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Abstract: The associations between VOCs and sex hormones in adolescents remain unclear, and the
role of serum albumin in these associations deserves to be explored. We conducted cross-sectional
analyses using generalized linear models (GLMs), weighted quantile sum (WQS) regression, and
mediation analysis, based on data from 584 adolescents from the National Health and Nutrition
Examination Survey (NHANES). The GLM analyses revealed that seven kinds of mVOCs potentially
affected sex hormone levels. According to the WQS regression results, 2-aminothiazoline-4-carboxylic
acid (ATCA) was the major contributor to the significant associations of mixed mVOC exposure with
testosterone, estradiol, and free androgen index in males; N-acetyl-S-(N-methylcarbamoyl)-L-cysteine
(AMCC) was the major contributor to the significant associations of mixed mVOC exposure with
sex hormone-binding globulin in males; and N-acetyl-S-(benzyl)-L-cysteine (BMA) was the major
contributor to the significant associations of mixed mVOC exposure with the ratio of testosterone to
estradiol in females. Moreover, serum albumin could mediate up to 9.2% of the associations between
mixed exposure to mVOCs and sex hormones. Our findings could provide a reference for studies on
the mechanisms underlying the effects of VOCs on sex hormones in adolescents and emphasize the
necessity of reducing exposure to ATCA, AMCC, BMA, and their parent compounds.
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1. Introduction

Sex hormones play an important role in promoting the development of secondary
sex characteristics and influencing the reproductive system during puberty [1]. Also,
sex hormones affect several systems, including the skeletal, immune, and nervous sys-
tems [2,3]. Abnormal changes in sex hormones may lead to delayed puberty, polycystic
ovary syndrome, increased risk of cardiovascular disease, and other health problems [1,4].
Adolescents may be vulnerable to some volatile chemical products, such as methylben-
zene, which may cause changes in sex hormone levels due to the inefficiency of their
detoxification systems [5,6].

Volatile organic compounds (VOCs) come from a wide range of sources, which include
outdoor sources, such as natural emissions, vehicle emissions, solvent use, and biomass
combustion, and indoor sources, such as furniture, laminate wood flooring, decorative
materials made of wood-based panels, glues, and other daily necessities [7-10]. With their
high volatility, wide range of sources, and multiple routes of exposure, VOCs are hazardous
to human health and deserve more attention [7,8]. Possible associations of VOCs with
leukemia and cardiovascular and respiratory diseases have been demonstrated [11]. In
particular, several VOCs have been proven to have endocrine-disrupting properties, which
may lead to a decrease in the levels of thyroid-stimulating hormones and disruption of
pituitary hypothalamic—adrenocortical activity [6,12]. Growing research is focusing on
the impact of VOCs on reproductive health. Animal studies revealed that VOC exposure
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may damage testicular structure, affecting sperm cell counts and sperm viability [13].
Epidemiological studies also showed that VOCs could adversely impact the structure and
function of the female reproductive system, as well as the sperm DNA of males [14,15].
Studies in populations of adult males and females in the United States revealed that specific
VOC exposures were risk factors for sex hormone disruption and that 2,5-dimethylfuran
had a greater effect [16,17]. Differences in VOC exposure patterns between adolescents and
adults may lead to differences in the effects of VOCs between the adolescent and adult
populations [18]. Additionally, a study showed that adolescents had higher levels of VOC
metabolites than adults, possibly because their ratio of lung surface area to body weight
and their respiratory rates were higher than those of adults [19,20]. However, associations
between exposure to VOCs and sex hormone changes in adolescents remain unclear.

Serum albumin might play an important role in the effects of VOCs on sex hormones.
Studies have confirmed that serum albumin may mediate the relationship between several
endocrine-disrupting chemicals and sex hormones [21]. In addition, increased concentra-
tions of metabolites of VOCs, including benzene, could lead to structural changes in serum
albumin [22], which might influence the regulation of sex hormones by serum albumin [23].
Exploring the role of serum albumin in the associations between VOCs and sex hormones
could support the mechanistic exploration of the effects of VOCs on sex hormones, but
studies on the mediating role of serum albumin were lacking.

To fill this research gap, we assessed the associations of single and mixed metabolites
of VOCs (mVOCs) with sex hormones and the role of serum albumin in these associations
based on the National Health and Nutrition Examination Survey (NHANES) data.

2. Methods
2.1. Study Population

The NHANES is a nationwide cross-sectional survey conducted under the guidance
of the National Center for Health Statistics (NCHS) and the Centers for Disease Control
and Prevention (CDC) to assess the health and nutritional status of adults and children
in the United States. Participants underwent health interviews at home and received
physical examinations and the collection of urine and blood samples at specially designed
and equipped mobile centers. The study procedures were approved by the NCHS Ethics
Review Board, and written informed consents were obtained from all participants [24].

We utilized publicly available data from two cycles (2013-2014 and 2015-2016) from
the NHANES. Participants whose data were collected before 2013 were excluded due to the
lack of complete sex hormone data. A total of 584 adolescents with complete survey data
on selected urinary mVOCs, serum sex hormones, serum albumin, and selected covariates
were included in this study. The participant screening process is shown in Figure 1.

2.2. Sex Hormone Measurement

Total testosterone (TT) and estradiol (Ep) in serum were estimated with isotope dilu-
tion liquid chromatography tandem mass spectrometry. As a blood transport protein for
androgens and estrogens, sex hormone-binding globulin (SHBG) is measured indirectly
using chemiluminescent measurements of photomultiplier tubes to measure the reaction
products from the reaction of SHBG with immune antibodies. The analytical methodology
was described explicitly in the Laboratory Procedures Handbook on the NHANES web-
site [25]. Circulating free testosterone was assessed indirectly through the free androgen
index (FAI) and the ratio of testosterone to estradiol (TT/E;). The FAI was calculated with
the following formula: [(testosterone x 100)/SHBG] [26].

2.3. VOC Measurement

Compared to parent compounds, urine mVOCs have longer physiological half-lives
and can effectively assess exposure to VOCs [27]. Ultra-performance liquid chromatography
coupled with electrospray tandem mass spectrometry (UPLC-ESI/MSMS) was used to
measure the human urine mVOCs [28]. In particular, for mVOCs with analysis results below
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the lower limit of detection, the lower limit of detection divided by the square root of 2 was
used as the interpolation fill value. Detailed information related to the measurements can
be found elsewhere [28]. To make the results more reliable and meaningful, we chose to
include mVOCs with a detection rate higher than 50%. A total of 17 mVOCs were included
in this study, and the specific species assessed are shown in Table S1. The urinary creatinine
levels were used to adjust all urinary mVOC concentrations to avoid measurement errors
due to external causes such as metabolic levels or water intake [29].

4571 participants aged 10—24 from NHANES 2013-2016

Exclusion for missing data:
* Sex hormone (n=1141)
*  VOCs (urine) (n=2724)

YV

706 participants with complete data on exposure and sex hormone
measurements

Exclusion for missing data:

* Serum albumin (n=119)

* Covariates: gender, age,
race/ethnicity, education
level, ratio of family
income to poverty, BMI,
serum cotinine (n=3)
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584 participants with complete data were included in the analyses
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Figure 1. Flowchart of studied participant selection (N = 584) from the NHANES, 2013-2016. Notes:
VOCs: volatile organic compounds; BMI: body mass index.

2.4. Covariates

Based on previous studies [16,17,21], a directed acyclic graph (DAG) approach was
applied to select potential adjustment variables [30], which included sex, age, race/ethnicity,
education level, body mass index (BMI), serum cotinine concentration, the ratio of family
income to poverty, and serum albumin. DAG (R packages “dagitty” and “ggdag”) showed
the main relationships between exposure, outcome, covariates, and the mediator (Figure S1).

2.5. Statistical Analysis

Given their skewed distributions, the urinary mVOCs and sex hormones were log10-
transformed to improve the normality of the regression analyses. Pearson correlation
coefficients were calculated with the transformed mVOC concentrations to assess the
correlation between the mVOCs. We utilized generalized linear models (GLMs) to evaluate
the association between each urinary mVOC and each sex hormone, taking the transformed
concentration of each mVOC as the continuous exposure variable and the transformed
values of each sex hormone as the continuous outcome variable. The regression coefficient
(B) was interpreted as the average change in the transformed sex hormone for each unit
increase in each transformed mVOC.
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We used weighted quantile sum (WQS) regression to estimate the associations between
mixed exposures to urinary mVOCs and sex hormones. The WQS has been widely used to
assess the effects of mixed exposures to multiple environmental pollutants [31]. It allowed for
covariance and could identify the contribution of individual chemicals that led to the observed
associations [26]. We constructed regression coefficients () for the WQS index of mVOCs to
demonstrate the average change in transformed sex hormones per unit increase in the index.
We calculated the mixed exposure concentrations based on the weights of the mVOCs in the
WQS models. In addition, a mediation analysis was performed to explore the role of serum
albumin in the association between mixed exposure to mVOCs and sex hormones.

Sensitivity analyses were conducted with the Bayesian kernel machine regression
(BKMR) model. The joint effects of multiple pollutants were assessed using the change
in sex hormones when all chemicals were fixed at the 75th percentile, compared to those
fixed at the 25th percentile. Conditional posterior inclusion probabilities (PIPs) calculated
in the BKMR models were used to estimate the relative importance of individual exposure
variables to the overall mixture effects [32].

We used sex stratification to explore the associations between exposure to mVOCs
and sex hormones under different sexes, and comparisons of associations by sex were
performed with the 2-sample z-test. The Benjamini-Hochberg (BH) procedure was used
to adjust for multiple comparisons [33]. All analyses in this study were performed in
R version 4.3.2. The R packages “wqs”, “bkmr”, and “mediation” were used for WQS
analysis, BKMR analysis, and mediation analysis, respectively. Two-sided p-values < 0.05
indicated statistical significance.

3. Results
3.1. Description of General Characteristics

A total of 584 participants with an average age of 17.01 & 3.70 years were included.
The age range of participants after screening was 12-24 years. Among the participants,
51.20% were male, 26.54% were non-Hispanic White, and 35.27% had an education below
the ninth grade level. In addition, the average BMI was 24.92 £ 6.37 kg/ m?2, the mean
ratio of family income to poverty was 2.07 & 1.48, the average level of serum cotinine was
16.46 &+ 62.16 ng/mL, and the average level of serum albumin was 4.49 & 0.29 g/dL. The
specific characteristics of the participants are presented in Table 1.

Table 1. General characteristics of participants aged 10-24 years from the NHANES, 2013-2016
(N = 584).

Characteristics Mean =+ SD or n (%)
Age (year) 17.01 £ 3.7
Sex
Male 299 (51.2)
Female 285 (48.8)
Race/ethnicity
Mexican American 130 (22.26)
Other Hispanic 68 (11.64)
Non-Hispanic White 155 (26.54)
Non-Hispanic Black 127 (21.75)
Other Race 104 (17.81)
Education
Less than 9th grade 206 (35.27)
9-11th grade 190 (32.53)
High school graduate/GED or equivalent 75 (12.84)
More than high school 113 (19.35)
BMI (kg/m?) 24.92 + 6.37
Ratio of family income to poverty 2.07 £1.48
Serum cotinine (ng/mL) 16.46 4+ 62.16

Serum albumin (g/dL) 449 £0.29




Toxics 2024, 12, 438

50f 15

The detection limits and distribution characteristics of urinary mVOCs, testosterone,
estradiol, SHBG, FAIL, and TT/E, in the study population are displayed in Table S2. As
shown in Figure S2, there were significant correlations between urinary mVOCs, with
Pearson correlation coefficients ranging from —0.03 to 0.81.

3.2. Associations of Single Exposure to mVOCs and Serum Albumin Exposure with Sex Hormones

The results of the GLM analyses showed that N-acetyl-S-(N-methylcarbamoyl)-L-
cysteine (AMCC), 2-aminothiazoline-4-carboxylic acid (ATCA), N-acetyl-5-(3,4-dihydroxyb
utyl)-L-cysteine (DHBMA), N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine (MHBMAS3), and
N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine (HPMMA) were negatively correlated
with testosterone, and N-acetyl-5-(2-cyanoethyl)-L-cysteine (CYMA) and serum albumin
were positively correlated with testosterone, after adjusting for covariates, including sex,
age, race/ethnicity, education level, BMI, serum cotinine concentration, and the ratio of
family income to poverty (Figure 2). For estradiol, ATCA was negatively correlated with
estradiol and serum albumin was positively correlated with estradiol. For SHBG, N-acetyl-
5-(2-hydroxyethyl)-L-cysteine (HEMA) was positively correlated with SHBG, and serum
albumin was negatively correlated with SHBG. For the FAI, ATCA, DHBMA, HEMA,
MHBMAS3, and HPMMA were negatively correlated with the FAL and serum albumin
was positively correlated with the FAL In addition, HPMMA was negatively correlated
with TT/E,. Similar associations were found between mVOCs, serum albumin, and sex
hormones stratified by sex (Figures S3 and S4).
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01
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Estradiol
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_0_2.
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IIIIIII
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Figure 2. Association of single exposure to mVOCs and serum albumin exposure with sex hormones in
the NHANES, 2013-2016 (N = 584). Notes: 2MHA: urinary 2-Methylhippuric acid; 3,4-MHA: urinary
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urinary 3- and 4-Methylhippuric acid; AAMA: urinary N-Acetyl-S-(2-carbamoylethyl)-L-cysteine;
AMCC: urinary N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine; ATCA: urinary 2-Aminothiazoline-4-
carboxylic acid; BMA: urinary N-Acetyl-S-(benzyl)-L-cysteine; BPMA: urinary N-Acetyl-S-(n-propyl)-
L-cysteine; CEMA: urinary N-Acetyl-S-(2-carboxyethyl)-L-cysteine; CYMA: urinary N-Acetyl-S-
(2-cyanoethyl)-L-cysteine; DHBMA: urinary N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine; HEMA:
urinary N-Acetyl-5-(2-hydroxyethyl)-L-cysteine; 2HPMA: urinary N-Acetyl-5-(2-hydroxypropyl)-
L-cysteine; 3HPMA: urinary N-Acetyl-S-(3-hydroxypropyl)-L-cysteine; MA: urinary Mandelic acid;
MHBMAB3: urinary N-Acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine; PGA: urinary Phenylglyoxylic acid;
and HPMMA: urinary N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine. Adjusted for sex, age,
race/ethnicity, education level, BMI, serum cotinine concentration, and the ratio of family income

to poverty.

3.3. Associations between Mixed Exposure to mVOCs and Sex Hormones

According to the results of the WQS analyses, mixed exposure to mVOCs was signif-
icantly negatively associated with testosterone, estradiol, FAI, and TT/E; (Table 2). For
the male group, mixed exposure to mVOCs was significantly negatively associated with
testosterone, estradiol, and FAI, while it was positively associated with SHBG. For the
female group, there was a significant negative association between mixed exposure to
mVOCs and TT/E,. Differences were found in the associations between mixed exposure to
mVOCs and sex hormone indicators by sex.

Table 2. Associations between the WQS index and sex hormone indicators in the NHANES,
2013-2016.

Variables Testosterone Estradiol SHBG FAI TT/E,

Total —0.104 (—0.137, —0.071) *  —0.096 (—0.139, —0.053) * —0.012 (—0.043, 0.019) —0.135 (—0.178, —0.092) * —0.059 (—0.102, —0.016) *
Male —0.181 (—0.232, —0.130) * —0.185 (—0.224, —0.146) * 0.072 (0.039, 0.105) * —0.234 (—0.295, —0.173) * —0.008 (—0.043, 0.027)
Female —0.026 (—0.069, 0.017) —0.032 (—0.108, 0.044) —0.054 (—0.109, 0.001) —0.029 (—0.084, 0.026) —0.126 (—0.206, —0.046) *

Notes: WQS: weighted quantile sum; SHBG: sex hormone-binding globulin; FAI: free androgen index; and TT/E;:
ratio of testosterone to estradiol. *: p < 0.05.

Furthermore, we found that ATCA was the main mVOC affecting testosterone, estra-
diol, and FAI levels in the male population, while AMCC had a major effect on SHBG levels
(Figure 3). In females, BMA was the major metabolite affecting TT/E,.

We conducted sensitivity analyses with the BKRMR model and found that the associ-
ations between mixed exposure to mVOCs and sex hormones were similar to the results
obtained with the WQS model (Figure S5 and Table S3). For males, mixed exposure to
mVOCs was negatively associated with testosterone, estradiol, and FAI, and ATCA was
the main mVOC affecting testosterone, estradiol, and FAI For females, the associations of
mixed mVOC exposure with most of the sex hormone indicators were not significant.

3.4. Mediation Analyses

Our mediation analyses showed that serum albumin mediated 7.0% of the association
between mixed exposure to mVOCs and testosterone, 5.8% of the association between
mixed exposure to mVOCs and estradiol, and 9.2% of the association between mixed
exposure to mVOCs and FAI, respectively, in males (Figure 4). We observed no significant
mediating effect of serum albumin in females (Figure 5). The mediating effect of serum
albumin on the associations between mixed exposure to mVOCs and sex hormones in total
participants is shown in Figure S6.
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Figure 3. Weights for mVOCs associated with sex hormones from the WQS regression model. Notes:
WQS: weighted quantile sum; 2MHA: urinary 2-Methylhippuric acid; 3,4-MHA: urinary 3- and
4-Methylhippuric acid; AAMA: urinary N-Acetyl-S-(2-carbamoylethyl)-L-cysteine; AMCC: urinary
N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine; ATCA: urinary 2-Aminothiazoline-4-carboxylic acid;
BMA: urinary N-Acetyl-S-(benzyl)-L-cysteine; BPMA: urinary N-Acetyl-S-(n-propyl)-L-cysteine;
CEMA: urinary N-Acetyl-S-(2-carboxyethyl)-L-cysteine; CYMA: urinary N-Acetyl-S5-(2-cyanoethyl)-
L-cysteine; DHBMA: urinary N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine; HEMA: urinary N-Acetyl-
S-(2-hydroxyethyl)-L-cysteine; 2HPMA: urinary N-Acetyl-5-(2-hydroxypropyl)-L-cysteine; SHPMA:
urinary N-Acetyl-S-(3-hydroxypropyl)-L-cysteine; MA: urinary Mandelic acid; MHBMAZ3: urinary N-
Acetyl-5-(4-hydroxy-2-butenyl)-L-cysteine; PGA: urinary Phenylglyoxylic acid; HPMMA: urinary N-
Acetyl-5-(3-hydroxypropyl-1-methyl)-L-cysteine; TT: testosterone; E;: estradiol; SHBG: sex hormone-
binding globulin; FAI free androgen index; and TT/E,: ratio of testosterone to estradiol.
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Indirect effect=—0.03
(95%CI, —0.07~0.00, P=0.026)

Serum
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A

Proportion of
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Indirect effect=—0.03
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Serum
albumin
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VOCs TT
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Direct effect=—0.39
(95%CI, —0.59~-0.21, P<<0.001)

Indirect effect=0.01
(95%CI, 0.00~0.04, P=0.116)
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C

Proportion of
mediation=6.0%

Direct effect=—0.43
(95%CI, —0.57~-0.31, P<<0.001)

Indirect effect=—0.06
(95%CI, —0.11~—0.01, P=0.006)

Serum
albumin

D

Proportion of
mediation=9.2%

VOCs SHBG

VOCs FAI

Direct effect=0.20
(95%CI, 0.08~0.32, P=0.001)

Indirect effect=0.00
(95%CI, —0.02~0.01, P=0.610)

Serum
albumin

E

Proportion of
mediation=14.0%

VOCs TT/E,

Direct effect=0.02
(95%CI, —0.11~0.14, P=0.710)

Direct effect=—0.50
(95%CI, —0.75~-0.30, P<<0.001)

Figure 4. Estimated proportions of associations between mixed exposure to mVOCs and TT, E,, SHBG,
FAI, and TT/E; mediated by serum albumin in males (N = 299). Adjusted for age, race/ethnicity,
education level, BMI, serum cotinine concentration, and the ratio of family income to poverty.
(A) Estimated proportions of associations between mixed exposure to mVOCs and TT mediated
by serum albumin in males; (B) Estimated proportions of associations between mixed exposure to
mVOCs and E; mediated by serum albumin in males; (C) Estimated proportions of associations
between mixed exposure to mVOCs and SHBG mediated by serum albumin in males; (D) Estimated
proportions of associations between mixed exposure to mVOCs and FAI mediated by serum albumin
in males; (E) Estimated proportions of associations between mixed exposure to mVOCs and TT/E,
mediated by serum albumin in males. Notes: CI: confidence interval; VOCs: volatile organic
compounds; TT: testosterone; E: estradiol; SHBG: sex hormone-binding globulin; FAI: free androgen
index; and TT/E,: ratio of testosterone to estradiol.



Toxics 2024, 12, 438

9 of 15

Indirect effect=0.01
(95%CI, —0.01~0.05, P=0.260)

Indirect effect=0.00
(95%CI, —0.04~0.03, P=0.770)

A B
Serum Serum
albumin albumin
Proportion of Proportion of
mediation=42.2% mediation=10.0%
VOCs TT VOCs E,
Direct effect=—0.04 Direct effect=0.05
(95%CI, —0.19~0.10, P=0.520) (95%CI, —0.28~0.30, P=0.840)
Indirect effect=0.05 Indirect effect=—0.05
C (95%CI, —0.02~0.12, P=0.185) D (95%ClI, —0.11~0.00, P=0.068)
Serum Serum
albumin albumin
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mediation=26.4% mediation=235.3%
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Direct effect=—0.22 Direct effect=0.07
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Serum
albumin
Proportion of
mediation=6.4%
VOCs TT/E,

Direct effect=—0.36

(95%CIL, —0.62~—0.08, P=0.014)

Figure 5. Estimated proportions of associations between mixed exposure to mVOCs and TT, E,, SHBG,
FAI, and TT/E, mediated by serum albumin in females (N = 285). Adjusted for age, race/ethnicity,
education level, BMI, serum cotinine concentration, and the ratio of family income to poverty.
(A) Estimated proportions of associations between mixed exposure to mVOCs and TT mediated by
serum albumin in females; (B) Estimated proportions of associations between mixed exposure to
mVOCs and E; mediated by serum albumin in females; (C) Estimated proportions of associations
between mixed exposure to mVOCs and SHBG mediated by serum albumin in females; (D) Estimated
proportions of associations between mixed exposure to mVOCs and FAI mediated by serum albumin
in females; (E) Estimated proportions of associations between mixed exposure to mVOCs and TT/E,
mediated by serum albumin in females. Notes: CI: confidence interval; VOCs: volatile organic
compounds; TT: testosterone; E: estradiol; SHBG: sex hormone-binding globulin; FAI: free androgen
index; and TT/E,: ratio of testosterone to estradiol.

4. Discussion

This study analyzed the complex associations between urinary mVOCs and sex hor-
mones among adolescents aged 1224 in the United States from 2013 to 2016. We found that
AMCC, ATCA, CYMA, DHBMA, MHBMA3, HPMMA, and HEMA might influence sex
hormone levels. Mixed exposure to mVOCs was associated with testosterone, estradiol, FAI,
and SHBG levels in males, with ATCA significantly associated with testosterone, estradiol,
and FAI and AMCC significantly associated with SHBG. In the female population, mixed
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exposure to mVOCs was associated with TT/E,, with BMA being the most influential
factor. Moreover, we found that serum albumin mediated the associations of mVOCs with
testosterone, estradiol, and FAI levels in males.

In the single exposure analyses, we found associations of AMCC, ATCA, CYMA,
DHBMA, MHBMA3, and HPMMA with testosterone, ATCA with estradiol, HEMA with
SHBG, ATCA, DHBMA, HEMA, MHBMAS3, and HPMMA with FAI, and HPMMA with
TT/E,;. We suggested that N, N-dimethylformamide, cyanide, acrylonitrile, 1,3-butadiene,
crotonaldehyde, vinyl chloride, and ethylene oxide were the parent compounds of AMCC,
ATCA, CYMA, DHBMA, MHBMA3, HPMMA, and HEMA, respectively, and had the
potential to influence sex hormones. Previous studies revealed that blood mVOCs were
associated with sex hormones in adults [16,17]. N, N-Dimethylformamide affected the
interaction of the estrogen receptor with estradiol, reduced fertility, increased offspring
malformations, and could cause testicular germ cell tumors [34-36]. Crotonaldehyde might
induce oxidative stress damage in the reproductive organs of male rats, affecting testicular
enzyme function and hormone levels [37,38]. 1,3-Butadiene may be linked to ovarian
atrophy, testicular atrophy, and male infertility [39]. Acrylonitrile, cyanide, vinyl chloride,
and ethylene oxide were also recognized as being potentially toxic for reproduction [40-45].
These studies provided part of the support for our findings. In addition, our study filled a
research gap on urinary mVOC exposure and sex hormones in adolescents and provided
evidence for the effects of VOCs on sex hormones and on the reproductive system.

Considering that there were differences in both the levels and roles of sex hormones in
the populations across sexes [46], we addressed the potential joint effects of mVOC exposure
on sex hormones in adolescents stratified by sex. We found that mixed exposure to mVOCs
was associated with most male sex hormone indicators but only associated with TT/E,
in females. Differences in lifestyle and other aspects between males and females could
cause differences in the sources and species of VOC exposure, while differences in their
physiological factors might cause differences in susceptibility to VOCs as well as differences
in the uptake, transport, metabolism, storage, and excretion of VOCs, which could lead
to differences in the impacts of VOCs in the different sex groups [47]. Additionally, a
study of adult males indicated associations between mixed exposure to VOCs and sex
hormones, which supported the hypothesis that mixed exposure to VOCs leads to sex
hormone disruption as our study did, but the directions of the trends in associations with
testosterone and estradiol were contrary to those of our study [17]. Differences in the results
might be caused by differences in VOC exposure measurements and age groups of the
study populations, and particularly, more drastic sex hormone changes in the adolescent
population probably lead to differences in associations with VOCs [48]. Furthermore, we
found important roles of AMCC, ATCA, and BMA in the associations between mixed
exposure to mVOCs and sex hormones, showing that more attention should be paid to the
health effects of their parent compounds, including N, N-dimethylformamide, cyanide, and
toluene. N, N-Dimethylformamide was commonly used in the manufacture of films, fibers,
paints, and polyurethane lacquers [36]; toluene was known to be involved in cosmetics, inks,
adhesives, lacquers, and glues [49]; and cyanide was contained in rodenticides, pigments,
and a variety of sources [50]. It was recommended to minimize the use of these substances
in industrial products and household goods or reduce exposure to these sources.

The mechanism for the effects of VOCs on sex hormones is still unclear. As endocrine-
disrupting chemicals, several VOCs might affect nuclear hormone receptors to influence sex
hormone levels by participating in pathways involving ligand binding, receptor agonism
or antagonism, receptor binding to transcriptional cofactors, DNA binding and differential
gene expression, membrane-associated hormone receptor-mediated non-genomic signaling,
and induction of epigenetic reprogramming [51,52]. Moreover, oxidative stress damage to
gonadal tissues, effects on genes involved in steroidogenesis, inhibition of related enzymes,
interference of the hypothalamic—pituitary—adrenal axis, and effects on serum albumin
are the pathways by which endocrine-disrupting chemicals affect the production and
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transport of sex hormones, as well as possible mechanisms for the effects of VOCs on sex
hormones [21,53-57].

We found that serum albumin served as a mediator in the associations of mVOCs with
testosterone, estradiol, and FAI in males. Serum albumin is the most abundant protein
in vertebrate plasma, binding and transporting a wide range of biologically active sub-
stances, which leads to its focus [58]. Some studies revealed the role of serum albumin
as a mediator in the associations of endocrine-disrupting chemicals with sex hormones
and lipids [21,59], but there were no studies before our study related to serum albumin
mediating the relationships between VOCs and sex hormones. In particular, the effects of
VOCs on serum albumin and the effects of serum albumin on sex hormones have been
confirmed by research. VOCs can induce hepatic steatosis, metabolic disorders, oxidative
stress, inflammation, and apoptosis, all of which contribute to liver damage [60]. This
damage might affect the liver’s ability to produce serum albumin in its precursor form of
pre-pro-albumin [58]. Additionally, VOCs can cause endoplasmic reticulum stress, which
impairs the maturation process of serum albumin [58,60]. Consequently, these disruptions
may lead to alterations in serum albumin concentrations. Moreover, VOCs probably cause
changes in serum albumin concentrations by affecting C-reactive proteins, as well as struc-
tural changes in proteins, possibly by inducing oxidative stress [61-63]. Spectroscopic
analysis also showed that the binding of VOCs to serum albumin altered the secondary
structure of serum albumin [64]. Furthermore, serum albumin can contribute to the regu-
lation of hormone levels by influencing the transport and activity of sex hormones in the
body [65]. Albumin can also reduce the endocrine interference of exogenous substances,
but alterations in serum albumin structure may bring about a reduction in function [66].
The research findings mentioned above might be helpful in explaining how serum albumin
mediates the associations of VOCs with sex hormones.

Our study has several strengths. Firstly, our study was conducted based on nationally
representative NHANES data from the U.S., which had a standardized study protocol,
trained technicians, and quality control processes in the data collection process [26]. Sec-
ondly, our study filled the gap of studies on the associations between VOC exposure and sex
hormone levels in adolescents and explored the role of serum albumin in these associations,
which could provide mechanistic clues on the effects of VOCs on sex hormones and even
the reproductive system. Moreover, our study used the WQS model and BKMR model to
solve the multicollinearity problem and make the results more stable [31,67].

There remained some limitations to our study. First, the population in our study
was relatively small and exclusively comprised U.S. adolescents, which may limit the
extrapolation of the findings to populations in other regions. Further research is warranted
to investigate the impact of VOCs on sex hormones in adolescents from different regions,
despite our study being based on a nationally representative sample of the U.S. population.
Second, our study utilized a cross-sectional design, and causal inference between mVOCs
and sex hormones was limited. A further cohort study is needed to verify the causal
associations of VOC exposure with sex hormone changes and the role of albumin in these
associations. In addition, there were some confounders, including particulate matter, ozone,
and road traffic noise, that may affect sex hormones [68-70]. However, we were unable
to incorporate these factors into the model due to insufficient data or because they were
not yet identified by us as confounders. More possible confounding factors should be
considered in future studies to provide a more comprehensive analysis.

5. Conclusions

In conclusion, we found associations between seven kinds of mVOCs and sex hormone
changes in adolescents, and these associations differed across sexes. In the male population,
mixed exposure to mVOCs was associated with testosterone, estradiol, FAI, and SHBG, and
serum albumin mediated the associations of mVOCs with testosterone, estradiol, and FAI
In females, mixed exposure to mVOCs was only associated with TT/E, changes. We also
found that AMCC, ATCA, and BMA played major roles in the associations between mixed
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exposure to mVOCs and sex hormones, which suggested we should reduce the exposure to
their parent compounds, including N, N-dimethylformamide, cyanide, and toluene. This
study might provide new insights into the mechanism of VOC exposure-induced endocrine
disruption, which need to be further validated by cohort studies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ toxics12060438 /51, Figure S1: Directed acyclic graph; Figure S2: Pearson’s
correlations between urinary mVOCs; Figure S3: Association of single exposure to mVOCs and serum
albumin exposure with sex hormones among male populations in the NHANES, 2013-2016 (N = 299);
Figure S4: Association of single exposure to mVOCs and serum albumin exposure with sex hormones
among female populations in the NHANES, 2013-2016 (N = 285); Figure S5: The effects of mVOC
mixture exposure on TT, E2, SHBG, FAI, and TT/E2 by the BKMR models; Figure S6: Estimated
proportions of associations between mixed exposure to mVOCs and TT, E2, SHBG, FAI, and TT/E2
mediated by serum albumin (N = 584). Table S1: VOC metabolites, their abbreviations, and their parent
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