areas [17,18].
When in its double-charged ionic form, Hg is highly soluble and can interact with naturally
occurring organic material [19,20]. Other inorganic forms, such as chalcogenides, are more
lithogenic and assumed to have lower bioavailability [21]. The primary environmental risk
is attributed to methylmercury (MeHg), a respiration byproduct produced by sediment
bacteria [22]. MeHg is known to readily bioconcentrate in organisms and subsequently
bioaccumulate through the food web, leading to elevated concentrations in high-trophic-
level predatory organisms [23].

Given the pronounced effect of the surrounding environment on Hg behaviour, numer-
ical models are a widely accepted tool to support its monitoring and survey data, inform
environmental assessments, and forecast large-scale spatiotemporal compound fluxes [24].
Fugacity-based environmental modelling was originally used to simulate the behaviour
of a single compound in increasingly complex environments [25]. Fugacity describes a
chemical’s ‘escaping tendency’ from a specific medium, which is influenced by site-specific
parameters as well as the analytes’ physicochemical properties [26]. The construction of
fugacity mass-balance models has enabled researchers to estimate regional loadings and
identify pollution sources [27]. More recently, the mercury-specific ‘Hg Environmental
Ratios Multi-media Ecosystem Sources’ (HERMES) model was developed [26]. This model
can simulate the environmental fate of multiple Hg species and has been used in a variety of
field studies to compute dynamic fluxes in large Canadian and Kazakhian lakes [26,28–30].

The environmental quality of the SoA has been degraded by anthropogenic activi-
ties [3,31]. The anthropogenic input reached its maximum levels in the 1980–1990s, with
the reported pollution levels far exceeding the maximum permissible concentrations for
fishery reservoirs in the water and sediment of the SoA and its tributaries [4–6,32]. More
recent monitoring efforts have revealed a significant decrease in industrial inputs [4,6,10].
However, legacy pollution is expected to be recalcitrant, and chronic low-level pollution
has the potential to bioaccumulate through the food web.

The aim of this study was to gain insights into the environmental Hg cycle in the SoA
by constructing a mass balance model based on regional data. To achieve this, Ukrainian,
Russian, and international literature were scanned for relevant model input variables. The
computed values were then compared against reported environmental concentrations
of Hg.

2. Materials and Methods
2.1. Theory

Fugacity describes the direction of interphase mass transfer to achieve chemical equi-
librium [33]. The proportionality of the concentration of a compound (C) in a phase to its
partial pressure or fugacity (f ) is given by the Z-value (Z) in the unit mol/m3·Pa.

C = Z ∗ f (1)

Z denotes a substance- and solvent-specific solubility and is used to relate the concen-
tration to the fugacity for different solvents. However, as the molar volume of a solvent
is dependent on its molecular weight, environmental phases become difficult to simulate,
thus warranting the use of empirical partitioning coefficients, K12, defined as follows:

K12 =
C1

C2
=

Z1 f
Z2 f

=
Z1

Z2
(2)

At equilibrium, the fugacities of two phases form a ratio of two Z-values. According
to Mackay et al. [25], the fugacity of a substance in a simple mass balance model (a closed
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system in equilibrium) assuming defined phase volumes (V) and molarities (M) of a single
compound with specific Z-values is given by

fi =
M

∑(ViZi)
(3)

To produce a dynamic rather than a steady-state model, D-values [mol/h] can be
introduced that define rate constants or rate coefficients for transport or transformation
processes (N).

N = D ∗ f (4)

Total fluxes between compartments may therefore be broken down to sums of uni-
directional transport processes. By combining advective and partitioning parameters, in-
creasingly complex mass balance models can be constructed [25]. For compounds lacking a
vapour pressure or general interphase partitioning, a fugacity analogue called ‘aquivalence’
may be applied [34]. For a detailed derivation and application of fugacity/aquivalence
models, see Diamond et al. [35].

As previous fugacity-based models were designed to simulate the environmental fate
of single organic pollutants or pollutant families with similar physicochemical properties,
Toose and Mackay developed a multi-species mass balance model capable of modelling
interconverting pollutants with constant species ratios [36]. To achieve this, a conven-
tional transformation and intermedia transport rate is expressed for a single species and
a multiplier for individual subspecies is deduced. for a single species, and a multiplier
for individual subspecies is deduced. The newly formed combined rates of all subspecies
(D-values) are calculated as the product of a “mother compound” and the combined
multiplier (R).

Rtot = (1 + R2 + R3 + R4 . . . + Ri) (5)

At constant compartment-specific species ratios, the transformation rates of subspecies
can be derived from the total D-value of a “mother compound”, resulting in a consistent
mass balance for all species. The HERMES model combines the aquivalence principle
with the multiplier method to calculate compartment-specific fugacities of the mother
compound: Hg0. A detailed description and derivation of the HERMES model can be
found in a study by Ethier et al. [26].

2.2. Site Description and Model Input Variables

The Sea of Azov (SoA) is an inland shelf sea bounded by Ukraine to the west and
Russia to the east, with a connection to the Black Sea by the Strait of Kerch in the south
(Figure 1). The SoA covers an area of 39,000 km2, with an average depth of 7 m (max.
14 m) and most bays only reaching depths of about 1 m [31]. The water balance of the
SoA comprises riverine inflow, wet precipitation and evaporation, and the inflow and
outflow from and into the Black Sea. About 90% of all riverine inflow is discharged from
the Don and Kuban Rivers, which supply 22 and 11 km3/yr of water with high amounts of
total suspended solids (TSS, 18.1 and 125 mg/L, respectively [37,38]). The SoA receives
on average 397 mm of rain annually combined with large amounts of airborne particulate
matter (approx. 9 and 15 µg/m3 for PM2.5 and PM10, respectively [31,39]). This constitutes
a water influx of 15.5 km3/yr, while evaporation removes 35 km3/yr. The total water
discharge into the Black Sea constitutes around 53–55 km3/yr, while the total inflow ranges
between 36 and 38 km3/yr [31]. This mixing of riverine and marine water results in a
large salinity gradient (2–12 psu) and high TSS concentrations over the whole sea (average
19.1 mg/L [31,40]), with an average organic carbon content of 16.5% [40]. Due to the
large discharge of nutrients and sediment (~25.8 mg/L TSS), the river deltas not only
serve as spawning grounds for a variety of commercially valuable fish species but are also
pollution hotspots [31,37,41]. Despite the high sedimentation rate of 1.66 g m−2 day−1

and low resuspension rate (64%), bottom sediments contain only 2.42% organic carbon.
This has been attributed to riverine TSS being dominated by inorganic constituents with
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comparably low organic carbon content (4.6%) [37,42,43]. The shallow depth of the SoA
facilitates large seasonal variations in water temperatures, ranging from 2.9 to 25.5 ◦C
(average 13.3 ◦C), without a thermocline throughout most of the watershed [44,45]. A
comparative description of the SoA can be found in a book by Kosarev et al. [31].
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The main influx of Hg into the SoA is via riverine input. The total Hg concentrations
in the Don River averaged 520 ng/l between 1979 and 2017 [10]. The maximum concen-
trations in the Kuban River were recorded in 1997–98 (200 ng/L); however, more recent
measurements suggest a decrease to 10 ng/L [6]. Mercury concentrations in the Black Sea
average 9.5 ng/L in surface offshore waters [31]. Finally, Hg concentrations in rainwater
over the SoA average 240 ng/L [46]. The abovementioned data were used to populate the
HERMES model to construct a mass balance of Hg for the SoA. While the inbuilt Hg species
ratios of the original model were not modified, the volatilisation mass transfer coefficient of
Hg was increased to better approximate the size of the SoA and the prevailing windspeed
(7.5–9 m/s) [31,47].

2.3. Assumptions and Limitations

Given the limited available data on Hg loadings and concentrations for the region, no
further parametrisation or compartmentalisation of the model was performed for this study,
as the increased complexity may have impacted its overall reliability. Additionally, a hydro-
dynamic steady state was assumed to balance the sediment and water budgets [48]. The
SoA has a significant salinity and suspended solids gradient due to the impact of riverine
discharge, which also affects Hg concentrations in the sediment and water column [49]. As
the use of the HERMES model in this study is intended to approximate reported values and
estimate currently unknown, undocumented, or unconsidered Hg emissions and loadings,
further increases in the spatiotemporal resolution were deemed unnecessary.

To contextualise the current findings, scientific publications are cited where possible.
However, due to a general scarcity of environmental information on the region, data from
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non-governmental organisation reports and non-peer-reviewed conference articles had to
be included where no peer-reviewed scientific articles could be obtained. Those data were
quality-controlled by assessing the documentation of analytical methods, evaluating the
authors and publishers, and estimating the overall impact of the associated uncertainty.
Data and claims derived from these sources do not conform to the standards of peer-
reviewed scientific publishing, but they provided the context necessary for the present
work. Their use within this study was chosen carefully and mainly served the purpose of
appraising the observations and computed data in this study.

3. Results and Discussion

Using the reported average Hg concentration in rainwater as well as the annual
precipitation rate over the SoA area, a wet deposition input of 3716.1 kg/yr was calculated.
To approximate this influx, the atmospheric Hg concentration in the HERMES model was
increased to 6.0 ng/m3. Further, Fedorov et al. stated that 28% of the total Hg (tHg)
influx reached the SoA via precipitation [46]. Considering this, the total annual input
into the SoA would comprise 13,271.1 kg/yr. Taking the riverine inflow of 9059.7 kg/yr,
calculated from the inflow of the Don and Kuban Rivers, into account, Fedorov et al.
underestimated the total influx by only 495.5 kg/yr [46]. Given the large variability in
environmental parameters and the uncertainty associated with the reported data, this mass
was considered negligible.

Species are given as elemental mercury (Hg0), methylmercury (MeHg), and residual
mercury (THg-MeHg-Hg0). Considering all the currently documented and approximated
Hg loadings, the modelled compartment-specific tHg concentrations amounted to 6.8 ng/L
and 55.6 ng/g dw for water and sediment, respectively (Figure 2). The primary efflux
was the surface gas evasion (11,932.9 kg/yr), while the discharge in the Black Sea and
sediment burial were 369.6 kg/yr and 473.0 kg/yr, respectively. While the water and
sediment concentrations underestimated empirically measured offshore concentrations
(Table 1), they were comparable to the most recent average concentrations reported by
Korablina et al. [4] and Kuznetsov et al. [5], respectively. The computed atmospheric
Hg concentration of 6.0 ng/m3 (Figure 2) matched average concentrations reported for
remote areas on the European continent [50]. It should be noted that the compartment
concentrations derived in this study represent an average value for the entire modelled
system and do not account for the spatiotemporal heterogeneity caused by contamination
hotspots and concentration gradients observed in empirical surveys (Table 1).

Table 1. Mercury concentration data from the literature for water and sediment in the Sea of Azov.
Sediment concentrations are given on a dry weight (dw) basis.

Region Water [ng/L] Sediment [ng/g dw] Reference

Taganrog Bay
100 - [51]

260 - [52]

Sea of Azov (offshore)

10 <100–300 [4]

- 25–280 (mean 67) [5]

170–690
160–520 - [32]

Syvash Lake 200–600 13.8 [49]

Don River mouth - 20,000–1,100,000 [41]

Temryuk port (Kuban
River mouth) - 149,000 [53]
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The atmospheric Hg pollution adjacent to the SoA is heavily impacted by local in-
dustry. In their assessment of pollution in the Donets basin, Panov et al. reported an
atmospheric Hg concentration of 25–30 ng/m3 in Donetsk city and 300–1000 ng/m3 near a
mercury refinery [2]. While these are point-source emissions, studies have documented the
spatial dispersion of point-source-emitted gaseous elemental Hg (GEM) over adjacent areas,
resulting in elevated atmospheric Hg concentrations comparable to this study [28]. The
HERMES model used in this study focused on GEM as the main species in the atmospheric
compartment; however, regional airborne particulate matter is known to carry significant
Hg loadings (53 ng/g) [54].

Gas evasion is directly dependent on water temperature and the air/water mass
transfer coefficient, which for GEM can range over two orders of magnitude depending
on wind exposure and speed [55,56]. Recently, Zhang et al. used a coupled atmosphere–
land–ocean model to update global Hg budgets [57]. Their results suggest a significantly
higher surface gas evasion from ocean re-emissions than previously estimated by modelling
studies. Here, re-emission from the SoA’s water was the dominant efflux in the mass balance
model (90%). Due to the spatiotemporal variability in water temperature and wind speeds
over the SoA, the precision of this estimation cannot be critically appraised; however, it
provides evidence towards significant volatilisation in a large aquatic system.

As documented in Table 1, Hg concentrations in water and sediment are highly
dependent on the sampling year and location. The values provided by Korablina et al. [32]
denote averages recorded between 1986 and 1992 and 1993 and 2005, respectively, which
far exceed more recent concentrations (10 ng/L) reported for 2018 in offshore waters [4].
Using the method by Ethier et al. [30], a residence time of 3.2 years for Hg loadings was
computed, which underestimates the turnover reported by Korablina et al. [4]. This might
be affected by the high surface gas evasion rates.

Assessments of bottom sediments in the SoA reported potentially toxic element con-
centrations to either not or barely exceed maximum permissible concentrations [58,59].
However, the effectiveness of sediment and water quality guidelines in safeguarding hu-
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mans has been called into question [60]. The sediment concentrations produced in this
study underestimate the reported values for offshore waters [5]. Given the severity of legacy
pollution, the model might not be able to consider existing loadings in surface sediments.

3.1. Environmental Implications

The modelled sediment concentrations (Figure 2) fall below several international ma-
rine sediment quality guidelines, which estimate either no or a low risk of adverse effects
in benthic organisms [60–62]. However, previous studies on the effects of comparable
sediment concentrations reported increased Hg contents in benthic molluscs that exceeded
environmental quality standards [63,64]. Furthermore, the high sedimentation intensity
reported by Berdnikov and Sorokina [43] may lead to the formation of anoxic sediments,
which in turn can mobilise large amounts of methane, hydrogen sulphide, gaseous ele-
mental Hg, and other sequestered pollutants that accumulate in commercially important
fish species [4,51]. Comparable values of the water column concentrations computed in
this study (Figure 2) have been reported to result in bioaccumulation in high-trophic-level
organisms [65]. Similar studies in the SoA reported increasing Hg concentrations in Roach
(Rutilus heckeli) between 1992 and 2012 (max. 0.1 µg/kg) and decreasing levels until 2018 [4].
Still, fish stocks are suffering a catastrophic collapse, mainly driven by illegal fishing and
environmental pollution [66,67]. Finally, the SoA provides a habitat for a distinct population
of harbour porpoise (Phocoena phocoena relicta), which was listed as an endangered species
due to its declining population size [68]. Aquatic predators are known to accumulate Hg,
resulting in a range of unspecific adverse effects [23,69], which could threaten the stability
of the ecosystem.

3.2. State of Mercury Pollution in the SoA Region

The paucity of and variability in the provided data preclude a quantitative appraisal
of Ukrainian tHg emissions. Although the relevant emissions data documented under
the European Monitoring and Evaluation Programme (EMEP) date back to 1991, these
data are not adopted by other governing authorities. A report by the United Nations
Economic Commission for Europe (ECE) estimated tHg emissions to be more than 10 times
higher for the year 2003 [70]. This is further supported by other researchers who estimated
emissions to be higher than the EMEP data by factors of 1.17–2.4 for the years 2013 and
2006, respectively [71,72]. The absence of dependable tHg emission data is in part due to
a lack of continuous online atmospheric Hg monitoring, which has also resulted in there
being no official data on Hg emissions from coal-fired power plants [70,71].

The uncertainty surrounding Hg emissions propagates into monitoring water, soil,
and air quality. The dominant sources of pollution are coal-fired power plants, mercury
refineries, and organomercury pesticides. Donbas basin coal is known to be uniquely
contaminated with Hg deposits, with concentrations four times higher than the US average
(0.68 ppm vs. 0.17 ppm [73]). During the last 200 years, approximately 10 billion tons of
this coal were extracted, resulting in severe regional soil and water pollution [73–75]. The
high degree of coal-associated regional Hg emissions and resulting regional contamination
were even classified as a unique biogeochemical province by Babaev et al. [75]. This chronic
exposure has resulted in significantly higher resident morbidity in comparison with the rest
of the country [2]. However, soil surveys have revealed high spatiotemporal variability in
Hg contamination. While some authors found hotspots in the vicinity of industrial sites and
cities (19–8800 mg/kg [2,74]), others reported below-maximum permissible concentrations
in some topsoils and watersheds [76].

Although the UN report on Hg releases from the Russian Federation details reported
emissions, the authors state that the official statistics do not cover all sources of Hg emis-
sions, even point sources, and that, in most cases, data provided by individual enterprises
are based on calculations, not empirical measurements [77]. According to the report, Hg
emissions from coal-fired utility plants are estimated to reach a maximum of 8200 kg/year,
emissions to surface water bodies are expected to reach a maximum of 177 kg/year, and
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emissions to the atmosphere are expected to reach 2900 kg/year. Indeed, more recent
assessments of the levels of heavy metals in Russian rivers have concluded a decreasing
trend in mercury concentrations [6,9,10,78] along with permissible levels in soil [79]. Apart
from lower emissions to water, these changes in water concentrations were attributed to
sedimentation in reservoirs, which creates an additional threat of benthic methylation
and subsequent biotic uptake [80]. Moreover, despite evidence of severe legacy Hg con-
tamination in the Krasnodar and Rostov-on-Don regions as well as the Don and Kuban
Rivers [6,10,12,31,46], Tarasova et al. assessed the extent of Hg pollution in the most adja-
cent regions to the SoA (Belgorod, Rostov, and Voronezh) and found it to not exceed the
maximum acceptable concentrations [81].

Russia’s invasion of Ukraine in February 2022 has exacerbated existing environmental
pollution [82,83]. In July 2022, a maximum concentration of 590 ng/L of Hg was recorded
in the Sukhy Torets River, which ultimately flows into the SoA [84]. A soil survey led by
the Organisation for Security and Co-operation in Europe (OSCE) covering areas directly
affected by hostilities documented elevated Hg concentrations twice as high as background
concentrations [85]. The most probably source is for this contamination is artillery ammuni-
tion [85], as well as the flooding and destruction of mines and mine waste disposal sites [83].
Existing studies on the impact of war-related heavy metal contamination reveal a lasting
effect on the local population, including birth defects and chronic health complications [86].

4. Conclusions

Although the Hg concentrations in Russian rivers are falling and stricter environmental
legislation has been put in place, the Sea of Azov region continues to be affected by legacy
pollution. The chosen modelling approach provided an accurate estimation of regional Hg
dynamics, and the computed concentrations matched those reported in the literature very
closely. The ongoing war will continue to worsen the environmental situation, potentially
undoing conservation efforts made over the last few years. However, the policy changes
implemented by both countries may accelerate environmental recovery after the end of
the hostilities.
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