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Abstract: Per- and poly-fluoroalkylated substances (PFAS) are a large group of chemicals that persist
both in the environment and in the body. Legacy PFAS, e.g., perfluorooctanoic acid and perfluo-
rooctane sulfonic acid, are implicated as endocrine disruptors and reproductive and developmental
toxicants in epidemiological and animal model studies. This review describes female reproductive
outcomes of reported studies and includes where associative relationships between PFAS exposures
and female reproductive outcomes have been observed as well as where those are absent. In animal
models, studies in which PFAS are documented to cause toxicity and where effects are lacking are
described. Discrepancies exist in both human and animal studies and are likely attributable to human
geographical contamination, developmental status, duration of exposure, and PFAS chemical identity.
Similarly, in animal investigations, the model used, exposure paradigm, and developmental status of
the female are important and vary widely in documented studies. Taken together, support for PFAS
as reproductive and developmental toxicants exists, although the disparity in study conditions and
human exposures contribute to the variation in effects noted.
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1. Introduction

Per- and poly-fluoroalkylated substances (PFAS) are a family of more than
4000 chemicals [1], from which more than 600 are currently being commercially used [2].
The Organisation for Economic Co-operation and Development (OECD) define PFAS as
“fluorinated substances that contain at least one fully fluorinated methyl or methylene
carbon atom (without any H/Cl/Br/I atom attached to it)” [3]. PFAS are characterized
by having very strong bonds between carbon and fluorine atoms [4–6], which gives them
thermal and chemical stability [7] and causes them to be persistent in the environment [6].
Since PFAS chemicals have both hydrophobic and lipophobic tails and a polar hydrophilic
head [5,8,9], they repel water and oil and have thus been widely used in commercial and in-
dustrial products since the 1940s [7,10]. Their carbon length and functional groups vary [1],
and they can be classified as long and short chains [11]. Long chain PFAS are defined as per-
fluoroalkyl carboxylic acids (PFCAs) with eight carbons and greater and perfluoroalkane
sulfonates (PFSAs) with six carbons and greater [11]. Short-chain PFAS are defined as
PFCA with seven or fewer carbons and PFSA with five or fewer carbons. This difference
in the number of carbons is because PFSA compounds tend to bioaccumulate more than
PFCAs with the same number of carbon atoms [11]. Specific structures of individual PFAS
chemicals are accessible through the US EPA CompTox Chemicals repository.

Long-chain PFAS include legacy chemicals such as perfluorooctanoic acid (PFOA) and
perfluooroctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic
acid (PFDA), and perfluorohexane sulfonic acid (PFHxS) [11,12]. Short-chain PFAS include
perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluorobutanesul-
fonic acid (PFBS) [13]. In addition, hexafluoropropylene oxide (HFPO) dimer acid and its
ammonium salts, better known as GenX and 3H-4,8-dioxanonanoate (ADONA), are also
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short-chain PFAS that were introduced to replace PFOA, while chlorinated polyfluoroalkyl
ether sulfonate (F53B) was introduced to replace PFOS [14]. In the 2000s, a voluntary PFOS
phase-out was initiated, followed by the United States Environmental Protection Agency
(USEPA) PFOA Stewardship Program to eliminate PFAS emissions and products [15,16].
With the phase-out of long-chain PFAS, the use of short-chain PFAS was extended to replace
PFAS chemicals; however, these PFAS are less regulated, and despite having shorter half-
lives of elimination in organisms, they are as persistent in the environment as long-chain
PFAS and are also extensively distributed [13,17].

Due to their physicochemical properties, PFAS are used in a myriad of consumer
products, including fabric coatings, non-stick cookware, fire-fighting foams, food packaging,
and personal care products [18–20]. Human and animal exposure to PFAS is through
ingestion, inhalation, and dermal exposures [18,21], and PFAS are present in the blood of
the majority of humans living in industrialized countries [22–24]. In general, PFAS bind
to albumin [17,25] and accumulate in the blood, liver, kidneys, testicles, brain [9,26,27],
and ovaries [28] but do not tend to accumulate in adipose tissue [8,21,27]. However, one
study found that PFAS were present in the adipose tissue of pigs, attributing this difference
to the protonated or deprotonated form of PFAS [29]. These compounds are typically
not metabolized in vivo, hence their long half-lives [18,28,30,31]. Elimination half-lives
vary between species and chemical types [17,30]. PFAS can be eliminated through urine,
feces, and bile [18,28,30] and can also be excreted through breast milk [18] and menstrual
fluid [32,33]. In general, the half-life of elimination decreases in PFAS with a shorter
carbon chain, and half-lives of elimination in humans and other animals are summarized
in Table 1 [28,29,34–60]. Furthermore, there are biological sex differences in the half-life
of PFAS elimination. For example, in female rats, the half-life of PFOA is around 2–4 h,
while in male rats, it is 4–9 days [28,41]. This difference is explained by differences in
secretory mechanisms in the kidney between female and male rats [28]. Nevertheless, this
is not the case for all species; for example, in non-human primates, PFOA has an apparent
longer half-life of elimination in females (32 d) compared to males (21 d) [55]. In mice, the
half-life of PFOA in females is 15 days, and in males, 21 days [52], potentially translating to
their serving as an appropriate model to study potential human toxic effects [21]. Another
important detail is the difference in the half-life of elimination between some species [61];
for example, the half-life of elimination of PFOS, PFOA, and PFHxS in rodents is much
shorter compared to humans [28,34,35,41,42,45,47,48,52]; however, in pigs, PFAS have
longer time lengths for elimination compared to other species [29]. While elimination
half-lives for long-chain PFAS are reported, studies to determine the half-life of elimination
of the newer PFAS and their replacements remain necessary.
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Table 1. PFAS half-life of elimination in different species.

Species

PFAS
Humans Rat Mouse Non-Human Primates Pigs Cattle Chicken

F M F M F M F M F M F M F M

PFOS 3.4–5.4 y [32,33]
100 d [39]

30.4–37.8 d [40] 36.4–42.8 d [40] 110–200 d [40] 131–200 d [40] 1.7 y [27]
38.7–106 d

[54,55] 120 d [55]
125 d [57]

62–71 d [40] 38–41 d [40] * 3.5 d [29]

PFOA 2.7–3.8 y [32,33] 2–4 h [26,39] 4–9 d [26,39] 16 d [50] 22 d [50] 32.6 d [52] 20–21d [52] 236 d [27] 1.3 d [54] ~19.2 h [56]
5.2 d [57]

* 5.4 d [58]

PFNA 2.5–4.3 y [34] 1.4–2.44 d
[41–43]

29.5–47 d
[41–43] 25.8–68.4 d [41] 34.3–68.9 d [41] 8.7 d [54]

PFDA 4.5–12 y [34] 58.6 d [42] 39.9 d [42] 19 d [54]

PFHxS 5.3–8.5 y [32,33] 1.12 h–1.7 d
[45,46]

215.9–29 d
[43,45,46] 24.9–26.8 d [45] 27.9–30.5 d [45] 87 d [45] 141 d [45] 1.9 y [27] * 7 d [58]

PFBA ~3 d [35] 1.03–1.76 h [35] 6.38–9.22 h [35] 2.79–3.08 h [35] 5.22–16.25 h [35] 40.3 h [35] 41.0 h [35]

PFHxA 32 d [36] 0.42–3 h [47,48] 1–3 h [47,48] 1 h [36] 2.4 h [47] 5.3 h [47] 4.1 d [27]

PFBS 28 d [37] 0.64–4 h [37,46] 2.1–4.5 h
[37,46] 4.5 h [50] 5.8 h [50] 8 h–3.5 d

[37,47]
15 h–4 d
[37,47] 43 d [27]

GenX 8 h [49] 3 h [49] 18 h [49] 21 h [49]

F53B 15.3 y [38]

Abbreviations: PFAS—per- and polyfluoroalkylated substances; PFOS—perfluooroctane sulfonic acid; PFOA—perfluorooctanoic acid; PFNA—perfluorononanoic acid; PFDA—
perfluorodecanoic acid; PFHxS—perfluorohexane sulfonic acid; PFBA—perfluorobutanoic acid; PFHxA—perfluorohexanoic acid; PFBS—perfluorobutanesulfonic acid; GenX—
hexafluoropropylene oxide dimer acid and ammonium salts; F53B—chlorinated polyfluoroalkyl ether sulfonate; y = year; d = days; h = hours; * in eggs. Superscripts indicate citation in
which data published.
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PFAS can be easily absorbed after oral ingestion [12,62] and are detected in drinking
water [21,63,64], animal food products [1,65,66], and bodily fluids [67,68]. As noted above,
PFAS have been detected in the serum of most of the U.S. population [67–71] and are
reportedly higher in children [72]. The average human exposure to PFOA and PFOS
in 2015–2016 was 1.56 and 4.72 ng/mL [73,74], while high PFOA and PFOS exposure
levels ranged from 47–128 and 30–219 ng/kg/day, respectively [75]. However, serum
concentrations of short-chain PFAS have trended towards being increased [32]. In 2022, the
USEPA established interim drinking water health advisories for PFOA (0.004 ppt), PFOS
(0.02 ppt), GenX chemicals (10 ppt), and PFBS (2000 ppt) [76]. In addition, the USEPA has
proposed a National Primary Drinking Water Regulation for six PFAS, with enforceable
maximum contaminant levels (MCLs) set at 4 ppt for PFOA and PFOS individually and
10 ppt for PFNA, PFHxS, and HFPO-DA (GenX chemicals) [77]. Under the Stockholm
Convention on Persistent Organic Pollutants, PFOS were listed in 2009 in Annex B, which
restricts the production and use of the chemicals listed [78]. Furthermore, PFOA and
PFHxS were recently listed as Annex A chemicals [78], and long-chain PFCAs are being
reviewed to determine their annex listing [78]. In the European Union, the Scientific Panel
on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority
(EFSA) established the tolerable daily intake (TDI) for PFOS and PFOA as 150 ng/kg
and 1500 ng/kg body weight per day, respectively [5]. The TDI for production animals,
however, remains unclear. PFAS are reported to adversely affect health in humans and
animal models, including liver and kidney disease, cancer, lipid and insulin alterations,
changes in the immune system, alterations in the thyroid function, endocrine disruption,
and reproductive and developmental toxicity [5,18,61]. This review will focus on PFAS’
effects on female reproduction with a description of available human and animal studies.

2. Female Reproduction

The female reproductive system is comprised of the oviducts, uterus, cervix, vagina,
ovaries, and external genitalia [79,80]. The ovary is a dense structure in the pelvic cavity
near the lateral walls [80], composed of somatic and germ cells [81]. The two primary func-
tions of the ovary are (1) production and release of oocytes through the processes of oogen-
esis and folliculogenesis and (2) production and secretion of hormones (17β-estradiol (E2)
and progesterone (P4)), which are essential for the proper functioning of the female repro-
ductive system [79,82,83] and female general health [84].

The process of folliculogenesis describes how immature oocyte-containing follicles
develop and mature to be ovulated or die by atresia [79]. Primordial follicles are the most
immature follicle stage present in the ovary [79] and are comprised of the oocyte surrounded
by a single layer of flattened or squamous granulosa cells that are surrounded by a basal
lamina [79,81,85]. Local ovarian factors activate the primordial follicles to develop into
primary follicles, upon which an increase in oocyte size is observed [80,85]. The flattened
granulosa cells surrounding the oocyte become cuboidal granulosa cells [79–81,85]. The
zona pellucida, a non-cellular layer, also appears at this stage of follicular development,
surrounding the oocyte, and it is preserved until ovulation [81,85]. Granulosa cells are
essential for the nutrition and support of the oocyte, synthetizing factors that are trafficked
to the oocyte by diffusion through the zona pellucida [86]. The secondary follicles develop
from primary follicles and are referred to as pre-antral follicles, containing multiple layers
of granulosa and theca cells [81]. The newly recruited theca cell layer contains blood
vessels and nerves and supports the follicle [81]. Secondary follicles also have a network of
gap junctions consisting of connexins, proteins necessary for follicular development, and
connect to adjacent cells, allowing nutrients, small metabolites, and second messengers to
pass from cell to cell [85]. Only some follicles proceed to the next developmental stage when
they are known as tertiary or antral follicles, which are dependent upon follicle-stimulating
hormone (FSH) [81,85].

Follicular fluid (FF) is formed from filtered blood circulating in the thecal capillar-
ies [87] and from granulosa cells. This fluid accumulates and separates the inner and outer
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layers of the follicle to form an antral cavity [80,81,85]. Most of these follicles will undergo
atresia; the remaining will grow to the preovulatory stage [85]. Preovulatory follicles pro-
duce E2, which rises in concentration, resulting in positive feedback on the hypothalamus
and pituitary to precipitate the luteinizing hormone (LH) surge, critical for ovulation of the
oocyte [81,85]. The LH surge decreases E2 production and increases P4 secretion [81]. The
remaining granulosa and theca cells luteinize to form the corpus luteum (CL), producing
P4 to prepare the uterus in case pregnancy occurs [81,85]. If pregnancy does not occur, the
CL will degenerate, becoming a corpus albicans, marking the end of the ovarian cycle [80].

The entire ovarian reserve of oocytes is produced during fetal development [88,89]. A hu-
man female has 14 million oocytes at 20 weeks of gestation, but this number will decline dur-
ing the female’s life [81,89,90]. At the time of birth, the ovary contains ~1–2 million oocytes; at
puberty, this number drops to ~300,000, and at menopause, the ovary has
<100 oocytes [81,89,91–95]. Of these, only 400–500 oocytes are ovulated during a woman’s
lifetime [81,93].

As noted, steroid hormones are produced in and act on the ovary, similar to other
tissues [81]. In the ovary, E2 and P4 are synthesized from circulating cholesterol [81,96]
through the two-cell two-step theory of steroidogenesis. Cholesterol is converted via a
series of enzymatic reactions to form testosterone in the theca cell and aromatized to E2
via the action of cytochrome P450 isoform 19A1 in the granulosa cell [97]. Thus, the ovary
is a dynamic organ vital for the production of the female gamete and critical to proper
endocrine balance in females.

3. Ovarian Toxicity

In the United States (US), 6.1 million women (10%) aged 15–44 years have difficulty
conceiving [98]. As mentioned previously, women are born with a finite number of oocytes
and anything that disrupts reproductive health can lead to temporary or permanent infertil-
ity [99]. The average age at the onset of menopause in the US is 51 years, and it results from
the cessation of ovarian cyclicity due to the depletion of the ovarian follicular pool [100].
Menopause onset before 40 years is referred to as premature ovarian failure (POF) and
can be induced by an increase in levels of gonadotropins or hypoestrogenism leading to a
depletion of the ovarian follicular pool [101] and alterations in the hypothalamic–pituitary–
ovarian axis [102].

Environmental, occupational, medicinal, or xenoestrogenic chemicals can also cause
adverse effects on the female reproductive system [83,103–111]. Chemicals that affect
ovarian function are known as ovotoxicants and can target different stages of follicu-
lar development [88,106,112], leading to harmful effects on follicle development, de-
creased oocyte quality and ovulation, disruption of the estrous cycle, and altered hor-
monal production [106,108,113–115]. Depletion of primordial follicles by ovotoxicants
can cause POF and permanent infertility due to the loss of the follicle pool that is irre-
placeable [88,99,100,112,116,117]. Damage to growing or antral follicles can disrupt the
menstrual cycle by altering ovarian steroid production and impairing ovulation, but the
damage is temporary because these follicles can be replaced from the primordial follicle
pool [88,99,108,116]. Many factors can influence ovarian toxicity, including the concen-
tration and duration of chemical exposure, as well as the age at which the exposure
occurs [112]. Thus, ovotoxicity is a broad term comprising a range of phenotypic outcomes
of toxicant exposure.

4. Effect of PFAS on Human Female Reproduction as Determined by
Epidemiological Studies

Several studies have associated exposure to PFAS with adverse effects on female
reproduction. However, most have evaluated the effects of long-chain or legacy PFAS,
and inconsistencies, as noted throughout this review, exist amongst these associative find-
ings. Epidemiological studies have linked PFAS exposure with alterations in reproductive
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hormone levels, menarche and menopause onset, menstrual cycle length, endometriosis,
polycystic ovary syndrome (PCOS), and impaired fertility.

4.1. Endocrine Disruption

PFAS are reported as endocrine disruptors [9], and exposure to PFAS is postulated
to alter the regulation of the hypothalamus–pituitary–ovarian axis [118]. In girls between
6–9 years old, high PFOS serum concentrations are associated with lower total testosterone
and insulin-like growth factor-1 (IGF-1) levels [119]. In addition, levels of PFNA are also
inversely associated with IGF-1 levels [119]. In Taiwanese girls aged between 12–17 years,
there were no links determined between PFAS serum concentration and serum E2, FSH,
and LH, with the exception of perfluoroundecanoic acid (PFUnA), which was correlated
with decreased FSH levels, and both PFOS and perfluorododecanoic acid (PFDoA) were
inversely associated with serum testosterone levels [120,121]. In contrast, testosterone
concentrations were higher in 15-year-old girls who were prenatally exposed to PFOS,
PFOA, and PFHxS [122]. Interestingly, another study in 20-year-old women did not link
prenatal exposure to PFOS and PFOA with levels of E2, testosterone, FSH, or LH [123].
However, inverse associations were reported for E2 and P4 levels and PFOS concentrations
in women, but a lack of any link was reported for the other PFAS, including PFOA [33,124].
In women aged between 20–45 years, serum testosterone concentrations were positively
associated with exposure to PFOA, PFHxS, and PFNA [125]. In midlife women during the
menopausal transition, PFOA and PFOS exposure showed a positive connection with FSH
levels, while PFNA and PFOA had an inverse relationship with E2 in circulation [126]. The
potential for PFAS exposure to affect reproductive hormone levels is concerning and could
contribute to negative effects on female reproduction and general health.

4.2. Puberty and Menopause Onset

Exposure to PFAS has also been associated with differences in cycle length, puberty
initiation, and menopause onset, alterations which may affect the proper functioning of the
reproductive system and might lead to infertility.

4.3. Puberty and Menopause

Exposure to PFAS has been correlated with altered timing of puberty and menopause
onset, which are both important for female reproductive and general health. Not many
epidemiological studies have evaluated the timing of puberty onset and correlations with
PFAS exposure, with inconsistent results in those reported. Three studies have illustrated
links between high levels of PFOA and PFOS with delayed puberty in girls [123,127,128].
Early puberty onset has been correlated with exposure to PFOS, PFHxS, PFHps, PFNA,
and PFDA [129]. Similarly, there are links reported between higher PFAS serum levels
and early menopause onset, albeit with discrepancies also existing [33,130]. Interestingly,
PFAS serum concentrations in premenopausal women are lower than in postmenopausal
women, who may bioaccumulate PFAS once they no longer menstruate [130–133]. Reverse
causation has been proposed as a possible explanation for differences in time to pregnancy,
early menopause, and PFAS levels in women [33,130,134]. Since PFAS may be excreted
through endometrial lining shedding during menstruation, women who no longer men-
struate may have higher levels of PFAS; the same would apply to women that have longer
interpregnancy intervals, who may have experienced a greater number of menstrual cycles
to eliminate more PFAS [33,130,134].

4.4. Menstrual Cyclicity

PFAS exposures have been shown to cause irregular menstrual cycles [118]. Increased
odds of irregular menstrual cycles have been associated with exposure to PFOA [128].
Higher PFOS concentrations have also been associated with irregular menstrual cyclicity,
but there were no associations with other PFAS, including PFOA, PFHxS, and PFNA [125].
Similarly, another study did not note a correlation between exposure to PFOS and PFOA
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and menstrual cycle length [123]. Different PFAS may change menstrual cycle length
in both directions; for example, exposure to PFOA decreases menstrual cycle length,
but conversely, exposure to perfluorodecanoate (PFDeA) increases the duration [135].
In women from Greenland, Poland, and Ukraine, higher levels of PFOA were linked
with longer menstrual cycles [136], while higher PFOS levels were less firmly related to
irregular menstrual cycles [136]. Positive associations between PFOA, PFOS, PFNA, and
PFHxS and self-reported longer menstrual cycles were reported in Chinese women [137].
After adjusting for confounders, self-reported irregular menstrual cycles were generally
not associated with PFAS serum concentrations in the Norwegian Mother and Child
Cohort [138]. However, shorter cycles were associated with lower serum concentrations
of perfluoroheptane sulfonate (PFHpS) and PFOS in parous women [138]. In addition, in
women using oral contraceptives, longer menstrual cycles were associated with higher
PFNA and PFUnA concentrations [138]. Alterations in the length of the menstrual cycle and
cyclicity are important since they can lead to problems with normal endocrine homeostasis
and fertility.

4.5. Fecundity Indices

In women aged 35–44 years, there was no association between fecundability ratios
and anti-Müllerian hormone (AMH), which is used clinically as a marker of ovarian re-
serve [139,140] and PFOA, PFOS, PFNA, and PFHxS serum levels; however, women with
higher serum PFAS concentrations had longer mean cycle lengths and were less likely
to achieve pregnancy by the cessation of the study [141]. In agreement with these find-
ings, a relationship between PFOA, PFOS, PFNA, and PFHxS prenatal exposure was
not reported with AMH levels in adolescents (14–16 years) and young adult (20 years)
female offspring [123,142]. In addition, higher concentrations of PFOS, PFOA, PFHxS,
and perfluorooctane sulfonamide (PFOSA) were associated with a longer time to preg-
nancy [118,143,144]. Serum PFOS and PFOA were linked to reduced fecundity [145], while
PFOA and PFNA were associated with a lower probability of pregnancy [135]. In contrast,
a lack of association between PFAS (PFOS, PFOA, PFHxS, PFNA, PFDA, PFOSA, N-
methyl-perfluorooctanoic sulfonamidoacetate (MeFOSAA), and N-ethyl-perfluorooctane-
sulfonamidoacetate (EtFOSAA)) concentrations and time to pregnancy has also been
noted [146] and limited support for an association between time to pregnancy and plasma
concentrations of PFOSA was noted in primiparous women in the Norwegian Mother
and Child Cohort Study [147]. In women from Greenland, Poland, and Ukraine, consis-
tent findings between PFOA, PFOS, and PFHxS levels and infertility were absent [148].
Nonetheless, high levels of PFNA were associated with a longer time to pregnancy and
odds ratio for infertility in women from Greenland, but these associations did not repeat
after conducting a sensitivity analysis of primiparous women [148]. In general, there is
support for PFAS exposure being associated with longer time to pregnancy and fecundity,
though a discrepancy certainly exists in the literature.

4.6. PFAS in Follicular Fluid

Follicular fluid is a physiological and biologically relevant component found in the
antral cavity of the follicle, which contains proteins, steroid hormones, polysaccharides,
metabolites, reactive oxygen species, and antioxidants [149]. Follicular vascularity permits
the partitioning of xenobiotics to this biofluid with close proximity to the oocyte [150].
Since the blood–follicle barrier can be crossed by albumin [151,152], it has been suggested
that PFAS can be present in growing follicles [8], and indeed, PFAS have been detected in
follicular fluid collected from women (Figure 1D) [125,153–156]. PFAS have a reported high
blood–follicle transfer efficiency [156], and the ratio of PFAS concentration in both the serum
and the FF has been positively correlated [156]. PFOA, PFOS, PFESA, PFNA, PFUndA,
PFDA, PFHxS, and PFHpS were detected in FF from Chinese women [157], PFOA, PFOS,
PFNA, PFUnDA, and PFDA were detected in women from Estonia and Sweden [158], and
both PFOS and PFUnDA in FF were associated with dietary consumption [159]. In a small
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cohort of US women, PFOA, PFOS, and PFHxS were also detectable in FF [160]. Levels
of PFOS in FF have been determined to be higher in women with irregular menses [125].
PFOA in FF was found to be significantly associated with elevated odds of PCOS with
adjustment for confounding influences [161]. High FF levels of PFOA have been linked with
a diminished ovarian reserve, suggesting that PFOA may affect the ovarian reserve function
by altering the FF metabolic composition [162]. Moreover, another study determined that
IVF patients who had PFAS in their FF had lower fertilization rates and a decreased number
of embryos for transfer [163]. These studies suggest that the presence of PFAS in ovarian
FF might lead to fertility issues.
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4.7. Other Reproductive Pathology

As with other reproductive endpoints, variations in etiological responsibility of
PFAS with endometriosis and PCOS are reported. Exposure to PFOA, PFNA, PFBS, and
PFOS has been associated with endometriosis [164–166], although in Swedish women
between 20–50 years, this was not observed [167]. Another relatively common female
reproductive pathology, PCOS, is linked with PFAS exposure, including PFHxS, PFOA,
and PFOS [125,167,168]. In Chinese women, PCOS-related infertility was positively asso-
ciated with the PFDoA plasma level but, conversely, inversely correlated with plasma
PFUnA [169], and as noted above, PFOA in FF was linked with higher odds of PCOS [161].
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A clear link between ovarian cancer and PFAS exposure is not established, likely
due to being understudied, with inconsistent results reported to date. Lack of association
between PFOA serum concentrations and risk for ovarian cancer has been reported in one
study [170], while another positively associated ovarian cancer with high PFOA serum
levels [171]. In the human ovarian cancer cell lines, OVCAR-3 and Caov-3 exposed to
PFOA, perfluoroheptanoic acid (PFHpA), and perfluoropentanoic acid (PFPA) and treated
with carboplatin, a chemotherapeutic agent, exposure to PFAS chemicals either singly or
as mixtures, increased the survival of ovarian cancer cells receiving carboplatin treatment
suggesting that PFAS chemicals conferred chemotherapeutic treatment resistance on the
cancer cells [172].

5. Developmental Effects

PFAS chemicals have been suggested to cross the placental barrier [134] and are
detectable in umbilical cord blood [173–177]. Contradictory reports of PFAS exposure and
developmental outcomes are documented. Investigations of serum levels of PFOA and
PFOS and pregnancy outcomes did not find an association between miscarriage, preterm
birth, and birth weight [178]. Weak associations between preeclampsia and PFOS and
PFOA, as well as offspring birth defects, have been reported [178]. Maternal serum PFAS
concentrations were not associated with changes in offspring birth weight [179]. Moreover,
the correlation between PFOS maternal and blood cord concentrations and offspring birth
weight and sex was not supported [180] in one investigation, but a weak and variable
association between offspring weight, length and head circumference at birth, and maternal
serum PFAS concentration was reported in another [181]. In umbilical cord blood, elevated
PFOA was weakly associated with low offspring birth weight, while increased PFOS
levels were linked with preterm birth [173]. Reduced birth length was reported in female
fetuses due to maternal PFOS, PFNA, PFDA, PFUnA, and PFDoA [174]. The negative
association between cord blood PFOS and PFOA with birth weight, ponderal index, and
head circumference has been noted, but no association was determined for gestational
age and newborn length [182]. Likewise, another study concluded that developmental
exposure to PFOA reduces fetal growth [183], and high concentrations of PFOS and PFOA
in drinking water supplies have been correlated with lower mean birth weight, preterm
birth, and reduced fertility [184]. In pregnant women from San Francisco, PFAS levels and
birth weight or gestational age were not determined to be linked [185]. In a different cohort,
PFHxS levels and decreased birth weight were linked; however, PFUnA was associated
with increased birth weight [186]. Reduced birth weight was also reported as a consequence
of maternal PFNA, PFDA, PFUnA, PFDeA, and PFDoA exposure [187,188]. Anogenital
distance (AGD) is a measure of endocrine disruption during in utero development, and
a link between increased female neonatal AGD and maternal PFAS concentrations has
been reported [189]. However, similar to other reproductive endpoints, shortened AGD in
female infants at three months of age is associated with maternal serum concentrations of
PFOS, PFHxS, and PFNA [190], while two more studies did detect a correlation between
maternal serum PFAS and AGD in females [191,192].

6. Effect of PFAS on Female Reproduction as Determined by Studies in Animal Models
6.1. Reproductive Organ Weight

Several animal models have been used to try to bridge gaps in epidemiological stud-
ies regarding PFAS exposure and female reproduction and the mechanisms of action of
reproductive and developmental toxicity, as summarized in Table 2. Most studies have
been performed in rodent animal models; however, others have used differing animal
models, including swine, cattle, and fish. In addition to humans, studies in animal models
mostly focus on the legacy PFAS, and some of the results show discrepancies. Changes in
reproductive organ weight have been reported in rodents, but the results are inconsistent.
In lean mice exposed to 2.5 mg/kg per body weight of PFOA for 15 d, a reduction in
ovarian weight was observed but not in obese mice [193]. There were no changes in uterine
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weight due to PFOA exposure [193]. In contrast, in prepubertal mice exposed to 0.01 mg/kg
PFOA from PND 18–20, increased absolute and relative uterine weight was observed [194].
Exposure to 50 mg/kg/day PFHxS for 42 days decreased ovarian weight in mice [195]. In
contrast, neonatal (PND 1–5) and juvenile (PND 26–30) female rats exposed to 1 mg/kg and
10 mg/kg PFOA, respectively, had increased ovarian weight [196]. In pregnant Kunming
mice, PFOA exposure did not alter ovarian weight [197]. Similarly, mice exposed to 1, 5,
10, or 20 mg/kg of PFOA did not have alterations in ovarian or uteri weight [198], nor
did adult female mice treated with 0.1 mg/kg/day of PFOS for 4 months [199]. Addition-
ally, prepubertal female rats treated with 0.5, 1.5, and 3 mg/kg/day of PFDoA for 28 d
did not have changes to ovarian or uterine weight [200]. Conversely, PFOS exposure in
female zebrafish inhibited ovarian growth [201]. Other studies found different results in
pathological lesions in the female reproductive tract of animals exposed to PFAS. Tubular
hyperplasia in the ovaries was increased in female rats after being fed for 2 years with
1.5 mg/kg/day of ammonium perfluorooctanoate (APFO); however, a subsequent analysis
did not determine any association with ovarian hyperplasia [202]. Prepubertal CD-1 mice
exposed to PFOA had histopathological changes in the uterus, cervix, and vagina [194], but
female Sprague Dawley rats fed with 1.3–1.8 mg/kg/day PFOS for 4 or 14 weeks did not
experience histological changes in the reproductive tract [203]. Similarly, prepubertal fe-
male rats treated with PFDoA did not experience observable histomorphological ovarian or
uterine changes [200], nor was any alteration to reproductive organs noted in six-week-old
female rats exposed to PFBA [204].

Table 2. Summary of effect of PFAS on female reproduction as determined by studies in animal
models [205–232].

PFAS
Substance Species and Strain Dose Exposure

Route
Duration of

Exposure Findings Reference

PFOA KK.Cg-a/a mice 2.5 mg/kg Oral 15 d
Reduction in ovarian weight

No changes to E2 and P4 serum levels
No alterations to estrous cycle

[193]

PFOA CD-1 mice 0.01 mg/kg Gavage PND 18–20

Increased absolute and relative
uterine weight

Histopathological changes in the
uterus, cervix and vagina

[194]

PFOA Sprague-Dawley rats 0.1, 1, 10 mg/kg Injected PND 1–5 or
PND 26–30

Increased ovarian weight
Increased E2 and LH levels
Irregular estrous cyclicity

Early vaginal opening
Decreased number of secondary

follicles and growing follicles

[196]

PFOA Kunming mice 2.5, 5, 10 mg/kg/d Gavage GD 1–7 or GD 1–13

No alterations in ovarian weight
Increased E2 serum levels at GD 7

Decreased P4 serum levels at GD 13
Reduced number and size of CL

Increased number of resorbed embryos
on GD 13

[197]

PFOA
CD-1 mice 1, 5, 10, 20 mg/kg Oral 10 d

No alterations in ovarian or
uterine weight

No alterations in E2 levels
Decreased P4 and pregnenolone levels

Increased testosterone levels
Decreased number of
primordial follicles

Increased number of preantral and
antral follicles

[198]

CD-1 mouse ovaries 100 µg/mL In vitro 96 h Decreased E2 and estrone levels
Decreased antral follicle growth

PFOA C57BL/6 5 mg/kg Gavage 5 d per w for 4 w No alterations in E2 serum levels
Increased P4 serum levels [205]

PFOA
Porcine theca cells 0.0012 mM In vitro 24 h No alterations on P4 levels [206]

Porcine granulosa cells 0.12, 0.012 mM In vitro 24 h Decreased E2 and P4 levels

PFOA Swine granulosa cells 2, 20, 200 ng/mL In vitro 48 h Increased E2 levels
Alterations in levels of P4

[207]

PFOA CD-1 mice 50 µM In vitro 96 h Increased number of secondary follicles [215]
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Table 2. Cont.

PFAS
Substance Species and Strain Dose Exposure

Route
Duration of

Exposure Findings Reference

PFOA CD-1 mice 2, 10, 25 mg/kg/d Gavage GD 11–16

Decreased fetal and placental weight
Increased number of resorptions and

dead fetuses
Decreased live fetus number

[217]

PFOA CD-1 mice 1, 3, 5, 10, 20, 40
mg/kg/d Gavage GD 1–17

Early pregnancy loss
Compromised postnatal survival

Delayed growth and development
[219]

PFOA CD-1 mice 1, 5 mg/kg/d Gavage ED 1.5–11.5 or 17.5 Placental abnormalities
Reduced embryo growth [225]

APFO Sprague-Dawley rats 1.5, 15 mg/kg/d Oral 2 y Tubular hyperplasia in the ovaries [202]

APFO Sprague-Dawley rats 1, 3, 10, 30 mg/kg Oral >70 d

No effects to estrous cyclicity, fertility,
pregnancy, natural length of gestation

on F0
Delayed vaginal opening on F1

generation

[227]

PFOS Sprague-Dawley rats 0.1, 1, 10 mg/kg Injected PND 1–5 or PND
26–30

Increased E2 and LH levels
Irregular estrous cyclicity

Early vaginal opening
Decreased number of secondary
follicles, growing follicles, atretic

follicles and CL

[196]

PFOS ICR mice 0.1 mg/kg/d Gavage 4 m

No alterations in ovarian weight
Decreased serum levels of E2 and P4,

Alterations in LH, FSH, and
GnRH level

Decreased number of mature follicles
and CL

Increased number of atretic follicles

[199]

PFOS Sprague-Dawley rats 1.3–1.8 mg/kg/d Oral 4 or 14 w No alterations to uterus, cervix
or vagina [203]

PFOS Zebrafish 50, 250 µgL−1 Via tank water 70 d Inhibited ovarian growth
Increased malformations and mortality [201]

PFOS Sprague-Dawley rats 1, 10 mg/kg Intraperitoneal
injection 14 d Irregular estrous cyclicity [208]

PFOS Crl:CD® (SD)IGS BR
VAF® rats

0.1, 0.4, 1.6, 3.2
mg/kg/d Gavage 6 w No alterations in estrous cyclicity [209]

PFOS Fathead minnow 0.3, 1 mg/L Via tank water 21 d Decreased number of CL
Increased number of atretic follicles [216]

PFOS CD-1 mice 0.5, 2, 8 ng/kg/d Gavage GD 11–16 Decreased maternal body weight gain,
fetal and placental weight [218]

PFOS Sprague-Dawley rats 0.1, 0.3, 1.0
mg/kg/d Gavage GD 0–20

No alterations in the number of litters,
gestation length, number of

implantation sites, and resorptions
[220]

PFOS
CD-1 mice 1, 5, 10, 15, 20

mg/kg/d
In utero

GD 1–18
Compromised postnatal survival

Delayed growth and development
[221]

Sprague-Dawley rats 1, 2, 3, 5, 10
mg/kg/d GD 2–21

PFOS Swordtail fish 0.1, 0.5, 2.5 mg/L Via tank water 6 w Female reproductive and
developmental toxicity [222]

PFOS Zebrafish 5, 50, 250 µg/L Via tank water 5 m
Alterations to embryonic growth,

reproduction and offspring
development

[229]

PFOS Zebrafish 0.6, 100, 300 µg/L Via tank water 0–180 dpf Increased mortality and developmental
outcomes [230]

PFHxS ICR mice 5, 50 mg/kg/d Intragastric
administration 42 d

Decreased ovarian weight
Prolonged estrous cyclicity Decreased
number of secondary follicles, antral

follicles, and CL

[195]

PFHxS Crl:CD® (SD)IGS BR
VAF/Plus ® rats 0.3, 1.3, 10 mg/kg/d Gavage

In utero

14 d prior to
cohabitation

through GD 21, GD
25, or PND 22

No alterations to estrous cyclicity
No reproductive or developmental

effects
[210]

PFHxS CD-1 mice 25.1, 62.5 mg/kg Intraperitoneal
injection Single dose Irregular estrous cyclicity

Decreased ovulation rate [213]

PFHxS Crl:CD1(ICR) mice 0.3, 1, 3 mg/kg/d
Gavage, in
utero, via
lactation

42 d
14 d

Decreased litter size
No alterations in postnatal survival,
development, and vaginal opening

[224]
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Table 2. Cont.

PFAS
Substance Species and Strain Dose Exposure

Route
Duration of

Exposure Findings Reference

PFDoA Sprague- Dawley rats 0.5, 1.5, 3 mg/kg/d Oral 28 d

No changes in ovarian and
uterine weight

No histomorphological ovarian or
uterine changes

Decreased E2 levels
No alterations in estrous cyclicity
No alterations in vaginal opening

No alterations to follicle and
CL numbers

[200]

PFDoA Crl:CD (SD) rats 2.5 mg/kg/d Gavage 42 d

Irregular estrous cyclicity
No changes in CL numbers

Maternal mortality
Stillbirths

Developmental toxicity

[214]

PFBA Sprague-Dawley rats 1.2, 6, 30, 150
mg/kg/d Gavage 28 d or 90 d No changes in ovarian and uterine

weight [204]

PFBS Sprague-Dawley rats 30, 100, 300, 1000
mg/kg/d Gavage >70 d No fertility or reproductive effects to

dams and female offspring [228]

PFHxA Crl:CD (SD) rats 20, 100, 500 mg/kg Gavage
90 d
4 m

GD 6–20

No alterations in estrous cyclicity
No reproductive and developmental

effects
[211]

PFHxA Crl:CD (SD) rats 50, 150, 300 mg/kg Gavage 39–52 d No reproductive or developmental
toxicity [50]

PFUnA Crl:CD (SD) rats 0.1, 0.3, 1.0
mg/kg/d

Gavage
In utero 41–46 d No alterations to estrous cyclicity

Decreased body weight of pups [212]

PFNA Bovine oocytes 0.1, 10 mg/mL In vitro 22 h

Impaired oocyte developmental
competence

Alterations to lipid accumulation in
blastocysts

[223]

GenX CD-1 mice 1, 5 mg/kg/d Gavage ED 1.5–11.5 or 17.5 Placental abnormalities
Reduced embryo growth [225]

GenX Sprague-Dawley rats 1, 3, 10, 30, 62.5, 125,
250 mg/kg/d Gavage GD 17–21 or

GD8-PND 2
Decreased pup weight

Increased neonatal mortality [226]

GenX

Zebrafish 0.04, 0.1, 0.4, 1.1, 3.1,
9.3, 27.2, 80.0 µM

Filter inserts
containing
zebrafish

embryos in
96-well culture

trays with
DMSO or DI

water

0–5 dpf No developmental toxicity [232]

ADONA

F53B Zebrafish 1.5, 3, 6,
112 mg/L Via tank water 6–132 hpf

Delayed hatchings
Increased birth defects
Reduced survival rates

[231]

Abbreviations: PFAS—per- and polyfluoroalkylated substances; PFOS—perfluooroctane sulfonic acid;
PFOA—perfluorooctanoic acid; PFNA—perfluorononanoic acid; PFHxS—perfluorohexane sulfonic acid;
PFBA—perfluorobutanoic acid; PFHxA—perfluorohexanoic acid; PFBS—perfluorobutanesulfonic acid;
PFUnA—perfluoroundecanoic acid; PFDoA—perfluorododecanoic acid; GenX—hexafluoropropylene oxide
dimer acid and ammonium salts; F53B—chlorinated polyfluoroalkyl ether sulfonate; APFO—ammonium per-
fluorooctanoate; ADONA—3H-4,8-dioxanonanoate; y = year; m = months; w = weeks; d = days; h = hours;
GD = gestational day; PND = postnatal day; ED = embryonic day; dpf = days post-fertilization; hpf = hours
post-fertilization.

6.2. Endocrine Disruption

Hormone level changes, differences in the estrous cycle, and the number of follicles
have also been evaluated in different animal models to try to understand PFAS toxicity,
and some inconsistencies have been observed in these studies. C57BL/6 female mice
exposed to 5 mg/kg PFOA at three weeks of age for five days per week for four weeks
did have altered serum E2; however, P4 serum levels were increased during the estrus
and proestrus stages of the estrous cycle [205]. Exposure to 2.5 mg/kg/day PFOA for
15 d did not impact E2 or P4 serum levels; however, when samples lower than the level
of detection were omitted from the E2 assay, E2 serum levels were higher in obese mice
due to PFOA exposure [193]. In another study, PFOA exposure decreased serum P4 in
pregnant mice [197]. In mice exposed to 1, 5, 10, or 20 mg/kg of PFOA, there was no
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impact on E2, but P4 and pregnenolone levels were decreased at 5 mg/kg exposure, and
1 mg/kg increased testosterone levels [198]. An in vitro study in mouse ovaries exposed to
100 µg/mL PFOA reported a decrease in E2 and estrone levels [198]. Secretion of P4 was
not altered by 0.012–24 mM PFOA exposure in cultured porcine theca cells [206]. However,
in granulosa cells, P4 and E2 secretion were decreased at 0.12 mM and 0.012 mM PFOA,
respectively, indicating a concentration-dependent effect [206]. Adult female mice treated
with 0.1 mg/kg/day of PFOS for four months had decreased serum levels of E2 and P4 at
the proestrus and diestrus stages of the estrous cycle [199]. In addition, decreased LH, FSH,
and gonadotropin–releasing hormone levels were also observed [199]. In prepubertal rats,
PFDoA decreased serum E2 level at an exposure level of 3 mg/kg/day [200]. In contrast,
PFOA exposure increased E2 and P4 levels in swine granulosa cells [207]. Thus, there are
variations in the endocrine effects; however, disruption to hormonal homeostasis by PFAS
chemicals is supported.

6.3. Estrous Cyclicity

In prepubertal rats, PFDoA did not induce irregularities in estrous cyclicity or timing
of vaginal opening [200]. However, early vaginal opening was observed with 10 mg/kg of
PFOA and 1 and 10 mg/kg of PFOS after neonatal and juvenile exposure [196]. Further-
more, the same study showed that PFOS and PFOA exposure induced irregular estrous
cyclicity [196] and 1 or 10 mg/kg of PFOS for 14 d increased time spent in diestrus [208]. In
contrast, PFOS did not alter the estrous cycle in rats [209] nor in mice dosed with 2.5 mg/kg
of PFOA for 15 d [193] or rats exposed to PFHxS, PFUnA, and PFHxA [210–212]. However,
mice chronically exposed to PFHxS had increased estrous cycle length with longer duration
spent in diestrus [195]. Similarly, longer estrous cycles and decreased ovulation rates after
exposure to PFHxS were noted in mice [213]. While no alterations in estrous cyclicity were
observed in female rats dosed with 2.5 mg/kg/day of PFDoA for 14 d, exposure for 42 d
caused continuous diestrus [214]. Prolonged diestrus is indictive of ovarian failure; thus, it
could be reflective of entry into premature cyclicity cessation.

6.4. Follicular Effects

Differences in ovarian follicle number due to PFAS exposure have been reported in
several studies.

In mice, PFOS exposure decreased the number of mature follicles and CL and increased
the number of atretic follicles [199]. In vivo exposure to 5 mg/kg PFOA decreased the
number of primordial follicles, while the number of preantral and antral follicles was
increased [198]. Neonatal PFOA and PFOS exposure in rats decreased the number of
secondary follicles, growing follicles, atretic follicles, and CL [196]. PFHxS exposure also
decreased secondary and antral follicles and CL in mouse ovaries [190]. In pregnant mice,
PFOA decreased the number of CL [197]. In vitro exposure to 50 µM of PFOA in mice
increased the number of secondary follicles [215], while 100 µg/mL PFOA decreased antral
follicle growth [198]. In fathead minnow, PFOS exposure decreased the number of CL
and increased atretic follicles [216]. However, in contrast, rats exposed to PFDoA did not
change their follicle or CL number [200,214]. Thus, follicle loss is supported as an outcome
of PFAS exposures, though inconsistent findings are noted.

6.5. Developmental Effects

Exposure to PFAS has been shown to alter developmental outcomes. PFOA exposure
increased the number of resorbed embryos at 10 mg/kg/day on gestational day (GD) 13
and increased serum E2 on GD 7 in mice [197]. Furthermore, pregnant CD-1 mice exposed
to PFOA had decreased fetal and placental weight, an increased number of resorptions
and dead fetuses, and a decreased live fetus number in a dose-dependent manner [217].
Similarly, PFOS exposure in mice decreased maternal body weight gain and fetal and
placental weight dose-dependently [218]. Mice exposed to PFOA had early pregnancy loss,
compromised postnatal survival, and delayed growth and development [219]. Exposure
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to PFOS in rats from GD 0 until PND 20 did not cause alterations in the number of
litters, gestation length, number of implantation sites, and resorptions [220]. Moreover,
in utero exposure to PFOS in mice and rats compromised postnatal survival and delayed
growth and development [221]. In addition, exposure to PFOS in swordtail fish caused
female reproductive and developmental toxicity [222]. Bovine oocytes exposed to PFNA
in vitro during maturation and then fertilized had impaired developmental competence
during maturation and alterations in lipid accumulation in the blastocysts [223]. Pregnant
female rats dosed with 2.5 mg/kg/day PFDoA either died or were moribund at the end of
the pregnancy with signs of hemorrhage in the implantation sites and congestion of the
endometrium, and only one female delivered pups that had low body weight [214]. In
contrast to these studies in which developmental impacts of PFAS were reported, several
others did not observe impacts. Sprague Dawley rats exposed to PFHxS did not have
reproductive or developmental effects in either the dams or the offspring [210]. In CD-
1 mice, PFHxS did not impact postnatal survival, development, and vaginal opening
in F1 mice; however, the live litter size was decreased [224]. In rodents, exposure to
GenX caused placental abnormalities, reduced pup birth weight, and increased neonatal
mortality [225,226]. In pregnant female rats, exposure to PFUnA did not change the sex
ratio of live pups; however, the body weight of pups was decreased on PND 0 and 4 [212].

Some multi-generational studies with PFAS have been reported. In a two-generation
study, females exposed to APFO 70 d before mating did not affect estrous cyclicity, fertility,
pregnancy, the natural length of gestation, or the number of litters [227]. In the F1 gener-
ation, there were no effects on female reproduction, but a delay in vaginal opening was
noted [227]. Exposure to PFHxA did not affect mating, fertility, gestation length, number of
implantation sites, litter size, sex ratio, or pup survival in F0 and F1 generations [50,211].
There were no fertility or reproductive effects, including infertility, estrous cyclicity, preg-
nancy, mating, and natural delivery after exposure to PFBS in a two-generation study in
rats [228]. In zebrafish F1 and F2 generations, PFOS exposure caused deformities and other
developmental outcomes [229,230]. Additionally, F1 embryos exposed in utero to PFOS
had malformations and increased mortality [201]. Furthermore, zebrafish exposure to
F53B delayed hatchings, increased birth defects, and reduced survival rates [231]. How-
ever, developmental toxicity was not observed in zebrafish embryos exposed to GenX and
ADONA [232].

Taken together, studies in animal models indicate that PFAS exposures cause female
reproductive toxicity by inducing changes in reproductive organs, endocrine disruption,
alterations in the estrous cycle, differences in the number of follicles and CL, and develop-
mental toxicity. However, these findings have some inconsistencies, and the time and route
of exposure, type of PFAS chosen, type of animal model chosen, and developmental status
of the animal are likely contributors to the variation in endpoint impacts noted.

7. Possible Mechanisms of Action by which PFAS Exposure Causes Female
Reproductive Toxicity

A lack of understanding of the mechanisms of action in which PFAS causes reproduc-
tive toxicity exists. However, several studies have evaluated molecular endpoints to gener-
ate an understanding of modes of action related to female reproductive toxicity, as sum-
marized below and in Figure 1C. PFAS can interact with estrogen receptors [200,233–236]
and are endocrine disruptors since they can alter hormone levels. Reproductive toxicity is
suggested to be increased as the chemical carbon chain length increases and a sulfonate
group is added [237]. Additionally, exposure to PFOA and PFHxS disrupts gap junction
intercellular communication in cumulus cell–oocyte complexes [213,238], which could lead
to alterations in the growth and development of the oocyte [239]. Exposure to PFOS and
PFHxS increased the intracellular level of reactive oxygen species in mouse oocytes [237].
Additionally, in pregnant and non-pregnant mouse ovaries, oxidative stress and apoptosis
were observed after exposure to PFOA [197,238]. Further, in swine granulosa cells, PFOA ex-
posure induced cell viability but inhibited free radical production, altering normal ovarian
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homeostasis [240]. Additionally, PFOS and PFHxS induced mitochondrial depolarization,
chromosome misalignment, abnormal assembly of F-actin and spindle, and compromised
developmental competence of oocytes [237]. Moreover, in mice, PFOA exposure altered
abundance genes and proteins with roles in the cell cycle, Hippo pathway, steroidogenesis,
DNA damage sensing and repair, and reproduction [193,198,215]. PFOS also altered the
mRNA abundance of genes involved in estrogen receptor function, early thyroid devel-
opment, and steroidogenic enzyme synthesis in zebrafish embryos [241]. Related further
to steroidogenesis, PFDoA affected ovarian levels of genes involved in steroidogenesis
and cholesterol transport [200]. In juvenile Atlantic cod fish ovarian tissue, exposure to
PFOS, PFOA, and PFNA changed levels of genes involved in cellular signaling, adhesion,
cytoskeleton, remodeling, lipid metabolism, ovarian development, steroidogenesis, cancer,
and apoptotic and proapoptotic reproduction signaling pathways [242]. Alterations in
the levels of the genes and proteins involved in the biological and molecular functions
mentioned could lead to alterations in ovarian homeostasis, leading to reproductive toxicity.

Another possible mechanism that can lead to female reproductive toxicity is through
the activation of peroxisome proliferator-activated receptor (PPARs) signaling pathways
(reviewed in Ding et al., 2020 [8]). The PPAR isoforms α, β/δ, and γ are transcrip-
tion factors that are ligand-specific and have different functions. PPARs are present
in the ovary and involved in different processes (reviewed in Komar, 2005 [243]), in-
cluding cell cycle, steroidogenesis, apoptosis, angiogenesis, lipid metabolism, and tissue
remodeling [243–245]. PPARα is located primarily in theca cells and stroma, PPARβ/δ has
a widespread ovarian location, and PPARγ is present in the oocyte, theca, and granulosa
cells of different species [243]. PFAS can interact with PPAR isoforms [246] in different
tissues, including the ovary, possibly leading to alterations in ovarian function and other
female reproductive effects [8], though this is not well explored.

Cholesterol is a precursor of bile acids, steroid hormones, and cholesterol esters, and
the cholesterol metabolite, cholesta-3,5-diene, regulates cholesterol biosynthesis and ab-
sorption and acts on transcription factors and receptors [247]. In both men and women,
positive associations between PFAS exposure and increased serum cholesterol have been
reported [248–254]. Both cholesterol and cholesta-3,5-diene are increased by PFOA expo-
sure in female mice [255], and a PFAS-induced increase in cholesterol has been noted in
other animal investigations [252,253,256]. In male and female C57BL/6J mice exposed to
PFAS via drinking water, increased circulating cholesterol was observed [256] and was also
recapitulated in female C57BL/6 mice exposed to PFOA [257]. The abundance of ovarian
cholesterol-responsive proteins (RALY, CFTR, LRP1, NAXE, APOA4, APOA2, SOAT1,
EHD1, HMGCS2, and CES1C) was altered in PFOA-exposed mice [255], suggesting that
the ovary is responsive to systemic cholesterol fluctuations. Since cholesterol is a precur-
sor of steroid hormones and cholesterol excess has been implicated in aberrant ovarian
function [258], PFAS exposure could impact fertility through altering steroidogenesis, con-
comitant with endocrine disrupting effects of PFAS reported in human and animal studies.

8. Conclusions

There is support in the current literature for PFAS chemicals being considered female
reproductive toxicants with effects on the endocrine system, folliculogenesis, puberty
and menopause timing, fertility, pregnancy success, and development. Effects including
altered cholesterol levels, menstrual/estrous cycle disturbance, offspring developmental
perturbations, and infertility are noted both in human epidemiological and animal studies,
as summarized in Figure 1. There are inconsistencies across studies, likely attributable
to developmental status, geographical location, and exposure paradigm (chemical, dose,
duration, and route).
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