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Abstract: A field experiment with double cropping rice was carried out to study the foliar application
effects of dicarboxylicdimethylammonium chloride (DDAC) on cadmium (Cd) and arsenic (As)
accumulation in rice grains. The results showed that the spraying of DDAC could significantly reduce
the accumulation of Cd and As in rice grains. The highest reductions in Cd and As content were
observed when 1.5 mmol L−1 DDAC was sprayed, with 49.1% and 27.4% reductions in Cd and
As content in early rice grains and 56.5% and 28.1% reductions in Cd and As content in late rice
grains, respectively. In addition, the content of calcium (Ca) in rice grains increased significantly after
DDAC foliar application, which was also conducive to the synthesis of amino acids such as glutamate
(Glu), glycine (Gly) and cysteine (Cys) in rice grains. The results indicated that the foliar spraying of
DDAC can inhibit the absorption, transport, accumulation and toxicity of Cd and As in rice grains by
increasing amino acid synthesis and regulating the absorption and transport of essential elements.

Keywords: foliar inhibitor; dicarboxylicdimethylammonium chloride; rice; cadmium; arsenic;
accumulation

1. Introduction

As two non-essential-harmful elements, cadmium (Cd) and arsenic (As) are easily
absorbed by rice through the soil-plant system and are transported to grains for accumu-
lation [1,2]. Emissions from industry and mining, as well as the misuse of fertilizers and
pesticides, lead to widespread Cd and As production and their co-contamination of paddy
soil in China, posing a threat to food security and human health [3–5].

Due to the opposite environmental behaviors of Cd and As in soil, the synchronous
control of Cd-As composite pollution is extremely challenging [6]. Water management
is widely used in the remediation of Cd-As composite pollution, but the effectiveness of
joint governance is often unable to be achieved due to the inability to strictly control soil
pH and Eh [7,8]. Treatment methods involving the addition of Cd and As passivators to
soil often pose the risks of reactivation and secondary pollution [9], and 50–70% of the Cd
and As in rice grains mainly comes from the remigration and reactivation of Cd and As
accumulated in vegetative organs before the flowering period [10,11]. Therefore, inhibiting
the activity of Cd and As in vegetative organs is one of the most effective pathways for the
simultaneous remediation of co-contamination with Cd and As, such as in foliar spraying
technology, which can inhibit the remigration and reactivation of heavy metals [12,13].

The transport of Cd in plants is usually carried out by metal ion transporters or
cation transport channels such as K+, Ca2+, Mg2+, Mn2+, Fe2+, and Zn2+, which leads to
a competitive relationship between Cd and these cations [14]. The exogenous addition
of K, Ca, Mn, Fe, or Zn significantly increases the absorption and transport of essential
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cations by rice, while reducing the absorption and transport of Cd [15]. The absorption
pathway of As in rice is related to its current form, which can be divided into silicate (Si)
transporters and phosphate (P) transporters, leading to competition between As and Si and
P [16]. Essential elements are necessary for plant metabolism because they act as enzyme
regulators, cofactors, and activators [17]. Furthermore, the transport rate of beneficial
elements in plants is much higher than that of harmful elements [6]. Therefore, increasing
the absorption of essential elements that have antagonistic effects on Cd and As may be an
important method of inhibiting the absorption of Cd and As by rice.

Amino acids are the basic units of proteins, as well as the precursors of small molecules
such as antioxidants and signaling metabolites, which are closely related to plant growth
metabolism, the abiotic stress response, and element absorption and transport [18–20].
As the central substance of amino acid metabolism, glutamate (Glu) plays an important
role in alleviating the toxicity of Cd and As. Studies have shown that the exogenous
application of Glu downregulates the expression levels of Cd transporter-related genes
in roots and alleviates Cd-induced chlorosis and growth inhibition, which demonstrates
that any pathway that increases endogenous Glu content has the potential to reduce heavy
metal uptake in rice and to alleviate heavy metal toxicity [21]. The exogenous application
of Glu to rice under As stress protects photosynthetic function and the growth of rice plants
by affecting nitrogen assimilation, proline metabolism, and the antioxidant system [22].
Unfortunately, the water solubility of Glu is extremely low, so direct foliar spraying of Glu
has no significant effect on the endogenous Glu content in rice.

In order to increase the water solubility of Glu, an ionic liquid named dicarboxylicdime-
thylammonium chloride (DDAC) was synthesized using Glu as the raw material, which
has the characteristics of good environmental protection, strong water solubility, and high
stability (Scheme 1). Ionic liquids with glycine as a precursor have been shown to effectively
reduce Cd accumulation in rice seedlings [23,24]. However, there are no reports on the
effect of DDAC on the regulation of Cd and As accumulation in rice. Therefore, a paddy
field experiment was conducted to explore the effects of the foliar application of DDAC
on the content of Cd, As, essential elements, and total amino acids in rice grains under
Cd-As co-contamination. The results showed that DDAC could effectively reduce the
accumulation of Cd and As in rice grains by regulating the absorption and transport of
essential elements and promoting the synthesis of amino acids.
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2. Materials and Methods
2.1. Material Preparation

In hydrochloric acid solution, the same molar number of glutamate was added and
stirred evenly. The liquid was transferred to a round-bottom flask after being kept at
a constant temperature reaction at 60 ◦C for 2 h, and was then distilled under reduced
pressure with a rotary evaporator to obtain a white solid powder at room temperature—that
is, DDAC.

2.2. Experimental Design

The field trial was conducted in Xiangtan City, Hunan Province of China (N: 27◦36′,
E: 112◦58′), with two seasons of early rice and late rice. The test soil was Cd-As co-
contaminated soil with a Cd content of 1.29 mg kg−1 and an As content of 39.29 mg kg−1.
Early rice was sown in late April, sprayed in mid-June, and harvested in mid-late July. Late
rice was sown in late July, sprayed in mid to late September, and harvested in November.
The experiment was designed as a randomized complete block design with four replica-
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tions for each treatment. Based on the results of preliminary studies and tests, different
concentrations of DDAC solutions were sprayed at the flowering stage of the rice as fol-
lows: CK (control group), T1 (0.20 mmol L−1), T2 (0.50 mmol L−1), T3 (0.80 mmol L−1), T4
(1.20 mmol L−1), and T5 (1.50 mmol L−1) [24]. Each spray treatment was performed once
a day for two consecutive days. Field management was basically consistent with that of
local high-yield rice fields. Samples were collected from rice plants at maturity and dried
to determine Cd, As, essential element and amino acid levels in the grains.

2.3. Determination of Cd and As Content

The determination of Cd and As content was completed according to previous re-
ports [10,25]. After accurately weighing 0.5 g of the rice grains into the digestion tube,
7.0 mL of MOS HNO3 was added and left for more than 5 h. DigiBlock ED54 (LabTech,
Beijing, China) was used for digestion at 110 ◦C for 2.5 h. After cooling to room temperature,
1.0 mL of H2O2 was added to continue the digestion process for 1.5 h. Finally, the tempera-
ture was raised to 170 ◦C for acid removal. Deionized water was added to the digestion
solution to 25.0 mL, which was then filtered for the detection of Cd content. Inductively
coupled plasma mass spectrometry iCAP Q ICP-MS (Thermo Scientific, Waltham, MA,
USA) was used for Cd determination. The processing method of As determination was
similar to that of Cd, except that the digestion temperature was fixed at 110 ◦C for 4 h and
H2O2 was no longer added. An atomic fluorescence spectrometer AFS-8520 (Haiguang,
Beijing, China) was used to determine the As content. Standard reference material (Rice
Powder Certified Reference Material GBW(E)100350) and blank digestion samples were
used for quality assurance and quality controls (QA/QCs). The recovery rate was 90–105%
to ensure the accuracy and trustworthiness of the data.

2.4. Determination of Essential Element Content

The determination of the essential element content was completed according to previ-
ous reports [26]. ICP-MS was also used to determine the content of K, Ca, Mg, Fe, Mn and
Zn, and the sample treatment method was the same as in Section 2.2.

2.5. Determination of Total Amino Acid Content

The extraction and identification of amino acids were completed on the basis of
previous reports [27]. After accurately weighing 0.25 g grain powder in a test tube, 15.0 mL
of 6 mol L−1 HCl was added. The test tube was placed on ice to cool for 5 min, filled with
high-purity nitrogen, sealed, and placed in a 110 ◦C constant-temperature air drying oven
for 22 h. The acid solution was cooled to room temperature and filtered, and then deionized
water was added to 50.0 mL; 1.0 mL of the above solution was transferred to a clean test
tube and dried with nitrogen in a 50 ◦C water bath. The steps were repeated with 1.0 mL of
deionized water. Finally, the precipitate was dissolved in sodium citrate buffer (pH = 2.2)
and filtered with a 0.22 µm filter membrane (JIN TENG, Tianjin, China) for detection. The
total amino acid content was determined using an Agilent 1200 high-performance liquid
chromatograph (Agilent Technologies, Palo Alto, CA, USA). An advance Bio AAA column
(100 mm × 4.6 mm, 2.7 µm, Agilent Technologies, USA) and diode array detector (DAD)
were used.

2.6. Statistical Analysis

All data were expressed as mean ± standard deviation. One-way analysis of variance
(ANOVA) and Duncan’s tests were used to analyze the significant differences between
treatments (p < 0.05). Microsoft Excel 2021 and SPSS 26.0 were used for data collation and
analysis and Origin 2021 was used for data visualization.
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3. Results
3.1. Effects of DDAC on the Acumulation of Cd and As in Rice Grains

The content of Cd and As in the rice grains decreased significantly after foliar spraying
of DDAC at flowering stage (Figure 1). Compared with CK, the Cd content in early rice
grains decreased from 0.31 mg kg−1 to 0.22–0.16 mg kg−1, with a decrease of 28.8–49.1%
when DDAC was sprayed at different concentrations. The As content decreased from
0.35 mg kg−1 to 0.30–0.26 mg kg−1 by 14.0–27.4%. The accumulation of Cd and As in late
rice was higher than that in early rice. In the control group, the Cd and As content in late
rice grains was 0.36 mg kg−1 and 0.38 mg kg−1, respectively. After the foliar spraying of
DDAC, the Cd content decreased to 0.21–0.16 mg kg−1, with a decrease of 40.9–56.5%, and
the As content decreased to 0.32–0.27 mg kg−1, with a decrease of 15.4–28.1%. In summary,
DDAC, as a foliar inhibitor, can effectively alleviate both Cd and As accumulation in rice
grains in Cd-As-contaminated areas. In addition, the mitigation effect of DDAC on Cd and
As accumulation generally increased with increases in its concentration.
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Figure 1. Effects of different treatments on Cd and As content in the grains of early rice (a,b) and 
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Figure 1. Effects of different treatments on Cd and As content in the grains of early rice (a,b) and
late rice (c,d). CK, T1, T2, T3, T4, and T5 represent spray treatments of 0, 0.2, 0.5, 0.8, 1.2, and
1.5 mmol L−1 DDAC, respectively. Error bars represent SD. Different letters (a–d) indicate significant
differences (p < 0.05) between treatments.

3.2. Effects of DDAC on the Essential Element Content of Rice Grains

The application of DDAC had a significant effect on the content of essential elements
in rice grains (Figure 2). Interestingly, the contents of K, Ca, Mg, and Mn in rice varied
with different rice varieties and seasons, and the contents of these elements in late rice
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were significantly higher than those in early rice. In both early and late rice, the contents
of essential elements were in the order of K > Mg > Ca > Mn > Fe > Zn. Compared with
CK, the contents of K, Ca, and Mg were significantly increased after DDAC spraying, while
the contents of Fe, Mn, and Zn were significantly decreased. When 1.5 mmol L−1 DDAC
was sprayed, the contents of K, Ca, and Mg in early rice grains increased by 9.2%, 20.1%,
and 11.4%, and the contents of Fe, Mn, and Zn decreased by 12.2%, 52.1%, and 21.1%,
respectively. The contents of K, Ca, and Mg in late rice grains increased by 6.9%, 12.8%,
and 19.8%, respectively, and the contents of Fe, Mn, and Zn decreased by 22.5%, 27.8%, and
23.0%, respectively.
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**), while it was positively correlated with As (r = 0.87 ***), Fe (r = 0.60 **), Mn (r = 0.92 ***), 
and Zn (r = 0.73 ***). The As content was not significantly correlated with Fe, but was 
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Figure 2. Effects of different treatments on essential element content in the grains of early rice (a,b)
and late rice (c,d). T0, T1, T2, T3, T4, and T5 represent spray treatments of 0, 0.2, 0.5, 0.8, 1.2, and
1.5 mmol L−1 DDAC, respectively. Error bars represent SD. Different letters (a–d) indicate significant
differences (p < 0.05) among treatments.

In order to further explore the relationship between exogenous DDAC, Cd, As, and
the essential element content, Pearson correlation analysis was performed (Figure 3). The
results showed that the spraying of DDAC had significant effects on the contents of Cd,
As, K, Ca, Mg, Fe, Mn, and Zn in early and late rice grains. The content of Cd in early
rice grains was negatively correlated with K (r = −0.49 *), Ca (r = −0.68 ***) and Mg
(r = −0.59 **), while it was positively correlated with As (r = 0.87 ***), Fe (r = 0.60 **),
Mn (r = 0.92 ***), and Zn (r = 0.73 ***). The As content was not significantly correlated
with Fe, but was negatively correlated with K (r = −0.62 **), Ca (r = −0.60 **), and Mg
(r = −0.52 **) and positively correlated with Mn (r = 0.86 ***) and Zn (r = 0.66 ***). The
correlation between elements in late rice was similar to that in early rice. The content of Cd
in late rice grains was negatively correlated with K (r = −0.57 **), Ca (r = −0.77 ***), and
Mg (r = −0.73 ***), while it was positively correlated with As (r = 0.85 ***), Fe (r = 0.53 **),
Mn (r = 0.83 ***), and Zn (r = 0.67 ***). The As content was negatively correlated with K
(r = −0.68 ***), Ca (r = −0.71 ***), and Mg (r = −0.66 ***) and positively correlated with Fe
(r = 0.58 **), Mn (r = 0.85 ***), and Zn (r = 0.74 ***).
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3.3. Effects of DDAC on the Total Amino Acid Content in Rice Grains

Spraying DDAC onto the leaf surface could increase the amino acid content in rice
grains (Figure 4). Amino acids (AAs) are divided into essential amino acids (EAAs) and non-
essential amino acids (NEAAs), which are important indexes for evaluating the nutritional
quality of rice. The amino acid content of early rice and late rice also showed a certain
difference; the total amount of NEAAs was higher than the total amount of EAAs. The
amino acid content of early rice and late rice was also different; Glu was the most abundant
amino acid in rice, and its content in early rice and late rice reached 10.32–13.16 g kg−1 and
9.29–12.57 g kg−1, respectively. In addition, the contents of cysteine (Cys), aspartate (Asp),
and valine (Val) were also relatively rich, reaching 7.72–8.81 g kg−1, 7.12–7.98 g kg−1, and
6.89–7.14 g kg−1 in early rice and 6.96–7.56 g kg−1, 6.86–7.34 g kg−1, and 6.46–6.63 g kg−1

in late rice, respectively. Methionine (Met) and histidine (His) were the two least abundant
amino acids, at only 1.01–1.18 g kg−1 and 1.38–1.65 g kg−1 in early rice and 0.87–1.06 g kg−1

and 1.35–1.60 g kg−1 in late rice.
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Figure 4. Effects of different treatments on the content of NEAA and EAA in the grains of early rice
(a,b) and late rice (c,d). CK, T1, T2, T3, T4, and T5 represent spray treatments of 0, 0.2, 0.5, 0.8, 1.2, and
1.5 mmol L−1 DDAC, respectively. Error bars represent SD. Different letters (a–d) indicate significant
differences (p < 0.05) between treatments. Ala, alanine; Arg, arginine; Asp, aspartate; Cys, cysteine;
Gly, glycine; Glu, glutamate; His, histidine; Ile, isoleucine; Leu, leucine; Lys, lysine; Met, methionine;
Phe, phenylalanine; Ser, serine; Thr, threonine; Tyr, tyrosine; Val, valine.

After DDAC spraying, the contents of Glu, Asp, Cys, glycine (Gly), and His in NEAAs
in early rice were significantly increased compared to the control group, with the highest
increases of 21.6%, 10.6%, 12.3%, 15.1%, and 16.3%, respectively. However, threonine
(Thr), lysine (Lys), isoleucine (Ile), and Met in the EAAs increased significantly only when
DDAC was sprayed at a higher concentration. Other amino acid contents did not change
significantly. In late rice, Glu, Gly, His, Thr, and Met significantly increased after the
spraying of DDAC, with the highest increases of 26.1%, 13.5%, 15.6%, 21.1%, and 17.3%,
respectively. While the changes in Asp and Cys were significant under 1.50 mmol L−1

DDAC treatment.
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The correlation analysis of Cd and As content and amino acid content showed that
the accumulation of Cd and As in rice was negatively correlated with the content of amino
acids (Figure 5). In particular, the Glu content was strongly correlated with both the Cd and
As content. The His, Gly, Glu, Asp, Cys, Thr, Lys, Ile, and Met content were significantly
correlated with Cd content in early rice. The As content was no longer significantly
correlated with the Met content, but was significantly correlated with Tyr. The correlation
between Cd and amino acids in late rice was similar to that in early rice. The As content
and Met content also showed significant correlations in late rice.
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4. Discussion

K, Ca, Mg, Fe, Mn, and Zn are all essential nutrients required by rice, and their absorp-
tion and transport are crucial for growth, metabolism, and development in rice [28]. The
transportation of these essential cations is regulated by OsNramp, OsIRT, OsHMA, OsZIP,
OsLCT, and other transporters, as well as non-selective cation channels (NSCCs) [29–31].
NSCCs are a collection of channel proteins located in the inner membrane of cells such as
the plasma membrane and vacuole membrane, which mediate the transmembrane trans-
port of cations with different valence states [32]. In addition, these essential cation-related
transporters and NSCCs also simultaneously regulate the absorption and transport of Cd
in rice. The transport of As in rice also relies on transporters of essential elements, such as P
transporters (Phts), and Si transporters (OsLsi1 and OsLsi2) [33–35]. While the competitive
effect of essential elements on transporters and channels is greater than that of harmful
elements, the transport rate of beneficial elements in plants is much higher than that of
harmful elements. In this study, spraying DDAC on the leaf surface significantly decreased
the Cd and As content, but significantly increased the Ca content. Due to the competitive
relationship between Cd and Ca, this increase in Ca content could inhibit the absorption
and transport of Cd, thereby reducing the accumulation of Cd in rice grains. Studies
have shown that an increase in Ca reduces the activity of As [36]. These results indicate
that DDAC application can inhibit the absorption and transport of Cd by regulating the
absorption and transport of essential elements, which may be related to increasing the
ability of Ca to compete with transporters and NSCCs. In addition, increases in Ca can
inhibit the activity of As and reduce the transport of As.

Amino acids are related to ion transport and also play a key role in the detoxification
of heavy metals [37,38]. Glu and Asp are aliphatic amino acids, which can form a ring
complex with Cd through two O atoms from α-COO- and the side chain-COO-. Arginine
(Arg) is a basic amino acid that can form a complex with Cd through the N and O of cyanide
and carboxyl groups, thereby reducing Cd activity [39]. Glu, Gly, and Cys are precursor
substances for the synthesis of glutathione (GSH, γ-Glu-Cys-Gly) and phytochelatins (PCs,
γ-Glu-Cys)n-Gly) [40,41]. GSH and PCs form chelates with Cd via S atoms on the sulfhydryl
group, thereby reducing the activity of Cd and inhibiting the migration and transport of
Cd [42]. Most plants have a strong ability to reduce As(V), and As(V) entering plant cells
can be rapidly reduced to As(III) by arsenate reductase [43,44]. As(III) can form complexes
with GSH and PCs, which are further isolated into the vacuole by the ABBC1/ABCC2
transporter [45]. In this study, the foliar spraying of DDAC promoted the synthesis of amino
acids and alleviated amino acid metabolism disorder induced by Cd-As co-contamination.
Increases in Glu, Gly, Cys, Asp, and Arg content were conducive to the synthesis of GSH.
GSH, Glu, Asp, and Arg can be used as ligands to promote the chelation of heavy metals.
These results indicate that the foliar spraying of DDAC increased the chelation of chelating
ligands with Cd and As in rice, thereby jointly inhibiting the accumulation of Cd and As in
rice grains.

In addition, the selective permeability of glutamate receptor-like channels (GLRs) is
regulated by ligands and is closely related to Ca conduction and cation transport, and its
selectivity for beneficial elements is much higher than that for harmful elements [46,47].
Glu, Gly, Cys, Asp, alanine (Ala), and serine (Ser) can be used as activators for GLRs to
regulate the flow rate of ions entering and leaving channels [48,49]. Research has shown
that the higher the activity of GLRs, the stronger the ability of rice to inhibit Cd transport,
and rice with damaged GLR structures lead to excessive Cd accumulation in rice grains [50].
These results indicated that increasing GLR activity could significantly reduce the uptake
and transport of Cd in rice. In this study, the leaf spraying DDAC was able to effectively
increase the content of amino acids such as Glu, Asp, Ala, and Ser, which can be used as
GLR activators, and may improve the recognition ability of GLRs for harmful elements,
thus inhibiting the absorption and transport of Cd.
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5. Conclusions

The accumulation of Cd and As in rice grains can affect the absorption of essential
elements and the synthesis of amino acids. Field experiments were conducted to investigate
the effects of foliar spraying of DDAC on Cd and As accumulation in rice grains in Hunan
province. The results indicated that the foliar spraying of DDAC could significantly reduce
the Cd and As content in rice grains. At the same time, the content of Ca in the grains
was significantly increased. In addition, Glu, Gly, Cys, and other amino acid contents
were significantly increased with the foliar spraying of DDAC; this was beneficial for rice,
alleviating the toxicity caused by Cd and As. In conclusion, the foliar spraying of DDAC
can promote amino acid synthesis and regulate the absorption and transport of essential
elements in rice. Therefore, the accumulation of Cd and As in rice grains was significantly
reduced. Foliar application of DDAC provides a new idea and method for solving the
problem of Cd and As exceeding acceptable standards in rice.
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