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Abstract: Potentially toxic elements (PTEs) pose a significant threat to the groundwater system
and human health. Pollution and the potential risks of PTEs in groundwater in the Kǒnqi River
Basin (KRB) of the northwest arid zones of China are still unknown. A total of 53 groundwater
samples containing eight PTEs (Al, As, Cd, Cu, Mn, Pb, Se, and Zn) were collected from the KRB,
and the pollution levels and probabilistic health risks caused by PTEs were assessed based on the
Nemerow Index (NI) method and the health risk assessment model. The results revealed that the
mean contents of Al, As, and Mn in the groundwater surpassed the Class III threshold of the Standard
for Groundwater Quality of China. The overall pollution levels of the investigated PTEs in the
groundwater fall into the moderate pollution level. The spatial distributions of contents and pollution
levels of different PTEs in the groundwater were different. Health risk assessment indicated that all
the investigated PTEs in groundwater in the KRB may pose a probabilistic non-carcinogenic health
risk for both adults and children. Moreover, As may pose a non-carcinogenic health risk, whereas
the non-carcinogenic health risk posed by the other seven PTEs in groundwater will not have the
non-carcinogenic risks. Furthermore, As falls into the low carcinogenic risk level, whereas Cd falls
into the very low carcinogenic risk level. Overall, As was confirmed as the dominant pollution factor
and health risk factor of groundwater in the KRB. Results of this study provide the scientific basis
needed for the prevention and control of PTE pollution in groundwater.

Keywords: groundwater; PTEs; pollution; health risk; Monte Carlo simulation

1. Introduction

Groundwater is one of the most critical sources of freshwater supply worldwide.
Nearly two-thirds of the world’s population relies on groundwater for survival and daily
activities [1]. In China, nearly 70% of daily water supply and 40% of irrigation water rely on
groundwater [2]. In arid regions, groundwater is a vital component of water ecosystems and
is of great significance to ecosystem stability, human health, and agricultural production [3].
Groundwater is even more critical as it plays a crucial role in regional water supply and
the eco-environmental security of arid regions [4,5].

Groundwater pollution has attracted interest worldwide for its determinant effects
on water supply and food security [6,7]. Potentially toxic elements are the most common
pollutant in the groundwater system, which has been reported to have different degrees of
pollution around the world [8,9]. In recent years, with the rapid development of modern
agriculture and industry, pollution of groundwater by PTEs has grown to be a complex
environmental problem due to their high toxicity, non-degradability, and persistence [10,11].
Toxic elements from industry, agriculture, and natural sources can pollute groundwater
through wastewater discharge and infiltration [12,13]. PTEs that accumulate in ground-
water can directly or indirectly threaten human health via direct ingestion and dermal
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absorption [14,15], and can also threaten natural ecosystems through water recycling [16].
Among them, As, Cd, and Pb are extremely toxic to the human body and animals, even
at low content levels [17]. Other PTEs, such as Al, Cu, Mn, Se, and Zn, are necessary for
the metabolism, but they can become toxic when their content in groundwater exceeds
the tolerance limit of the human body [2]. For example, consumption of groundwater
containing high contents of As and Cd, are known to be carcinogenic, can affect the func-
tions of the kidneys, and can cause liver, lung, and bladder cancers [18,19]. Extended
exposure to Zn at high levels increases the risk of developing neurological and behavioral
disorders [8]. Lead exposure can cause kidney and brain damage, cognitive decline, and
cardiovascular diseases [20]. Copper exposure can also cause liver damage and impaired
kidney function [15]. Elevated aluminum manganese and selenium levels influence the
brain and liver, and cause behavioral problems [20]. In addition, PTEs can also affect the
physical and chemical properties of groundwater and pose significant challenges to the
sustainable use of groundwater [21]. PTEs discharged into the groundwater system are
mainly caused by natural origins (soil-water interactions, geochemical background, or
mineral leaching) and anthropogenic activities (agricultural pollution, industrial pollution,
or wastewater discharge) that lead to the pollution of groundwater systems [22]. Moreover,
the use of polluted groundwater for agricultural irrigation may lead to the accumulation
of PTEs in soil, and ultimately result in reduced crop yields and harm human health [23].
Therefore, the health risks of toxic elements in groundwater have become a critical research
concern worldwide [24].

Health risk assessment of PTEs in groundwater is of high importance due to its direct
relation to human life [6,25,26]. Therefore, periodical monitoring of PTEs in groundwater
is required to identify their potential risks. Pollution assessment of PTEs in groundwater is
necessary before estimating potential health risks. The Nemerow index (NPI) [27], heavy
metal pollution index (HPI) [28], and water quality index (WQI) [29] are effective methods
for assessing pollution levels of PTEs in groundwater. However, these traditional methods
have certain limitations. They require a clear critical limit value without considering factors
such as ingestion rate, body weight, exposure duration, and exposure frequency [30]. The
health risk assessment model introduced by the US Environmental Protection Agency
utilizes clear values and assumptions to estimate health risks and considers related pa-
rameters, thus can provide a more comprehensive evaluation of potential health risks [15].
Recently, health risk assessment based on the Monte Carlo Simulation is considered a more
powerful technique because it considers the variability and uncertainty in input parameters,
decreases uncertainty related to exposure parameters, and thus enhances the accuracy of
potential health risk assessments [31–33].

In China, nearly 80% of shallow groundwater has been polluted to varying de-
grees [14]. Among such, pollution of groundwater by PTEs should not be ignored. Recent
reports [20,34,35] indicated that various anthropogenic activities and low groundwater
recharge have led to the pollution and degradation of the quality of many groundwater
systems in the northwestern arid zones of China. So far, however, the pollution and health
risks of PTEs in the groundwater of the Kǒnqi River Basin (KRB), which is a major pear
production area in China and also one of the main industrial areas in Xinjiang in northwest
China, are nearly unknown. It should be noted that, under the influence of anthropogenic
activities such as industry and rapid expansion of agriculture, the various PTEs of water
cycle in the KRB have drastically changed and caused a series of water problems, such as
groundwater pollution and the decline of the groundwater table [36,37].

The main goals of the present study are (1) to determine the contents and spatial
distributions of eight PTEs, including Al, As, Cd, Cu, Mn, Pb, Se, and Zn in the groundwater
of the KRB in the northwest arid regions of China, (2) to quantify the pollution levels of
PTEs in groundwater, and (3) to assess the potential health risks of PTEs in groundwater,
based on the US EPA health risk assessment model. The results of this study will provide
guidance for groundwater pollution control and management in the KRB, as well as other
similar aquatic ecosystems in arid regions.
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2. Materials and Methods
2.1. Study Area

The Kǒnqi River Basin (85◦40′ E~86◦20′ E, 41◦20′ N~41◦40′ N) is located in Xinjiang in
the northwestern arid regions of China (Figure 1). It is located on the southern slopes of
the Tianshan Mountains and in the northern parts of the Taklimakan Desert. The KRB is
positioned in the central part of the Eurasian continent and experiences an arid and hot
summer climate, as well as cold winters, which is characteristic of a typical continental arid
desert climate with an annual mean precipitation of 11.4 mm, evaporation of 2800 mm, and
temperature of 10.5 ◦C.
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Figure 1. Locations of the Kǒnqi River Basin (KRB) and sample sites. 

2.2. Groundwater Sampling 
Based on the Chinese national standard HJ/T 164–2004 [39], a total of 53 groundwater 

samples were collected from the KRB in August 2023, with a period of no significant pre-
cipitation within two weeks. The locations of sample sites are also depicted in Figure 1. 
Groundwater samples for daily use and irrigation water were collected from pumping 
wells or wells. To ensure proper sample preservation, the groundwater samples were 
stored in polypropylene bottles that had been pre-washed with deionized water. After the 
field survey sampling, the samples were immediately transported to the laboratory. Be-
fore the laboratory analysis, all samples were filtered using disposable syringes (10 mL, 
filter pore size 0.45 µm) then acidified with nitric acid to maintain a pH below 2. The sam-
ples were stored in a controlled environment at 4 °C before laboratory analysis. 
  

Figure 1. Locations of the Kǒnqi River Basin (KRB) and sample sites.

The groundwater in the KRB belongs to the unconsolidated–layer–pore water type,
primarily found in the alluvial–pluvial layer, with abundant occurrences of phreatic and
confined water in a layered structure. The topographical features consist of vast mountain
ranges, oases on narrow plains, and expansive deserts. The terrain is high in the north and
low in the south. Agricultural irrigation in the KRB requires the extraction of groundwater.
The KRB is rich in mineral resources, such as coal, oil, iron, and manganese. A new
generation of petroleum and petrochemical industry has been forming in the KRB in recent
decades [38]. The soil parent material has a high salt content, and the secondary salinization
of riverbank soil is severe. The main soil types are brown desert soil and salinized soil, and
the main crops are cotton and pepper.

2.2. Groundwater Sampling

Based on the Chinese national standard HJ/T 164–2004 [39], a total of 53 groundwater
samples were collected from the KRB in August 2023, with a period of no significant
precipitation within two weeks. The locations of sample sites are also depicted in Figure 1.
Groundwater samples for daily use and irrigation water were collected from pumping
wells or wells. To ensure proper sample preservation, the groundwater samples were stored
in polypropylene bottles that had been pre-washed with deionized water. After the field
survey sampling, the samples were immediately transported to the laboratory. Before the
laboratory analysis, all samples were filtered using disposable syringes (10 mL, filter pore
size 0.45 µm) then acidified with nitric acid to maintain a pH below 2. The samples were
stored in a controlled environment at 4 ◦C before laboratory analysis.

2.3. Chemical Analysis

The collected groundwater samples were entrusted to the “Xinjiang Shuiqingqing
Environmental Monitoring Technology Service Co., Ltd.” to determine the contents of PTEs.
The contents of Al, As, Cd, Cu, Mn, Pb, Se, and Zn were determined, per the Chinese
National Standard detailed in HJ 700–2004 [40], using an inductively coupled plasma–mass
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spectrometer (ICP–MS, Perkin Elmer, Waltham, MA, USA) (RSD < 5%). The detection
limits for Al, As, Cd, Cu, Mn, Pb, Se, and Zn were 1.15, 0.12, 0.05, 0.08, 0.12, 0.09, 0.41, and
0.67 µg/L, respectively.

2.4. Quality Assurance and Quality Control (QA/QC)

All groundwater samples, laboratory blanks and standard spiked samples were ana-
lyzed for QA/QC. Results of blank tests indicated that their measured values were lower
than the detection limits. The average recovery rate for all target PTEs ranged from 94.38%
to 108.8%. To ensure the measured data quality, calibration curves were produced and the
contents of PTEs in each sample were tested three times. The relative standard deviation
(RSD) for the test substances was maintained below 15%, which complies with the require-
ments of the US EPA (RSD < 30%) [3]. QA/QC ensured the accuracy and reliability of the
chemical analysis results.

2.5. Pollution Level of PTEs in Groundwater

The Nemerow index (NI) method [27] is used for comprehensively assessing both
single and integrated pollution levels of PTEs in groundwater. It is calculated as follows:

Ii = Mi/Si (1)

NI =
√(

Imax
2 + Imean

2
)

/2 (2)

where Ii represents the pollution level of a single element i, and NI represents the overall
groundwater quality of PTEs [2]. Mi represents the content of element i in the surveyed
groundwater samples, Si is the evaluation standard of element i. The Imax and Imean are
the maximum and mean values of Ii, respectively. The Class III threshold of the Standard
for Groundwater Quality, suggested by the AQSIQ [40], was selected as the evaluation
standard. The classification standards [2] for the pollution degree of Ii and NI are given in
Table 1.

Table 1. Classification standards of pollution degree of Ii and NI.

Class Pollution Degree Ii NI

I No pollution Ii < 0.7 NI < 0.7
II Slightly pollution 0.7 < Ii ≤ 1 0.7 < NI ≤ 1
III Low pollution 1 < Ii ≤ 2 1 < NI ≤ 2
IV Moderate pollution 2 < Ii ≤ 3 2 < NI ≤ 3
V High pollution Ii > 3 NI > 3

2.6. Probabilistic Health Risk Assessment

In this study, we adopted the health risk assessment model [41] to evaluate the prob-
abilistic health risks of exposure to PTEs through oral ingestion and dermal contact. We
specifically considered children as a sensitive group, while adults are generally regarded as
the general population. Traditional human health risk assessments have primarily relied
on fixed parameters to calculate associated risks [42]. Uncertainties in risk characterization
parameters may lead to biases in risk assessment [31,43]. Therefore, probabilistic methods
based on the Monte Carlo Simulation (MCS) were applied in this study. The MSC involve
subjecting parameters to specific ranges, allow for a more accurate risk assessment, and
demonstrate the impact of different parameters on risk assessment outcomes [44,45]. MCS
obtain the probability distribution of health risks of groundwater PTEs by incorporat-
ing a large number of random samples consistent with certain probability distributions
into the mathematical model, with a random simulation iteration count of 10,000 [45,46].
Based on existing research [47], Al, As, Cd, Cu, Mn, Pb, Se, and Zn were categorized as
non-carcinogenic PTEs, while As and Cd were listed as both non-carcinogenic TEs and
carcinogenic PTEs.



Toxics 2024, 12, 474 5 of 16

The exposure to PTEs in the groundwater was characterized by the chronic daily
intake (CDI, mg/kg/d) introduced by the US EPA [41]. The formula for calculating the
CDI of the jth element at the ith sample site is as follows [48]:

CDIij oral= (Cij × IR × EF × ED)/(BW × AT
)

(3)

CDIij derm= (Cij × SA × PC × ET × EF × ED × CF)/(BW × AT
)

(4)

where Cij is the jth element at the ith sample site (µg/L); CDIij oral is the CDI from the inges-
tion route of the jth element at the ith sample site; CDIij derm is the CDI from the dermal con-
tact route of the jth element at the ith sample site; IR is the ingestion rate (1.8 L/d for adults,
and 0.70 L/d for children) [49]; EF is the exposure frequency (350 (180, 365) days/year for
both adults and children) [31]; ED is the exposure duration (24 years for adults, and 6 years
for children) [50]; BW is the body weight (70.0 kg for adults, and 21.2 kg for children) [46];
AT is the averaging time (for non-carcinogenic risk, 8760 days for adults, and 2190 days for
children; for carcinogenic risk, 25,550 days for both adults and children) [31]; SA is the skin
surface area (16,600 cm2 for adults, and 8000 cm2 for children) [46]; PC is the absorption
coefficient of the human body (1 × 10−3 for As, Cd, Cu, Mn, Pb, Al, and Se, and 6 × 10−4

for Zn) [50]; ET is the event duration (0.20 (0.13, 0.33) hour/event), and CF is the conversion
factor (0.001 L/cm3) [50].

Then, the potential non-carcinogenic health risk (HI) of PTEs in the groundwater was
calculated as the hazard quotient (HQ) as follows:

HQ =CDI/R f D (5)

HI =ΣHI (6)

where RfD is the reference dose for the ingestion and dermal contact routes. The RfD is
given in Table 2 [48,51]. Depending on the risk classification criteria [52], when HI < 1,
PTEs in groundwater will not have non-carcinogenic risks. HI > 1 indicates a probabilistic
non-carcinogenic health risk.

Table 2. RfD and SF values for PTEs.

Parameters Al As Cd Cu Mn Pb Se Zn

RfDoral 0.14 0.003 0.0005 0.04 0.046 0.0014 0.001 0.3
RfDdermal 0.14 0.000285 0.000025 0.012 0.0018 0.00042 0.0015 0.06

SForal / 1.5 6.1 / / / / /

Note: / indicates no related data.

The probabilistic carcinogenic health risk of PTEs in the groundwater was calculated
as the carcinogenic risk index (CR) as follows:

CR = CDI × SF (7)

TCR = ΣCR (8)

where SF is the reference dose for the ingestion and dermal contact routes, TCR is the total
carcinogenic risk index of all the PTEs. The values of RfD and SF are given in Table 2 [15,51].

The classification of the carcinogenic risk degree of CR and TCR are as follows: very
low carcinogenic risk (CR or TCR < 1 × 10−6), low carcinogenic risk (1 × 10−6 ≤ CR or
TCR < 1 × 10−4), moderate carcinogenic risk (1 × 10−4 ≤ CR or TCR < 1 × 10−3), high
carcinogenic risk (1 × 10−3 ≤ CR or TCR < 0.1), and extremely high carcinogenic risk (CR
or TCR > 0.1) [53,54].
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2.7. Monte Carlo Simulation (MCS)

The MCS is a statistical mathematical theory adapted to uncertainty analyses in
potential health risk assessment. To minimize uncertainty and provide a more robust
health risk assessment of PTEs in the groundwater for the residents, the MCS approach
was employed in this study to simulate the uncertainty of exposure parameters used for
health risk assessment calculations associated with PTEs in the groundwater [7,55].

2.8. Statistical Analysis

For the statistical analysis of groundwater data, the IBM Statistical Package for the
Social Sciences (SPSS) 25.0 (Chicago, IL, USA) was used. A normal distribution test was
conducted of the variables, and then an abnormal distribution test was used to analyze
the PTE contents after logarithmic transformation. The GIS-based Ordinary Kriging inter-
polation method, which has been widely used in geostatistics [2], was applied in order to
map the spatial distribution of PTEs in the groundwater. The ArcGIS 10.2 software (Esri,
CA, USA) was used for mapping the spatial distribution of PTEs. Sensitivity analysis was
conducted using the MATLAB 2021 software(MathWorks, NM, USA).

3. Results
3.1. The Contents of PTEs in Groundwater

Table 3 presents a basic statistical summary of the investigated PTEs in groundwater
in the KRB, and the Class III threshold of the Standard for Groundwater Quality of China
(GB/T 14848—2017) [40]. As shown there, the mean contents of Al, As, Cd, Cu, Mn, Pb, Se,
and Zn in groundwater in the KRB are 233 µg/L, 21 µg/L, 0.35 µg/L, 32 µg/L, 180 µg/L,
6 µg/L, 7 µg/L, and 156 µg/L, respectively. The mean contents of Al, As, and Mn in
the groundwater surpass the Class III thresholds by factors of 1.17, 2.10, and 1.80 times,
respectively. The mean contents of the other five PTEs are lower than the corresponding
threshold values. The maximum contents of Al, As, and Mn in the groundwater surpass
the corresponding threshold values by factors of 4.99, 17.60, and 10.47 times. It should be
pointed out that the maximum contents of Cd, Pb, and Se also surpass the corresponding
threshold values by factors of 1.10, 4.59, and 19.73 times, respectively.

Table 3. Statistical summary of PTEs contents in the groundwater (n = 53).

Items Al As Cd Cu Mn Pb Se Zn

Minimum/(µg/L) 0.96 0.82 0.01 1.24 0.23 0.25 0 0.90
Maximum/(µg/L) 997.00 176.00 5.50 530.00 1047.00 45.90 97.30 944.00

Mean/(µg/L) 233.00 21.00 0.35 32.00 180.00 6.00 7.00 156.00
Standard deviation/(µg/L) 0.25 0.04 0.00088 0.08 0.23 0.01 0.01 0.19

Coefficient of variation 1.06 1.84 2.52 2.45 1.29 1.37 1.91 1.23
Skewness 1.09 3.13 4.49 5.33 2.06 2.52 5.32 2.61
Kurtosis 0.70 9.45 23.31 32.51 4.16 7.54 32.08 7.78

* National standard/(mg/L) 0.20 0.01 0.005 1.00 0.10 0.01 0.01 1.00
Standard-exceeding ratio/(%) 49.06 35.85 1.87 0 45.28 20.75 15.09 0

Note: * The Class III threshold of the Standard for Groundwater Quality (GB/T 14848—2017).

However, except for Cu and Zn, a considerable percentage of groundwater samples
exceed the Class III threshold of the National Standard for Al (49.06%), As (35.85%), Cd
(1.87%), Mn (45.28%), Pb (20.75%), and Se (15.09%). According to the above analysis, it
appears that Al, As, Mn, Pb, and Se are particularly more abundant in groundwater in the
KRB. The calculated coefficient of variations (CV) of all PTEs have values exceeding 100%,
with strong variability (CV > 50%), indicating a significant level of spatial variability [2].
The skewness and kurtosis of these PTEs are also relatively high. This indicates that there
are noticeable variations in PTEs contents among different sampling sites, which could
potentially suggest pollution from specific sources [56,57]. However, the PTEs falling into
the strong variability classes are likely to be influenced by anthropogenic factors.
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3.2. The Spatial Distribution of PTEs in Groundwater

A GIS-based Ordinary Kriging (OK) interpolation was used for mapping the spatial
distribution patterns of the contents of eight PTEs in groundwater in the KRB (Figure 2).
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As shown here, the spatial distributions of the contents of different PTEs in the
groundwater were different, with the distribution of the high-PTE-content areas in the
groundwater showing a zonal distribution pattern, exhibiting characteristics of natural
source input, as reported by Muyassar et al. [2]. In the case of Al, the high-content areas
were primarily observed around Korla city, while the low-content areas for Al were ob-
served around the southern parts of the KRB. The spatial distributions of As, Se, and Mn
contents in groundwater in the KRB were relatively similar. The high-content areas of these
three PTEs were mainly detected in the southwestern parts, while low-content areas of these
three PTEs were primarily observed around western and northeastern parts in the KRB. The
spatial distributions of Cu and Cd in groundwater were very similar, with the high-content
areas of these two PTEs mainly distributed in the eastern parts, while low-content areas
were observed around the northern and southern parts of the KRB. The spatial distributions
of Pb and Zn contents were also relatively similar. The high-content areas of these two PTEs
were mainly detected in the southeastern and southwestern parts, while low-content areas
of them were primarily observed around the northeastern parts of the KRB.
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Overall, the zonal distribution patterns of the PTE contents of groundwater in the
KRB indicated that the PTEs originated mainly from natural sources. However, the PTEs in
groundwater were affected by the leaching of PTEs from the surface, and the geochemistry
of this basin also affects the presence of PTEs in groundwater [25].

3.3. Pollution Levels of PTEs in Groundwater

Two indices, Ii and NI, were used to evaluate the pollution levels of PTEs in ground-
water in the KRB (Table 4). As given in Table 4, the mean Ii values of the investigated PTEs
in groundwater samples in the KRB can be ranked as: As (2.107), Mn (1.804), Al (1.165),
Se (0.744), Pb (0.646), Zn (0.156), Cd (0.071), Cu (0.032), with higher Ii values representing
higher degrees of pollution. According to the classification standard of pollution degree of
Ii, As in the groundwater falls into the moderate pollution level, while Al and Mn fall into
the low pollution level. Se falls into the slight pollution level, and the other four PTEs fall
into the no pollution level. However, the maximum Ii values of Al, As, Mn, Pb, and Se in
groundwater fall into the high pollution level, while the maximum Ii values of Cd and Zn
fall into the slight pollution level. The NI values of the investigated PTEs in groundwater
in the Kǒnqi River Basin were in the range of 0.280–12.600, with a mean value of 2.750
at the moderate pollution level. Overall, the pollution levels of PTEs in groundwater in
the KRB were relatively high. The CV values for Ii and NI values of PTEs showed strong
variability. This indicates that the pollution levels of each PTE in each groundwater sample
have higher spatial variability, with point source pollution. However, As, among these
eight PTEs, was the main pollution factor in groundwater in the KRB.

Table 4. Pollution levels of PTEs in the groundwater (n = 53).

Items
Ii

NI
Al As Cd Cu Mn Pb Se Zn

Minimum 0.005 0.082 0.002 0.001 0.002 0.025 0 0.001 0.280
Maximum 4.985 17.600 1.100 0.531 10.470 4.590 9.730 0.944 12.600

Mean 1.165 2.107 0.071 0.032 1.804 0.646 0.744 0.156 2.750
CV 1.056 1.844 2.787 2.449 1.289 1.372 1.911 1.228 0.988

The spatial distribution patterns of the Ii and NI values are shown in Figure 3. As
illustrated in Figure 3, the spatial distribution patterns of Ii of Al, Mn, and Pb show a
“dotted-distribution” pattern, exhibiting a characteristic of possible point source pollution,
according to the research results of Muyassar et al. [2]. The spatial distribution patterns
of Ii of As and NI values of PTEs in groundwater in the KRB were quite similar, with
the high pollution areas of Ii of As and NI values mainly distributed in the southeastern
and southwestern parts. Moreover, the high As pollution area of groundwater was the
biggest. This proves that As is the dominant pollution factor in groundwater in the KRB.
The spatial distribution patterns of Ii of Se showed a zonal-distribution pattern, Ii of Se
gradually decreased from the southwestern parts to other parts of the study area. The
spatial distribution patterns of Ii of Cd and Zn also showed a “dotted-distribution” pattern,
while Ii of Cu showed no pollution for the whole study area.

However, high-As groundwater is a serious environmental problem worldwide. As
is a carcinogenic HM with high toxicity and listed in the “List of Toxic and Harmful
Water Pollutants” by the Ministry of Ecology and Environment of China [2]. The KRB
of Xinjiang is one of the high-As groundwater areas in the northwestern arid regions of
China. Therefore, special attention should be paid to the higher pollution risks of As in
groundwater in the KRB, considering its high toxicity and higher levels in this region.
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3.4. The Non-Carcinogenic Health Risks of PTEs in Groundwater

Based on the Monte Carlo Simulation, the probability distributions of the
non-carcinogenic risk (HI) for two groups (adults and children) under the oral inges-
tion and dermal contact exposure pathways of PTEs in groundwater in the KRB were
obtained (Figure 4). The mean hazard quotient (HQ) values of PTEs for children and
adults were found in the following order: As > Se > Pb > Mn > Al > Cu > Cd > Zn. This
indicates that the non-carcinogenic risks of As and Se are higher than those of other PTEs
in groundwater in the KRB. The mean HQ values of As for adults and children were 1.02
and 1.99, respectively. The HQ of children is higher than that of adults, which might be due
to their lower weight, resulting in a relatively higher average daily exposure and a higher
sensitivity to the external environment than adults [58]. A previous study [59,60] confirmed
that the HI value of PTEs is generally higher for children than that for adults. The HQ
values of the remaining seven PTEs in groundwater were less than 1 at a 95% confidence
level. A related study [61] suggested that the non-carcinogenic health risk posed by PTEs
in groundwater can be negligible, if the HQ value is below the acceptable risk threshold
(HQ = 1) at a 95% probability. In this study, As reached the acceptable risk threshold at the
cumulative probability of 76.78% and 61.74% for adults and children, respectively.

However, at a 95% probability, the HQ values of Al, As, Cd, Cu, Mn, Pb, Se, and Zn in
groundwater were below the acceptable risk threshold, for both adults and children. This
indicates that Al, Cd, Cu, Mn, Pb, Se, and Zn in groundwater in the KRB are not risky at a
95% confidence level. The above analysis proves that As in groundwater in the KRB may
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pose a probabilistic non-carcinogenic health risk, while the probabilistic non-carcinogenic
health risks associated with the other seven PTEs were negligible. Therefore, As can be
selected as the main non-carcinogenic health risk factor of groundwater in the KRB.
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In terms of the overall non-carcinogenic health risk (HI) (Figure 5), the HI values
for adults and children surpassed the acceptable risk threshold (HI = 1) at a 95% prob-
ability. This indicates that the investigated PTEs in groundwater in the KRB may pose
a probabilistic non-carcinogenic health risk for both adults and children. Moreover, the
mean HI value for children (2.54) was higher than that for adults (1.30); children face
higher non-carcinogenic health risks than adults. This indicates that children have a higher
cumulative non-carcinogenic health risk compared to adults.
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3.5. The Carcinogenic Health Risks of PTEs in Groundwater

The probability distributions of the carcinogenic risk (CR) for two groups (children and
adults) under the oral ingestion contact exposure pathways of PTEs in groundwater in the
KRB are illustrated in Figure 6. For children, the mean CR value of As was 2.0 × 10−4, which
indicated a low carcinogenic risk. The CR value of As reached a moderate carcinogenic
risk level (1 × 10−4) when the cumulative probability reached 60.50%. At the cumulative
probability of 96.45%, the CR value of As reached the category of high carcinogenic risk
(1 × 10−3). Meanwhile, the mean CR value of Cd was 6.9 × 10−7, which indicated a very
low carcinogenic risk. At the cumulative probability of 85.80%, the CR of Cd reached a low
carcinogenic risk level (1 × 10−6).
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For adults, the mean CR value of As was 3.4 × 10−5, which indicated a low carcino-
genic risk. At the cumulative probability of 0.12%, the CR value of Cd was lower than the
threshold value of carcinogenic risk (1 × 10−4). The CR value of As reached the moderate
carcinogenic risk level (1 × 10−4) when the cumulative probability reached 93.33%. At the
cumulative probability of 99.83%, the CR value of As reached the high carcinogenic risk
level (1 × 10−3). Meanwhile, the mean CR value of Cd was 1.0 × 10−7, which indicated
a very low carcinogenic risk. At the cumulative probability of 98.70, the CR value of Cd
reached the low carcinogenic risk level (1 × 10−6).

In terms of the total carcinogenic health risk (TCR) (Figure 7), the TCR values of PTEs
in the groundwater in the KRB for adults and children were 3.43 × 10−5 and 2.04 × 10−4,
respectively. The TCR values of PTEs in groundwater for adults and children surpassed
the acceptable carcinogenic risk threshold (TCR = 1 × 10−4) at a 95% probability. At
the cumulative probability of 3.56% and 0.17, the TCR value reached the category of the
carcinogenic risk level (1 × 10−4). These findings indicate that PTEs in groundwater in the
KRB may pose a probabilistic carcinogenic health risk [60]. Moreover, the mean TCR value
for children was higher than that for adults, indicating a higher cumulative carcinogenic
health risk for children than for adults.

Like the non-carcinogenic health risks, the carcinogenic risks to children of PTEs in
groundwater were relatively great, which is related to the higher sensitivity to environmen-
tal pollutants of children and their physiological characteristics [31]. In addition, the TCR
value of As in the groundwater was higher than that of Cd. This indicates that As poses
a higher carcinogenic risk to children. Overall, As is the main pollution element causing
carcinogenic health problems in groundwater in the KRB for these two populations. It is
worth noting that long-term exposure to As may lead to severe health problems [31,61], of
which we should be cautious.
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3.6. Sensitivity Analysis

A sensitivity analysis was adopted for discussing the influence of each parameter on
the health risk assessment results, with larger sensitivity values representing a stronger
influence. As shown in Figure 8, all parameters (contents of PTEs, ET, and EF) showed a
positive correlation with the risk assessment results. As shown here, the influence of each
parameter on the health risk assessment results showed a similar trend for children and
adults. For the non-carcinogenic risks of PTEs in the groundwater, the sensitivity values
for children can be ranked as follows: As (55.05%), Se (11.5%), Pb (9.43%), EF (9.09%),
Mn (8.38%), Al (2.88%), Cd (1.22%), Cu (1.64%), Zn (0.79%), ET (0.02%). For adults, the
sensitivity values can be ranked as follows: As (54.79%), Se (10.96%), EF (10.72%), Pb
(9.14%), Mn (7.75%), Al (3.07%), Cu (1.77%), Cd (0.78%), ET (0.73%), Zn (0.29%). For the
carcinogenic risks of PTEs in the groundwater, the sensitivity values for children can be
ranked as follows: As (89.71%), EF (8.4%), Cd (1.82%), ET (0.07%). For adults, the sensitivity
values can be ranked as follows: As (88.62%), EF (9.86%), Cd (1.22%), ET (0.3%). These
results indicate that As in the groundwater in the KRB is the dominant factor influencing
the results of health risk assessment.
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4. Discussion

The traditional health risk assessment model used in this study relied on some deter-
ministic exposure parameters when calculating the CDI values of PTEs in the groundwa-
ter [20]. Due to differences in these parameters for specific individuals in different regions,
related parameters used in this study might not be suitable for accurately estimating proba-
ble health risks [62]. However, this study did more accurately identify the dominant health
risk factor in groundwater in the KRB, based on the Monte Carlo Simulation.

Overall, As, among these eight PTEs, is the main pollution factor and health risk
factor in groundwater in the KRB. However, As in various water bodies can cause adverse
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health risks [13]. As was recognized as a Class I carcinogen by the International Agency for
Research on Cancer (IARC) of the WHO in 2017. As has the ability to move and transform
in different ecosystems, and can threaten the health of entire ecosystems [62]. High-As
groundwater is a serious issue worldwide due to its high toxicity and bioaccumulation.
Obtained results of the present study emphasized that the probable health risks caused by
exposure to As in the groundwater in the KRB cannot be ignored. Therefore, the pollution
and probable health risks of As in groundwater in the KRB should have special attention
paid to them, considering As’ higher levels and probable health risks in this region.

The exposure parameters (such as BW and SA) for calculating the CDI used in the
present study were obtained from related studies, which might not be very appropriate for
analyzing the health risk of PTEs in groundwater in the KRB. Further studies are needed to
explore the suitability of exposure parameters to obtain a more accurate estimation of the
potential health risks of PTEs in groundwater. Despite these limitations, the present study
can clarify our understanding of the pollution risks of PTEs in groundwater in arid zones.

5. Conclusions

In conclusion, this study analyzed the pollution and potential health risks of eight
PTEs in the groundwater in the KRB for the first time in this region. The Nemerow index
(NI) and the health risk assessment model, based on the Monte Carlo Simulation, were
adopted for pollution and health risk assessment. Obtained results of this study revealed
that the mean contents of Al, As, and Mn in the groundwater surpassed the Class III
threshold of the Standard for Groundwater Quality of China (GB/T 14848—2017) by factors
of 1.17, 2.10, and 1.80 times, respectively. Results of the pollution assessment revealed that
the pollution degree of PTEs in the groundwater decreased in the order of As > Mn > Al
> Se > Pb > Zn > Cd > Cu. Among them, As in the groundwater falls into the moderate
pollution level, while Al and Mn fall into the low pollution level. Se falls into the slight
pollution level, and the other four PTEs fall into the no pollution level. The overall pollution
levels of investigated PTEs in the groundwater fall into the moderate pollution level. The
spatial distributions of the contents of different PTEs in the groundwater were different,
with the distribution of the high-content areas of each toxic element in the groundwater
showing a “dotted-distribution” pattern. Results of the health risk assessment revealed
that the mean hazard quotient values of PTEs decreased in the order of As > Se > Pb >
Mn > Al > Cu > Cd > Zn. Among them, As may pose a non-carcinogenic health risk,
whereas the non-carcinogenic health risk posed by the other seven PTEs in groundwater
will not have the non-carcinogenic risks. For adults and children, the mean carcinogenic
risk index values of As were 3.4 × 10−5 and 2.0 × 10−4, respectively, at a low carcinogenic
risk level. The mean CR value of Cd was 1.0 × 10−7 and 6.9 × 10−7, respectively, at a very
low carcinogenic risk level. Children have a higher cumulative health risk compared to
adults. Overall, according to the total risk index, all investigated PTEs in groundwater
in the KRB may pose a probabilistic non-carcinogenic health risk and a low carcinogenic
health risk. However, As was confirmed as the dominant pollution factor and health
risk factor of groundwater in the KRB. The obtained results of this study could serve as
valuable tools for groundwater management efforts in arid ecosystems. This information is
crucial for identifying the potential risks of PTEs in the future, especially in arid zones with
areas suffering from severe water shortages. Such comprehensive analyses are essential
for sustainable water management, and can provide the scientific support needed for the
prevention and control of PTEs in groundwater in arid zones.
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